
International Journal of Computer Applications (0975 – 8887)

Volume 99– No.7, August 2014

37

An Automated Web Application Testing System

Moheb R. Girgis

Department of Computer
Science, Faculty of

Science, Minia University,
El-Minia, Egypt

Tarek M. Mahmoud

 Department of Computer
Science, Faculty of

Science, Minia University,
El-Minia, Egypt

Bahgat A. Abdullatif
 Department of Computer

Science, Faculty of
Science, Minia University,

El-Minia, Egypt

Alaa M. Zaki
Department of Computer

Science, Faculty of
Science, Minia University,

El-Minia, Egypt

ABSTRACT

Web applications are dynamic and interactive, as compared to

traditional applications. Therefore, traditional testing

techniques and tools are not sufficient for web applications

testing. This paper presents a proposed Web testing approach,

in which hyperlinks of the website to be tested are

automatically followed one by one to retrieve all HTML texts

of its pages starting from the home page. The HTML text of

each encountered page is analyzed to extract the needed

information about it. Then, the collected information is used

in the error checking process. The proposed approach

guaranties the satisfaction of two web application testing

criteria, namely page coverage criterion and hyperlink

coverage criterion. The paper also describes an automated

Web application testing system that has been developed to

implement the proposed approach. The effectiveness of the

proposed approach and the developed system in discovering

several possible Web applications errors is demonstrated

through a case study.

Keywords

Web applications testing, Web applications testing approach,

Web application testing criteria, Automated web application

testing system.

1. INTRODUCTION
A Web application is a system which typically is composed of

a database (or the back-end) and Web pages (the front-end),

with which users interact over a network using a browser [1].

A web page can be either static, in which case the content is

fixed, or dynamic, such that its contents may depend on user

input. User input to a web application consists of both

navigational requests and data provided often through forms,

which eventually affect the state of the underlying code on the

server. [2]

Web applications are complex, ever evolving, and rapidly

updated software systems. Their testing is both challenging

and critical. It is challenging because traditional testing

methods and tools are not sufficient for web-based

applications, since they do not address their distinctive

features. Examples of the new features of web applications

are: extensive use of events, rich graphical user interface, and

incorporation of server side scripting. Testing web based

applications is critical because failure may be very costly. [3]

The main aim of the testing of a Web application is to

discover failures in the required services/functionality, in

order to verify the conformance of the application behavior

with the specified requirements. Web application components

are usually accessed by navigation mechanisms implemented

by hyperlinks, so link checking must be considered to ensure

that neither unreachable component, nor pending/broken links

are included in the application. [4]

In this paper, a Web testing approach is proposed and an

automated Web application testing system, which implements

this approach, is described. In the proposed approach,

hyperlinks of the website to be tested are automatically

followed one by one to retrieve all HTML texts of its pages

starting from the home page. The HTML text of each

encountered page is analyzed to extract the needed

information about it. Then, the collected information is used

in the error checking process.

The paper is organized as follows: Section 2 gives a review of

several of web application testing techniques that have been

proposed in the literature. Section 3 describes the proposed

Web testing approach. Section 4 describes the automated Web

application testing system that has been developed to

implement the proposed approach. Section 5 presents a case

study to illustrate the error exposing ability of the proposed

Web testing approach and the developed supporting system.

Section 6 presents the conclusion of the work presented in this

paper.

2. RELATED WORK
Web applications are dynamic and interactive, as compared to

traditional applications. Therefore, traditional testing

techniques and tools are not sufficient for web applications

testing. A variety of web application testing techniques has

been proposed. This section gives a review of several of these

techniques.

Kung et al [5] developed a test generation method for web

testing to capture structural and behavioral test artifacts of

web applications. The entities are represented as objects, and

their structures, relationships and dynamic behaviors are

described. An object oriented Web Test Model (WTM) has

been proposed which represents artifacts from object,

behavior and structure features.

Song et al. [6] have proposed a model based on web frameset

and browser interactions. Web framesets are employed in

applications where layouts of some pages are identical. The

process begins with modeling of application with framesets,

followed by considering browser interactions along with

framesets, modeling the web navigation, formalizing the

navigation model, and finally generating and executing test

cases.

Lee and Offutt [7] proposed a system that generates test cases

using a form of mutation analysis. It focuses on validating the

reliability of data interactions among Web-based software

components. Specifically, it considers XML based component

interactions.

Ricca and Tonella [8] proposed a UML model of Web

application for high level abstraction. The model is based

entirely on static HTML links and does not incorporate any

dynamic aspects of the software. Any Web application can be

http://www.minia.edu.eg/
http://www.minia.edu.eg/
http://www.minia.edu.eg/
http://www.minia.edu.eg/

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.7, August 2014

38

seen as an instance of the UML model. The model is

supported by a tool that creates a static graph based on HTML

links and another that creates tests comprised of sequences of

URLs.

Yang et al. [9, 10] presented an architecture for test tools that

is directed towards testing Web applications. The architecture

consists of five subsystems including test development, test

measurement, test execution, test failure analysis and test

management.

Benedikt et al. [11] presented VeriWeb, a dynamic navigation

testing tool for Web applications. VeriWeb explores

sequences of links in Web applications by

nondeterministically exploring action sequences, starting from

a given URL. Excessively long sequences of links are limited

by pruning paths in a form of path coverage. VeriWeb creates

data for form fields by choosing from a set of name-value

pairs that are initialized by the tester.

Di Lucca et al. [12] suggested a two-stage black box testing

approach. The first stage addresses unit testing of a Web

application, while the second stage considers integration

testing. The scope of a unit test is a single application page,

either a client or server page, while the scope of an integration

test is a set of Web pages that collaborate to implement an

application’s use case.

Lei Xu and Baowen Xu [13] introduced a framework for web

testing beginning with requirement analysis based on object

model, interactive relation model and architectural model, to

test case generation via combinatorial method, followed by

execution of test cases.

Andrews et al. [14] proposed state machines to model state-

dependent behavior of Web applications and to design test

cases. In their approach, the process for test generation

comprises two phases: in the first phase, the Web application

is modeled by a hierarchical collection of FSMs, where the

bottom-level FSMs are formed by Web pages and parts of

Web pages, while a top-level FSM represents the whole

application. In the second phase, test cases are generated from

this representation.

Qian et al. [15] have proposed a web testing model that

constructs a Page Flow Diagram (PFD) of web pages and

transitions followed by conversion into a Page Test Tree

(PTT), a spanning tree, from which a test translator is

employed to generate test cases, and finally execute them to

generate test report.

Turner et al. [16] have proposed an activity oriented technique

for automated test code generation. The developer begins by

identifying activities in a web application, followed by

developing a test activity graph depicting dependent and

independent activities. Finally, an activity test algorithm is

employed to generate test cases.

Guangzhou Jiang and Shujuan Jiang [17] have presented a

quick test model for performance testing, based on testing

flow of web applications. They introduced a new performance

index called successful request rate in order to test the

performance of web application. They also contributed a

testing method, combined with LoadRunner tool to provide

effective solution to quick performance testing. The quick

testing process begins with planning the test, followed by

LoadRunner script creation, scenario definition, execution and

result analysis.

Li et al. [18] have proposed UML Based approach that models

a large web application as hierarchical profile use case

diagrams called Use Case Transition Model (UCTM).

Traversing the UCTM from top to down, each use case is

described as a sequence diagram, which automatically

converts it into a Restricted Message on Vertex Graph

(RMOVG). A vertex in RMOVG represents one message in

sequence diagram. According to Constraint Message

Coverage (CMC) criteria, each message must be traversed at

least once. Test cases generated from RMOVG satisfy CMC

and result in reduced number of test cases.

3. THE PROPOSED WEB TESTING

APPROACH
In the proposed Web testing approach, the hyperlinks of the

website to be tested are automatically followed one by one to

retrieve all HTML texts of its pages starting from the home

page. The HTML text of each encountered page is analyzed to

extract the needed information about it. Then, the collected

information is used in the error checking process. The

algorithm, shown in Figure 1, depicts the steps of the

proposed approach.

Figure 1: The steps of the proposed web application

testing approach

By following the steps of the proposed approach, each page

and each hyperlink is visited once. This guaranties the

satisfaction of two web application white-box testing criteria,

namely page coverage criterion and hyperlink coverage

criterion. These criteria are defined as follows [8]:

Page coverage criterion: every page in the site is visited at

least once in some test case.

Website Analysis Algorithm

Begin

Input the URL of the website to be tested.

Add this URL to URL_list and mark it as unvisited.

While URL_list contains unvisited links Do

Get first unvisited URL in the URL_list and mark

it as visited.

Send an http request to the web server to request

the web page that is associated with the given

URL.

Download the HTML text for this web page

Analyze HTML Tags in the HTML text as

follows:

(i) If the HTML Tag is a href tag, do one of

the following actions according to the

associated link:

 If link to mail, go to mail links analysis.

 If link to place within the same page, go

to internal link analysis

 If link to offsite page, discard it.

 If link to documents, go to files link

analysis.

 If link to web page within the host site,

add the URL of this page to URL_list

and mark it as unvisited, if it is not in

the list.

(ii) If the HTML Tag is a form tag go to form

analysis.

If there is any cookie go to cookie analysis.

End While

Error Checking

Report Generation.

End

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.7, August 2014

39

Hyperlink coverage criterion: every hyperlink from every

page in the site is traversed at least once.

4. SYSTEM DESCRIPTION
This section describes the structure of an automated web

application testing system that implements the proposed Web

testing approach, described in Section 3. The system consists

of the following modules, as shown in Figure 2:

 Web navigation module

 HTML analysis module

 Link execution module.

 Error checking module

These modules are described in the following subsections

through an example website called addressbook

(http://sourceforge.net/projects/php-addressbook/). The

features of this website include: Manage contacts & groups,

Export Excel, vCard - Import vCard, LDIF (ThunderBird),

Show geographical maps of groups, Detects and displays over

12 languages, Displays the next birthdays, Support

ActiveSync for iPhone and Android, … etc. The system tests

this web site in offline mode.

Figure 2: The structure of the proposed automated web application testing system

4.1 Web Navigation Module
This module accepts the address of the website to be tested

and crawls through the website to retrieve all HTML texts of

its pages.

In the offline mode, to get the HTML text of any page from

the web site to be tested, local server (wamp server) is used,

and this web site is navigated using localhost with http request

as shown in the following figure:

But in the online mode the HTML text of any page is obtained

by using its domain name directly. For example, to test the

addressbook website example in online mode, the system gets

the HTML text directly using the URL

http://sourceforge.net/projects/ php-addressbook/, which is

given as input to the system to navigate the website and

retrieve all HTML texts of its pages.

4.2 HTML Analysis Module
This module takes the HTML text of a web page retrieved by

the navigation module as input and analyzes all HTML tags

on this page to extract the needed information about them.

HTML tags, which can be link tags or form tags, and their

related information, are described below.

Link tags: Without links, the World Wide Web wouldn't be a

web at all! Link tags are divided into four types

1- Link to a page within the domain: A tag of this type is

analyzed to extract the page name and the text of the

link.

2- Link to a website outside the domain: A tag of this type

is analyzed to extract the URL and the text of the link.

3- Link to send email to a specific address: A tags of this

type is analyzed to extract the user and host of the link.

4- Link to download files: A tag of this type is analyzed to

extract the file name and the text of the link.

The HTML analysis module produces a list of all links to

pages within the domain of the website being tested in both

URL and text forms, as shown in Figure 3.

Navigator Web server
Http request

Web page

Web Navigation

Module
Web Server

http

request

Page

HTML Analysis

Module

Html tags

representation and

Information database

Error Checking

Module

Complete

Analysis Report
Link Execution

Module

Links list

URL

Select a

Link

HTML text

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.7, August 2014

40

Figure 3: List of all Links of the example website.

Form tags: Forms are used to take input from a user in a web

page. The HTML analysis module analyzes each form tag to

extract the elements of this form which are described below:

1- Method (GET or POST): Data from a form

with method="GET" is posted by appending the data to

the end of the script URL, while data from a form

with method="POST" is sent as a separate packet to the

HTTP server.

2- Action: the page or software that processes the data that

entered in the form fields.

3- Input fields: the fields that accept the data from the user.

We extract the name, data type, and the value of each

field.

4- Submit button: the button that starts processing the form

data.

The HTML analysis module produces a list of the forms

contained in the website being tested, as shown in Figure 4.

Also, the HTML analysis module analyzes cookies, if any, to

extract the needed information about them to test whether:

1. The information in the cookie is encrypted or not.

2. The cookie will expire after session ends or not.

Finally, the HTML analysis module produces a final report

containing all extracted information about the website, such

as: number of pages, name of these pages, number of links to

pages and the text of these links, … etc., as shown in Figure 5.

From this report the user can see the pages or links or

document or video names by clicking on the corresponding

dropdown list, as shown in Figure 6.

Figure 4: List of form pages within the example web site.

Figure 5: Analysis report of the example web site

Figure 6: List of pages within the example web site

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.7, August 2014

41

4.3 Error Checking Module
After analyzing the HTML texts of all web pages and

collecting the needed information about every page, the error

checking module checks for the following errors:

1- Errors in outgoing links from the current page to any

page within the domain.

2- Errors in links from the current page to web pages in an

external domain (off-site web pages).

3- Errors in links from the current page to download files.

4- Errors in links from the current page to send e-mails.

5- Errors in links going to other position in the same page.

6- Pages that cannot be accessed (orphan pages) (in offline

mode only).

7- Links that cause transition to wrong pages (wrong

transition).

8- Errors in cookies (unencrypted or unexpired saved

cookies).

This module can detect all the types of errors mentioned in the

above list in both offline and online mode except the orphan

page error, which can be detected only in offline mode. This

error can’t be detected in online mode, because in this mode

the module can see only all the website pages that are

available (i.e., accessible).

In the case of wrong transition error, this module takes the

information about all links in the home page (text and URL)

as reference, and during the analysis of other pages, if it finds

one of these links with same text but different URL, it flags it

as a wrong transition error.

At the end, this module produces an error report containing all

the detected errors of each error type shown in the above list.

4.4 Link Execution Module
The link execution module allows the user to execute any link

individually. From the list of all links in the website, produced

by the analysis module, the user can select any link to execute

to check whether it is broken or not. This module is useful in

regression testing when new pages are added to the website.

In this case we can test only the links related to the new pages

rather than testing all links. Also, in the error report produced

by the error checking module, the link execution module

allows the user to select any link to execute and see the result.

5. CASE STUDY
In this section, the error exposing ability of the proposed

approach and the developed system will be demonstrated

through a case study. In this case study we used the sample

website, addressbook.

Several errors were seeded in the web pages of the website,

then the erroneous website was presented to the developed

system and the generated reports were studied to see whether

the system detected the seeded errors or not.

The seeded errors were as follows:

1. Orphan pages error: New web pages test1, test2, test3

and test4 were added to the website.

2. Link to file error: A file name was change from

import_sample.csv to import.csv.

3. Broken links error: The paths of two web pages,

view.php and csv.php were changed.

4. Internal links error: The Licence and Disclaimer

sections in the web page notes.htm were commented.

5. Wrong transitions error: The links in the web page

import.php were changed as shown in Table 1.

Table 1: Original links and corresponding wrong links

Figure 7: List of the orphan pages within the example web site.

Some of the reports produced by the system for the example

Web site are described below:

1) The analysis report produced by the HTML Analysis

Module, which shows number of pages, name of these

pages, number of links to pages and the text of these

links, … etc., as shown in Figure 5.. This figure shows,

for example, that the number of orphan pages is 11.

Clicking the drop down list of orphan pages displays

these pages, as shown in Figure 7. As can be seen in this

figure, the list includes the newly added pages.

2) The test reports produced by the error checking module:

(i) Links to pages test report, which shows all links to

pages in the web site and for each link it shows

whether it is broken or not, as shown in Figure 8.

From this figure we see that 32 links are broken and

all of them refer to the web pages which their paths

were changed (Seeded error type No. 3). When any

Original Links Wrong Links

add new

groups

next birthdays

map

export

import

add new

groups

next birthdays

map

export

import

view-source:http://localhost/case_study/addressbook/edit.php
view-source:http://localhost/case_study/addressbook/group.php
view-source:http://localhost/case_study/addressbook/birthdays.php
view-source:http://localhost/case_study/addressbook/map.php?
view-source:http://localhost/case_study/addressbook/export.php
view-source:http://localhost/case_study/addressbook/import.php
view-source:http://localhost/case_study/addressbook/group.php
view-source:http://localhost/case_study/addressbook/edit.php
view-source:http://localhost/case_study/addressbook/view.php
view-source:http://localhost/case_study/addressbook/export.php?
view-source:http://localhost/case_study/addressbook/map.php
view-source:http://localhost/case_study/addressbook/import.php

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.7, August 2014

42

broken link is selected and executed (by clicking the

button test), the "webpage cannot be found" error

page is displayed, as shown in Figure 9.

(ii) Links to files test report, which lists the files that

cannot be found, as shown in Figure 10. This figure

shows the name of the file, import_sample.csv that

was changed (Seeded error type No. 2). The word

“false” next to it means that the file is not found.

(iii) Internal links test report, which lists all internal

links in the web site and true or false next to each

link to indicate whether the link is broken or not,

respectively, as shown in Figure 11. It shows that

the links to Licence and Disclaimer sections are

broken, as their sections were commented (Seeded

error type No. 4).

(iv) Wrong transition test report, which lists the pages

that include links that cause wrong transitions, as

shown in Figure 12. In this figure, the pages list

contains only one page, import.php, where some

links in it were changed (Seeded error type No. 5).

When this page is selected, the URL and text of the

links that cause wrong transitions in it will be

displayed in the linkURL and LinkText lists,

respectively, as shown in the figure.

(v) The final error report, which summarizes the errors

that are discovered by the system, as shown in

Figure 13.

Figure 8: Links to pages test report

Figure 9: Result of execution of a broken link

Figure 10: Links to files test report

Figure 11: Internal links test report

Figure 12: Wrong transition test report

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.7, August 2014

43

Figure 13: Final error report

Figure 14 shows the seeded errors' types and frequency. All

the reports, produced by the system, showed that it has

detected all these seeded errors, which demonstrates its

effectiveness in Web applications testing.

Figure 14: Seeded errors types and frequency

6. CONCLUSION
This paper presented a proposed Web testing approach, in

which hyperlinks of the website to be tested are automatically

followed to retrieve all HTML texts of its pages starting from

the home page. The HTML text of each encountered page is

analyzed to extract the needed related information. Then, the

collected information is used in the error checking process.

The proposed approach guaranties the satisfaction of two web

application testing criteria, namely page coverage criterion

and hyperlink coverage criterion.

The paper also described an automated Web application

testing system that has been developed to implement the

proposed approach. This system consists of 4 modules: Web

navigation, HTML analysis, Link execution, and Error

checking. The Web navigation module retrieves the HTML

texts of the pages of the website to be tested. Then, the HTML

analysis module analyzes the HTML tags in these texts to get

needed information about hyperlinks and forms. Finally, the

error checking module uses this information to uncover

possible errors in the web site being tested. The system is able

to detect several types of errors that may occur in Web

applications, such as hyperlinks errors, unreachable (orphan)

pages, wrong transition, and cookies errors. The link

execution module allows the user to select a particular link

from the list of all Links, produced by the HTML analysis

module, and executes it to check whether it is broken or not.

The effectiveness of the proposed approach and the developed

system in discovering several possible Web applications

errors has been demonstrated through a case study. In this

case study, several errors were seeded in the web pages of a

sample website, then the website was presented to the system.

The reports produced by the system showed that it has

detected all the seeded errors, which indicates that it is very

effective in Web applications testing.

It should be noted that in the presented approach, the

execution of Form pages is not considered. The proposed

approach is currently being enhanced to test form pages. This

requires providing input data for the variables collected

through the form, and tracing the processing of these data and

the sequence of links to be followed accordingly.

7. REFERENCES
[1] Li, Yuan-Fang, Das, Paramjit K. and Dowe, David L.

2014. Two decades of Web application testing—A

survey of recent advances. Information Systems, Vol. 43,

pp. 20–54.

[2] Sampath, E., Gibson, S., Sprenkle, S. and Pollock, L.

2005. Coverage Criteria for Testing Web Applications.

Technical Report 2005-17, Computer and Information

Sciences, University of Delaware.

[3] Mansour, N. and Houri, M. 2006. Testing web

applications. Information and Software Technology, Vol.

48, pp. 31–42.

[4] Di Lucca, G. A. and Fasolino, A. R. 2006. Testing Web-

based applications: The state of the art and future trends.

Information and Software Technology, Vol. 48, pp.

1172–1186.

[5] Kung, David C., Liu, Chien-Hung and Hsia, Pei 2000.

An Object Oriented Web Test Model for Testing Web

Applications. In: Proceedings of IEEE 24th Annual

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.7, August 2014

44

International Computer Software and Applications

Conference, (COMPSAC2000), Taipei, Taiwan, pp 537–

542, October 2000.

[6] Song, Bo, Miao, Huaikou, Chen, Shengbo 2009.

Considering Web Frameset and Browser Interactions in

Modelling and Testing of Web Applications.

International Conference on Computational Intelligence

and Software Engineering (CiSE 2009), 11-13 Dec.

2009, pp. 1 – 4, Wuhan.

[7] Lee, Suet Chun and Offutt, Jeff 2001. Generating test

cases for XML-based Web component interactions using

mutation analysis. In Proceedings of the 12th

International Symposium on Software Reliability

Engineering, pp. 200-209, Hong Kong China, November

2001, IEEE Computer Society Press.

[8] Ricca, F. and Tonella, P. 2001. Analysis and testing of

Web applications. In 23rd International Conference on

Software Engineering (ICSE `01), pp. 25-34, Toronto,

CA, May 2001.

[9] Yang, J., Huang, J., Wang, F. and Chu, W. 1999. An

object-oriented architecture supporting Web application

testing. In First Asian-Pacific Conference on Quality

Software (APAQS '99), pp. 122-129, Japan, December

1999.

[10] Yang, Ji-Tzay, Huang, Jiun-Long, Wang, Fen-Jian and

Chu, William C. 2002. Constructing an object-oriented

architecture for Web application testing. Journal of

Information Science and Engineering, Vol. 18, No. 1, pp.

59-84, January 2002.

[11] Benedikt, Michael, Freire, Juliana and Godefroid, Patrice

2002. VeriWeb: Automatically testing dynamic Web

sites. In Proceedings of 11th International World Wide

Web Conference (WWW'2002), Honolulu, HI, May

2002.

[12] Di Lucca, G. A., Fasolino, A. R., Faralli, F. and De

Carlini, U. 2002. Testing Web Applications. In:

Proceedings of International Conference on Software

Maintenance, IEEE Computer Society Press: Los

Alamitos, CA, pp 310–319.

[13] Xu, Lei and Xu, Baowen 2004. A Framework for Web

Application Testing. International Conference on

Cyberworlds, 18-20 Nov. 2004, Tokyo, Japan, pp. 300-

305.

[14] Andrews, A. A., Offutt, J. and Alexander, R. T. 2005.

Testing Web Applications by Modeling with FSMs.

Software Systems and Modeling, Vol. 4, No. 2.

[15] Qian, Zhongsheng, Miao, Huaikou and Zeng, Hongwei

2007. A Practical Web Testing Model for Web

Application Testing. Third International IEEE

Conference On Signal-Image Technologies And Internet

Based System, 16-19 December 2007, Jiangong Jinjiang,

Shanghai, China

[16] Turner, David A., Park, Moonju, Kim, Jae hwan and

Chae, Jin seok 2008. An Automated Test Code

generation Method for Web Applications using Activity

Oriented Approach. International Conference on

Automated Software Engineering, IEEE Computer

Society, Los Alamitos, pp. 411-414.

[17] Jiang, Guangzhu and Jiang, Shujaun 2009. A Quick Test

Model of Web Performance Based on Testing Flow and

its Application. Sixth Web Information Systems and

Applications Conference, 18-20 Sept. 2009, pp. 57–61,

Xuzhou, Jiangsu.

[18] Li, Liping, Miao, Huaikou and Qian, Zhongsheng 2008.

A UML-Based Approach to Testing Web Applications.

International Symposium on Computer Science and

Computational Technology, Shanghai, China, pp. 397-40

IJCATM : www.ijcaonline.org

