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ABSTRACT 

We present a novel image superpixel segmentation approach 

using the proposed lazy random walk (LRW) algorithm in this 

paper. Our method begins with initializing the seed positions 

and runs the LRW algorithm on the input image to obtain the 

probabilities  of  each pixel. Then, the boundaries of  initial 

superpixels are obtained according to the probabilities and the 

commute   time.   The   initial   superpixels   are   iteratively 

optimized by the new energy function, which is defined on the 

commute time and the texture measurement. 
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1. INTRODUCTION 
Superpixel are commonly defined as contracting and grouping 

uniform pixels in the image, which have been widely used in 

many   computer   vision   applications   such   as   image 

segmentation  and  object  recognition.  Compared  to  the 

traditional pixel representation of the image, the superpixel 

representation greatly reduces the number of image primitives 

and improves the representative efficiency. Furthermore, it is 

more convenient and effective to compute the region based 

visual  features  by  superpixels,  which  will  provide  the 

important  benefits  for  the  vision  tasks  such  as  object 

recognition. 

It is still  challenging to  develop a  high quality superpixel 

algorithm, which avoids the under-segmentation and locally 

groups  the  pixels  respecting the  intensity  boundaries.  The 

desired properties of an ideal superpixel algorithm should not 

only  adhere  well  to  object  boundaries  of  image,  but  also 

maintain the compact constrains in the complicated texture 

regions. In order  to satisfy these desired requirements, we 

develop a new image superpixel segmentation method by the 

lazy random walk (LRW) and energy optimization algorithm 

to achieve better performance than the previous approaches. 

Our image superpixel segmentation algorithm is based on the 

generalized random walk (RW) algorithms [12]. However, the 

original  RW  algorithm  depends  on  the  local  relationship 

between the pixel and its corresponding seeds with the first 

arrival probability. This may lead to the irregular shape of the 

final  non-uniform  superpixel  results.  By  considering  the 

global relationships between all the pixels and the seed points, 

we then develop a novel superpixel algorithm using the LRW 

with the compactness constraints. 

Our  LRW  algorithm  with  self-loops  effectively  solves  the 

segmentation problem in weak boundary and complex texture 

regions.  On  the  other  hand,  the  LRW  based  superpixel 

algorithm may suffer from the sensitiveness of the initial seed 

positions. In order to overcome these limitations and improve 

the  performance,  we  further  develop  a  new  superpixel 

optimization approach by introducing an energy optimization 

framework. Our superpixel optimization strategy is essentially 

a  compactness  constraint,  which  ensures  the  resulting 

superpixels to distribute uniformly with the homogeneous size 

by relocation and splitting mechanism. 

Our energy function is composed of two items, the first data 

item adaptively optimizes the positions of seed points to make 

the  superpixel  boundaries  adhere  to  the  object  boundaries 

well, and the second smooth item adaptively divides the large 

superpixels  into  small  ones  to  make  the  superpixels  more 

homogeneous.  According  to  these  relocated  seed  positions 

and newly created seeds by the splitting scheme, our LRW 

algorithm is executed again to optimize the initial superpixels, 

which makes the boundaries of final superpixels adhere to 

object boundaries very well. 

The existing superpixel approaches can be roughly classified 

into two categories. The first category is the algorithms that 

do  not  consider  the  compactness  constrains  during  the 

superpixels generation procedure, such as meanshift [5], and 

graph based [11] algorithms. In order to avoid the superpixels 

crossing the object boundaries, these segmentation algorithms 

generally  produce  the  superpixels  by  over-segmenting  the 

image.   Since   these   algorithms   do   not   consider   the 

compactness constrains, which may produce the superpixels 

of highly irregular shapes and sizes. 

The second category of superpixel algorithms considers the 

compactness constrains, such as normalized cuts  [7], lattice 

cut, TurboPixels, and graph cut approaches. Ren and Malik 

[7] proposed an image superpixel approach to segment the 

image   into   a   large   number   of   small   compact   and 

homogeneous  regions  by  the  normalized  cuts.  The  NCuts 

method is very powerful in feature extraction for obtaining the 

regular  superpixels   in  size   and   shape.  However,   the 

computational cost of NCuts superpixel approach is very high 

and expensive when the number of superpixels or the size of 

image increases greatly. 

Levinshtein et al presented an efficient TurboPixel superpixel 

algorithm using the level set based geometric flow evolution 

from the uniformly placed seeds in the image. However, it 

exhibited relatively poor boundary adherence because of its 

numerical   stability   issues   especially   with   complicated 

textures.  Veksler  et  al  developed  an  image  superpixel 

approach by the graph cut optimization, and the superpixels 
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were obtained by stitching each pixel that belonged to only 

one of the overlapping image patches.  

been proposed to fulfill the need of increasing applications, 

such as the algorithms in Moore et al. used a single graph cut 

method  to  construct  an  optimal  solution  in  either  the 

horizontal or vertical direction, which took into account both 

the edges and the coherence of resulting superpixel lattices. 

Xiang  et  al  proposed  a  lattice-like structure  of  superpixel 

regions with uniform size by learning the eigen-images from 

the input image, which improved the evolution speed in the 

TurboPixel  framework.  Achanta  et  al  presented  a  simple 

linear iterative clustering (SLIC)  superpixel algorithm, and 

adopted  the  k-means  clustering  approach  to  generate  the 

superpixels with relatively lower computational cost. Liu et al 

formulated  the  superpixel  segmentation  problem  as  an 

objective  function  on  the  entropy  rate  in  the  graph.  The 

entropy rate can help to cluster the compact and homogeneous 

regions, which also favors the superpixels to overlap with a 

single  object  on  the  perceptual  boundaries.  Zengs  et  al. 

presented a structure sensitive image superpixel technique by 

exploiting  the  geodesic  distance.  Recently,  Wang  et  al. 

proposed  edge-weighted  centroidal   voronoi  tessellations 

(EWCVTs)-based superpixel algorithm, which generated the 

uniform superpixels and preserved the image boundaries well. 

The goal of superpixel is to over-segment the input image into 

small  compact  regions  with  homogenous  appearance.  The 

superpixel segmentation can be considered as a pixel labeling 

problem where each superpixel is assigned to a unique label. 

Our approach begins with placing the initialized seeds of the 

assigned superpixels. Then, we use the LRW algorithm to 

obtain the initial superpixels and their boundaries. 

In order to further make the superpixels more compact and 

their boundaries more consistent with the object boundaries in 

image, we develop a novel energy optimization algorithm to 

optimize the seed positions and split the large superpixels. 

Fig. 1 illustrates the workflow and gives the procedure of the 

proposed  LRW  superpixel  optimization  algorithm.  Our 

superpixel approach consists of two main steps. The first step 

is to obtain the superpixels using the LRW algorithm with 

initial  seed  points [Fig. 1(b)].  In  order  to  improve  

thesuperpixel performance, we optimize the initial superpixels 

by the  new  energy  function  in  the  second  step.  Our  

energy includes two items: the data item makes the 

superpixels more homogenous with regular size by relocating 

the seed positions [Fig. 1(c)], and the smooth item makes the 

superpixels more adhering to the texture edges by dividing the 

large irregular superpixels into small regular ones [Fig. 1(f)]. 

Then, our LRW algorithm is performed again to obtain the 

better boundaries of superpixels with these new seed positions 

[Fig. 1(d)].  Finally,  our superpixel  optimization  and  

LRWsteps  are  executed  iteratively  so  as  to  achieve  the  

final satisfying  superpixel  results [Fig. 1(g)].  In  the  

followingsubsections,  we will  discuss in detail  the LRW 

algorithm, LRW-based   superpixel   initialization   and   

optimization algorithm. 

Fig. 1. The workflow of our LRW based superpixel 

method. 

(a)  Input  image;  (b)  initial superpixels  by  LRW and  seed 

points (red “o”); (c)   seeds  relocation  by  superpixels 

optimization (yellow “+”  is  the  relocated  seeds  from  the 

original positions in (b), and yellow arrow “→” denotes the 

motion of some seed); (d) superpixel refinement by our LRW 

method with  updated  center  positions  (red  “+”);  (e)  seeds 

relocation  and  newly  created  superpixels  with  their  center 

positions (green “+”)  by  superpixels  optimization; (f) 

superpixel refinement by LRW;  (g) final superpixels. Note 

that steps (c) to (f) (rectangle with dash lines) are performed 

iteratively until the final superpixels are obtained 

2. Lazy Random Walk Algorithm 
The RW algorithm has been used extensively for interactive 

image segmentation in the image processing and computer 

vision  literatures [12], [14], [22].  The  RW  algorithm 

computes the first arrival probability that a random walk starts 

at one pixel first reaches one of the seeds with each label, and 

then that pixel is denoted as the same label with maximum 

probability of the corresponding seed. 

A random walk starts from a pixel must first arrive at the 

position of the pre labeled seed, and thus it only considers the 

local   relationship   between   the   current   pixel   and   its 

corresponding seed. This first arrival probability ignores the 

whole relationship between the current pixel and other seeds. 

As denoted by Grady [12], these limitations of the original 

RW method give the reason that it suffers from the weak 

boundary and complex texture segmentations. 

In order to make full use of the global relationship between 

the pixel and all the seeds, we add the self-loop over the graph 

vertex to make the RW process lazy, which is inspired by the 

original LRW concept [3], [12]. However, the original LRW 

was initially proposed for the website data classifying and 

mining applications in [3], [8], and [9]. In our application, we 

need to further develop the original LRW algorithm to be 

suitable for our image superpixel segmentation application. 

As shown in Fig. 2, the main contribution of our LRW based 

superpixel algorithm is two-fold. On one hand, the self-loop 

[Fig. 2(b)] is added on each vertex to ensure the boundary 

constrain for superpixels. Since a vertex with a heavy self-

loop is more likely to absorb its neighboring pixels than the 

one with light self-loop, which makes the vertex to absorb and 

capture both the weak boundary and texture information with 

self-loops. On the other hand, instead of starting from the 

pixels to the seed points as the original RW algorithm does 

[Fig. 2(a)], our LRW algorithm computes the commute time 

from  the  seed  points  to  other  pixels [Fig. 2(b)].  The 

probability maps by our LRW approach [Fig. 2(e)] give more 

confident separation than the ones by RW method [Fig. 2(d)]. 

Therefore, our LRW algorithm significantly outperforms the 

original RW algorithm on the test images [Fig. 2(c)] with the 

same background and foreground seed scribbles. We use the 

RW implementation2 to produce the RW segmentation results 

[Fig. 2(f)]. The segmentation result by our LRW algorithm 
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[Fig. 2(g)] achieves the better foreground objects separation 

than the result by RW method [Fig. 2(f)]. 

 

Fig. 2. Illustration the structure of RW and LRW algorithms 

with  their  comparison  results. (a)  Traditional  RW  

methodwithout self-loops; (b) our LRW algorithm with self-

loops; (c) input images with user seeds (scribbles); (d) and (e) 

are the probability maps by RW and LRW algorithms; (f) and 

(g) are the segmentation results by RW and our LRW method. 

Image segmentation  result  by  our  LRW  algorithm  has  the  

better performance than the one by classic RW method [12] 

with the same  user  scribbles (green  for  foreground  and  

blue  for background), especially in the leg regions of wolf 

and the flower parts 

3. LRW Based Superpixel Initialization 
Our method begins by placing the initial superpixel seeds on 

the input image. Our goal is to make the superpixels to be 

evenly distributed over the whole image as much as possible. 

We first place K circular seeds in a lattice formation, and the 

distance between lattice neighbors is equal to √N/K where N 

is the total number of pixels in the image. This strategy 

ensures that the superpixels will be evenly distributed on the 

whole image.  However,  this  placement  strategy  may  cause  

some seeds to occasionally close to a strong edge because 

these images  are  not  completely  uniform  distribution.  

Thus,  the initial  seed  position  is  perturbed  by  moving  it  

along  its gradient direction according to the seed density. 

After we have finished the seed initialization stage, we then 

use  the  LRW  algorithm     to  compute  the  boundaries  of 

superpixels. At each step, the LRW algorithm transmits to its 

neighborhood with the probability which is proportional to the 

aforementioned edge-weight wi j. The LRW algorithm will 

converge  at  a  pixel  xi  with  the  boundary  likelihood 

probabilities flk (xi ) of superpixels . Finally, we obtain the 

labeled boundaries of superpixels from the commute time as 

follows: 

 

Where clk denotes the center of the l-th superpixel, and the 

label lk is assigned to each pixel xi to obtain the boundaries of 

superpixels. Algorithm  1 gives the main steps of our LRW 

based superpixel initialization algorithm. 

 

4. Superpixel Optimization 
As described in the previous paragraphs, the main principle of 

an  ideal  superpixel  algorithm  should  contain  that  the 

superpixel   boundaries   adhere   well   to   image   intensity 

boundaries and also make the superpixels to be regular with 

uniform   size   in   the  complicated  texture   regions.   By 

considering the compactness constraints, we further improve 

the  performance  of  superpixels  with  the  following  energy 

optimization function. 

 

where the first term is the data item and the second term is the 

smooth item. The data item makes the texture information of 

image to be distributed uniformly in the superpixels, which 

produces more homogeneous superpixels. The smooth item 

makes the boundaries of superpixels to be more consistent 

with the object boundaries in the image. Area(Sl) is the area 

of superpixel  and  Area( ¯S)  defines  the  average  area  of 

superpixels. Wx is a penalty function for the superpixel label 

inconsistency, and we set. 

 

in our paper where β is a normalization factor. When the 

commute time CT (cl , x) between seed point cl and pixel x is  

small, will  be  a  large  value.  This  makes  the 

optimized  superpixel  to   be  more  compact   and   more 

homogeneous in texture regions 
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Fig. 3. Comparison results of image superpixels by RW and 

LRW algorithms. (a) superpixels by RW [12]; (b) superpixels 

by our LRW;  (c) superpixels by RW and optimization;  (d) 

superpixels  by  our  LRW  and  optimization.  Note  that  the 

superpixels   by   our   LRW   algorithms   have   the   better 

performance  such as  the uniform size and  good  boundary 

adherence. 

5. CONCLUSION 
We have presented a novel image superpixel approach using 

the LRW and energy optimization algorithm in this paper. Our 

method first runs  the LRW  algorithm to  obtain the initial 

superpixel  results  by  placing  the  seed  positions  on  input 

image. Then we further optimize the labels of superpixels to 

improve the regularity and boundary adherence performance 

by relocating the center positions of superpixels and dividing 

the large superpixels into small uniform ones in an energy 

optimization  framework.  The  experimental  results  have 

demonstrated  that  our superpixel  algorithm achieves better 

performance   than   the   previous   well-known   superpixel 

approaches. Our algorithm is capable of obtaining the good 

boundary  adherence  in  the  complicated  texture  and  weak 

boundary  regions,  and  the  proposed  optimization  strategy 

significantly improves the quality of superpixels. 
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