
International Journal of Computer Applications (0975 – 8887)

National Level Technical Conference “X-PLORE 13

13

Distributed Computing System for Parallel Processing

Pallavi S. Shendekar

Department of Information Technology
Sipna College of Engineering & Technology

Amravati, India

 Vijay S. Gulhane

Department of Information Technology
Sipna College of Engineering & Technology

Amravati, India

ABSTRACT

Distributed computing is a form of parallel computing, but

parallel computing is most commonly used to describe

program parts running concurrently on multiple processors in

the same computer. Both types of processing require dividing

a program into parts that can run simultaneously, but

distributed programs often must deal with assorted

environments, network links of varying latencies, and

unpredictable failures in the network or the computers. In

distributed computing a program is divide into parts that run

simultaneously on multiple computers communicating over a

network. There are many different types of distributed

computing systems and many challenges to overcome in

successfully designing one. The main goal of this paper is to

connect users and resources in a transparent, open, and

scalable way. Ideally this arrangement is drastically more

fault tolerant and more powerful than many combinations of

stand-alone computer systems.

Keywords

Distributed computing, parallel processing, data conversion,

distributed programming.

1. INTRODUCTION
The word distributed in terms such as "distributed system",

"distributed programming", and "distributed algorithm”

originally referred to computer networks where individual

computers were physically distributed within some

geographical area. The system may be characterized both as

"parallel" and "distributed"; the processors in a typical

distributed system run concurrently in parallel.[12] Distributed

computing deals with hardware and software systems

containing more than one processing element or storage

element, concurrent processes, or multiple programs, running

under a loosely or tightly controlled administration. In

distributed computing a program is divide into parts that run

simultaneously on multiple computers communicating over a

network. In parallel computing, all processors may have

access to a shared memory to exchange information between

processors whereas in distributed computing, each processor

has its own private memory (distributed memory).

Information is exchanged by passing messages between the

processors. The application of several processors to a single

task is an older idea with a relatively large literature. The

advent of very large-scale integrated technology has made
testing the idea realistic, and the fact that single processor

systems are impending their maximum performance level has

made it crucial. We shall show, however, that victorious use

of parallel processing imposes rigorous performance

necessities on algorithms, software, and architecture. The so-

called asynchronous systems which use a few tightly coupled

high-speed processors are a natural development from high-

speed single-processor systems. In fact, systems with two to

four processors will soon be available (for example, the Cray

X-MP, the Cray-2, and the Control Data System 2XX).
 To estimate the speedup of a tightly coupled system on a

single application, we use a model of parallel computation

introduced by Ware. We define a as the fraction of work in

the application that can be processed in parallel. Then we

make a simplifying assumption of a two-state machine; that is,

at any instant either all processors are operating or only one

processor is operating. Consider the condition user having

10000 document to process and each having large data in this

case project need to employee the system which will transfer

processing over the network system and save output on the

server or main system. So the proposed system will aimed at

parallel processing of provided task.

 In Distributed Computing approach, it is followed to

assign a job to a processor if it is idle. The focus is now on

how to optimize re-sources to decrease the energy

consumption by volumes of computing equipments to deal

with green and sustainability issues[10]. Various hardware and

software architectures are used for distributed computing. At a

lower level, it is necessary to interconnect multiple CPUs with

some sort of network, regardless of whether that network is

printed onto a circuit board or made up of loosely-coupled

devices and cables. At a higher level, it is necessary to

interconnect processes running on those CPUs with some sort

of communication system.

2. LITERATURE SURVEY
Various algorithm and models have been proposed, mostly

heuristic in nature, as the optimal solution often requires

future knowledge and is computationally intensive. The most

widely approach for studying DLB algorithms is analytic

modeling and simulation. For analytic modeling, the computer

system is modeled as a queuing network with job arrivals and

their resource consumptions following certain probabilistic

patterns. Queuing network solution techniques are used to

compute performance measures [2, 9, 8, 7] Due to limitations of

the solution techniques, simulation is often resorted to for

approximate solutions [5, 4]. Some of the-source-initiated DLB

algorithms are by Eager. [8, 7, 6]

 Task partitioning is proposed by Deelman et al[11]. It

partitions a workflow into multiple sub-workflows which are

executed sequentially. Rather than mapping the entire

workflow on Grids, allocates resources to tasks in one sub-

workflow at a time. Various hardware and software

architectures are used for distributed computing. At a lower

level, it is necessary to interconnect multiple CPUs with some

sort of network, regardless of whether that network is printed

International Journal of Computer Applications (0975 – 8887)

National Level Technical Conference “X-PLORE 13

14

onto a circuit board or made up of loosely coupled devices

and cables. At a higher level it is necessary to

interconnect processes running on those CPUs with some sort

of communication system.

2.1 DISTRIBUTED PROGRAMMING

ARCHITECTURES

 Distributed programming typically falls into one of

several basic architectures or categories: Client-server, 3-tier

architecture, N-tier architecture, Distributed objects, loose

coupling, or tight coupling [1].

2.1.1 Client-server
Smart client code contacts the server for data, then formats
and displays it to the user. Input at the client is committed

back to the server when it represents a permanent change.

2.1.2 3-tier architecture
Three tier systems move the client intelligence to a middle
tier so that stateless clients can be used. This simplifies
application deployment. Most web applications are 3-Tier.

2.1.3 N-tier architecture
N-Tier refers typically to web applications which further
forward their requests to other enterprise services. This
type of application is the one most responsible for the
success of application servers.

2.1.4 Tightly coupled (clustered)
Tightly coupled refers typically to a cluster of machines
that closely work together, running a shared process in
parallel. The task is subdivided in parts that are made
individually by each one and then put back together to
make the final result.

2.1.5Peer-to-peer
Peer-to-peer is an architecture where there is no special
machine or machines that provide a service or manage the
network resources. Instead all responsibilities are
uniformly divided among all machines, known as peers.
Peers can serve both as clients and servers.

2.1.6 Space based
Space based refers to an infrastructure that creates the
illusion (virtualization) of one single address-space. Data
are transparently replicated according to application needs.
Decoupling in time, space and reference is achieved.

2.2 Different Transparency

Our goals in designing a distributed file system are to
present certain degrees of transparency to the user and the
system:

2.2.1 Access transparency
 Clients are unaware that files are distributed and can
 access them in the same way as local files are accessed.

2.2.2 Location transparency
 A consistent name space exists encompassing local as

 well as remote files. The name of a file does not give it

 location.

2.2.3 Concurrency transparency
 All clients have the same view of the state of the file

 system.This means that if one process is modifying a file,

 any other processes on the same system or remote systems

that are accessing the files will see the modifications in a

coherent manner.

2.2.4 Failure transparency
The client and client programs should operate correctly after

a server failure.

2.2.5 Heterogeneity
File service should be provided across different hardware and

operating system platforms.

2.2.6 Scalability
The file system should work well in small environment (1

machine, a dozen machines) and also scale gracefully to huge

ones (hundreds through tens of thousands of systems).

2.2.7 Replication transparency
To support scalability, we may wish to replicate files across

multiple servers. Clients should be unaware of this.

2.2.8 Migration transparency
Files should be able to move around without the client's

knowledge.

2.2.9 Support fine-grained distribution of data
To optimize performance, we may wish to locate individual

objects near the processes that use them.

2.2.10 Tolerance for network partitioning
The entire network or certain segments of it may be

unavailable to a client during certain periods (e.g.

disconnected operation of a laptop). The file system should be

tolerant of this.

3. PROPOSED ARCHITECTURES
In the proposed architectures the main factors are the

designing the distributed system and parallel processing

through a specific problem domain. Here the problem domain

is known and well defined, the environment in which the

system run is also well defined. Basic aspect of distributed

computing architecture is the method of communicating and

coordinating work among concurrent processes. Through

various message passing protocols, processes may

communicate directly with one another, typically in a

master/slave relationship. Alternatively,”database centric"

architecture can enable distributed computing to be done

without any form of direct inter-process communication, by

utilizing a shared database.

3.1 Working Modules

Figure1 shows the basic block diagram of the paper. Actual

task processing needs a series of steps to be performed. These

series of processes are simultaneously executed on different

client machines. Basically here we are distributing the no. of
files on to the network through the shared database.

International Journal of Computer Applications (0975 – 8887)

National Level Technical Conference “X-PLORE 13

15

3.1.1 Master / Slave System
Parallel processing system built using server / client

technology. Where master server act as a process manager

system. In this system whenever network initialize or the first

system user started in the network will check for active server

in the network if no server running found then it will become

host or master server and other were become slave system.

This feature can be dynamic or static which means user can

disable or enable this feature.

3.1.2 Task (Conversion)
This is the main input to the parallel processing system. First

user need to define the task to perform the specified operation.

In this system it will consider a task of batch file format

conversion. Data can be passed to the client to process or it

can be placed on shared data storage location from where all

clients will fetch data to process.

3.1.3 Task Assigning

Once the user provides input task on master server then

master will analyze the task and divide it in to proper task

and create its task list for client. Once all clients get the task

list to process it will start processing. As proposed system

will work on shared data storage it will reduce network

processing and network traffic by removing data transfer

processing

3.1.4 Parallel Processing
After master distributes the task over the distributed network

all clients will process simultaneously and send

acknowledgement to the master server. Master server will also

process the task and at the same time will check for the client

processing status and monitor it on the screen.

3.1.5 Process Failure Detection System
The system will also manage failure of the client system at

run time. Consider a condition if any of the client get failed

due to any reason the remaining task should be processed by

other system in the network. Master server will take care of

this. It will continuously get acknowledgment from client time

to time after each task completion. Once any client’s
connection get closed server will check work remain by

specific client and then again divide this task and pass it to

other client and client will process it.
3.1.6 Distributed File System
System sends data to client for processing but it will increase

system overhead. So in this paper data to processed will kept

on shared storage and accessed using distributed file system

so that network protocol processing can be reduced.
 The main task is to start the server on specific port in

listen mode now server is ready to get the request from the

client. Now client can make request to the server by providing

server address and the server port detail. Client send connect

request. Server will get the connection request same as we get

the ring on mobile for connection. After this server can accept

or reject the connection and server accepting the request, a

connection link gets established between server and client.

Now server can send the data to the client and client get the

data arrival ACK, after this client can read the data .Same

thing happened with server and communication goes on.

Finally any one of both can close the connection.

4. REQUIREMENT ANALYSIS
Operating System: Windows XP

Development Tool: C# (.Net)

Database: SQL Server 2005

5. CONCLUSION
The proposed system is best for batch or mass execution. This

parallel processing distributed computing Model can reduce

over-heads and it makes the proper utilization of multiple

systems rather than implementing supercomputing processor.

This system reduces the risk of failure as it can use normal

lower configuration PC system to complete the task and even

input task is not dependent on the single system. But If not

planned properly, a distributed system can decrease the

overall reliability of computations if the unavailability of a

node can cause disruption of the other nodes.

6. REFERENCES
[1] Gupta R., Chaube A.R., Singh S. (2011) International

Journal of Advanced Research in Computer Science and

Software Engineering,.

[2] Wang Y. and Morris R. (1985) IEEE Trans. Computing,

34(3), 204-217.

[3] Stone H.S. (1978) IEEE Trans. Software Eng., 4(3).

[4] Stone H.S. (1977) IEEE Trans of Software Engineering,

3(1), 95-93.

[5] Miron Livny, Myron Melman (1982) The Computer

Network Performance Symposium, 47-55.

[6] Hsu C.H. and Liu J.W. (1986) The 6th International

Confer-ence on Distributed Computing Systems, 216-

223.

[7] Derek L. Eager, Edward D. Lazowska, John Zahorjan

(1986) IEEE Transactions on Software Engineering,

12(5), 662-675.

[8] Eager D.L., Lazowska E.D. and Zahorjan J. (1986)

Perfor-mance Evaluation, 6(1), 53-68.

[9] Chow Y.C. and Kohler W. (1979) IEEE Transactions on

Com-puters, 28, 334-361.

[10] Joshi E. International Journal of Computer Applications,

1(18), 0975 - 8887.

[11] Deelman E. et al. (2004) European Across Grids

Conference, 11-20 .

[12] Lynch,Nancy A (1996),Distributed Algorithm, Morgan

Kaufmann, ISBN 978-1-58488-564-1.

