
International Journal of Computer Applications (0975 – 8887)

Volume 99– No.4, August 2014

18

Slop based Partitioning for Vertical Fragmentation in

Distributed Database System

Ashish Ranjan Mishra

Department of Computer Science and Engineering
Kamla Nehru Institute of Technology

Sultanpur-228118, Uttar Pradesh, India

Neelendra Badal
Department of Computer Science and Engineering

Kamla Nehru Institute of Technology
Sultanpur-228118, Uttar Pradesh, India

ABSTRACT

A Vertical Partitioning is the process of dividing the attributes

of a relation. Further, a good Vertical Partitioning puts

frequently accessed attributes of the relation together in a

fragment. Various researchers have proposed different

algorithms for Vertical Partitioning. Still, there is a scope of

improvement in previous algorithms for Vertical Partitioning.

In this paper a new algorithm is proposed for Vertical

Partitioning in Distributed Database System. The proposed

algorithm is named as Slop Based Partitioning Algorithm

(SBPA). This algorithm utilizes the Clustered Affinity Matrix

(CAM), which is calculated from Attribute Usage Matrix

(AUM) and Frequency Matrix (FM).

Keywords

Vertical Partitioning, Clustered Affinity Matrix, Attribute

Usage Matrix, Frequency Matrix, Distributed Database

System, Slop Based Partitioning Algorithm.

1. INTRODUCTION
In a Distributed Database System, the fragments of the

relation are scattered over the collection of independent sites.

In the Distributed Database System it may be possible that

queries may not retrieve the result from the local site. It is

required to communicate to the other sites to retrieve the

result. Frequent communication to the other sites may result

in bad Query-Response-Time (QRT). Vertical Partitioning of

the relation into fragments plays a crucial role in improving

the QRT. A good method for Vertical Partitioning can

enhance the QRT by dividing a complex large relation into the

small fragments. The most frequently accessed fragment is

stored in the main memory. It causes the reduced page access

from the secondary memory. In Distributed Database System

a query can also divided into sub-queries that operates on

different fragments. The execution of the sub-queries is

performed concurrently on different fragments.

There are two partitioning approaches for a relation. First

approach is Horizontal Partitioning and second is Vertical

Partitioning. Horizontal Partitioning partitions the relation in

the smaller relations on the basis of rows. Each smaller

relation contains the same number of columns, but fewer

rows. Vertical Partitioning is process of dividing the table on

the basis of different columns. Vertical Partitioning divides a

relation into multiple relations that contain fewer columns.

A query does not require the entire attributes of a relation at

the same time. Only few attributes of the relation is needed by

queries. So the Vertical Partitioning is more effective in

improving the QRT rather than Horizontal Partitioning. In this

paper a new Vertical Partitioning algorithm SBPA is proposed

for vertical partitioning.

The input parameter for this SBPA is Clustered Affinity

Matrix which is calculated from Attribute Usage Matrix

(AUM) and Frequency Matrix (FM). After calculating

Clustered Affinity Matrix (CAM), the fragments of the

relation are created from SBPA using CAM. SBPA fragments

the attributes of relation using CAM where the slop

diminishes very rapidly.

The rest of this paper is organized as follows. Previous work

on Vertical Partitioning has been critically reviewed in section

2. In section 3 technique used in SBPA for Vertical

Partitioning is described. Section 4 and section 5 describe an

experimental set and experimental result respectively on the

proposed Vertical Partitioning algorithm. The conclusion and

future scope is described in section 6.

2. LITRETURE REVIEW
From the early of the 1970s, minimization of the disk I/O is

an important topic. From that time, algorithms have been

developed to reduce the I/O by making the cluster of the

complex relation. This results in reduced the page access from

the secondary memory.

In 1972, the first algorithm for clustering was developed by

McCormick et.al. in [4] with the name of Bond Energy

Algorithm (BEA). The purpose of this algorithm is to identify

the cluster in the complex relation. The limitation of this

algorithm is that it is hard to implement without human’s

interpretation. Sometimes blocks may have overlaps and some

elements do not belong to any block. So the clustering is not

efficient as the user except.

In 1984, after the BEA, a new algorithm was proposed by

Navathe et.al. in [5].This clustering algorithm considered the

frequency of queries first time and reflects the frequency in

the attribute affinity matrix on which clustering was

performed. The complexity of this algorithm is O(n2) time

where n is the number of times the partitioning is repeated.

The complexity can be increased if overlapping is allowing.

The Optimal Binary Vertical Partitioning algorithm [7] was

proposed by Wesley W. Chu et.al. . It uses the branch and

bound technique [3] to make a binary tree whose nodes

represent the query. This algorithm reduces time complexity

compared to the Navathe et.al. in [6] but it does not consider

the impact of query frequency, and also its run time still

grows exponentially with the number of queries.

The Graph Traversal Vertical Partitioning in [6] was proposed

in 1989 by Navathe et.al. . This algorithm traverses the graph

and divides the graph into several sub graphs, each of which

represents a cluster. In this algorithm, the frequent queries and

infrequent queries are given the same priority, this may lead

to an inefficient partitioning results. The reason for this is that

the attribute that are usually accessed together in infrequent

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.4, August 2014

19

queries but are not accessed together in frequent queries may

be put in the same fragment.

Eltayeb’s Optimized Scheme for Vertical Partitioning [1]

algorithm is also based on the Attribute Affinity Matrix [5].

This algorithm starts with a vertex V that satisfies the

minimum degree of reflexivity and then finds a vertex with

the maximum degree of symmetry among V’s neighbours.

Once the neighbour is found both the vertex are grouped

together and put in a subset. V’s neighbour becomes the new

V. The process continues to find neighbours of the most

recent V recursively until a cycle is formed or no vertex is

left. The next step is to compute the hit ratio of partition. If

the partition hit ratio is less than predefined threshold then

Find the attribute with the minimum hit to miss ratio and

move it to a different subset. The limitation of this algorithm

is as the above graph based vertical partitioning algorithm that

infrequent queries are treated the same as frequent queries.

3. DESCRIPTION OF SLOP BASED

 PARTITIONING PROCEDURE
In this section SBPA, used for Vertical Partitioning of

relation, is discussed in detail. Firstly using the AUM and

FM, Clustered Affinity Matrix (CAM) is calculated. After

calculation of CAM, SBPA is used to make the fragments of

the relation.

3.1 Attribute Usage Matrix
The Attribute Usage Matrix is used to show the attributes of

relation used by a query. For each query QI and each attribute

AJ, an Attribute Usage Value 0 or 1 is associated in AUM.

The associated value is 1 if the attribute AJ is used by query

QI otherwise the value associated is 0.

J I1 if Attribute A is used by Query Q
(,)

0 otherwise
I JUSE Q A

 (1)

Each row of AUM refers the attributes used by the

corresponding query. The “1” entry in a column indicates that

the query “uses” the corresponding attribute. Table 1. is an

example of Attribute Usage Matrix in this paper.

Table 1. Attribute Usage Matrix

Query
Attribute

A1 A2 A3 A4

Q1
1 0 1 0

Q2
0 1 1 0

Q3
0 1 0 1

Q4
1 0 0 1

3.2 Frequency Matrix
The frequency matrix represents the number of time a query is

fired from one or more sites. Table 2. is an example of the

Frequency Matrix used in this paper.

Table 2. Frequency Matrix

Query

Site

S1 S2 S3

Q1
10 12 15

Q2
7 0 0

Query

Site

S1 S2 S3

Q3
30 25 20

Q4
5 0 0

3.3 Attribute Affinity Matrix
Attribute affinity value measures the strength of an imaginary

bond between the two attributes. It is predicated on the fact

that attributes are used together by the query. Attribut affinity

value represents the number of times two attributes are

accessed together at all sites.

Attribute affinity value between two attributes AI and AJ of a

relation R[A1,A2…AN]with respect to the set of queries

Q={Q1, Q2…QQ}is defined as follows.

Attribute affnity value between AI and AJ is represented as aff

(AI, AJ).

 I J all queries that access A and AAff A , A Query access
I J

 (2)

Where

Query access= ∑ for all sites access frequency of a query

Query access (Q1) = 37

Query access (Q2) = 7

Query access (Q3) = 75

Query access (Q4) = 5

aff (A1,A3) =∑Q1 query access=37

In the same way the whole Attribute affinity value is

calculated.

Table 3. Attribute Affinity Matrix

Attribute
Attribute

A1 A2 A3 A4

A1
42 0 37 5

A2
0 82 7 75

A3
37 7 44 0

A4
5 75 0 80

3.4 Clustered Affinity Matrix
For the fragmentation of attributes in a relation, firstly

attributes must be clustered. Clustering problem is widely

researched in databases, data mining and statistics

communities [8], [9], [10], [11], [12], [13]. Hoffer and

Severance in [2] has suggested that the Bond Energy

Algorithm (BEA) should be used for this purpose. The Bond

Energy Algorithm takes Attribute Affinity Matrix as input,

changes the order of its rows and columns, and produces a

Clustered Affinity Matrix (CAM). Bond Energy Algorithm

makes the cluster of those attributes which have high

Attribute affinity value.

Bond Energy Algorithm has been implemented in three steps.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.4, August 2014

20

 Initialization: In the initialization step, first two columns

of the AAM are placed directly to the respective columns

in the Clustered Affinity Matrix.

 Iteration: After the initialization step, the remaining

attributes (N-I) are picked one by one and try to place

them in remaining positions (I+1) Clustered Affinity

Matrix. The placement is done on the basis of greatest

contribution to the Global Affinity Measure. This process

is continued until no more columns attribute remains to

be placed.

 Row ordering: Once the placement of attribute in column

is determined, the placement of row attributes should be

also changing so that their relative positions match the

relative positions of the columns attribute.

BEA algorithm is used to get the position of attribute in CAM.

Attribute is placed to the position where contribution of

placing the attribute is highest.

3.4.1 Placement of attributes in CAM
Placement of A1 and A2:

In the initialization step first and second columns of AAM is

placed to the first and second column of CAM respectively.

Attribute A1 is placed at position 1 in CAM: [A1]

Attribute A2 is placed at position 2 in CAM: [A1, A2]

Placement of A3:

Contribution of attribute A3 at position 1 in CAM= 6364

Contribution of attribute A3 at position 2 in CAM = 6860

Contribution of attribute A3 at position 3 in CAM = 1764

Attribute A3 is placed at position 2 in CAM: [A1, A3, A2]

Placement of A4:

Contribution of attribute A4 at position 1 in CAM = 1220

Contribution of attribute A4 at position 2 in CAM = - 3724

Contribution of attribute A4 at position 3 in CAM = 23956

Contribution of attribute A4 at position 4 in CAM =24300

Attribute A4 is placed at position 4 in CAM: [A1, A3, A2, A4]

Hence in Clustered Affinity Matrix, the order of placing the

attributes in rows and columns are given below:

[A1, A3, A2, A4]

Table 4. Clustered Affinity Matrix

Attribute
Attribute

A1 A3 A2 A4

A1
42 37 0 5

A3
37 44 7 0

A2
0 7 82 75

A4
5 0 75 80

3.5 Slop Based Partitioning Algorithm
The objective of Slop Based Partitioning Algorithm is to find

a set of attributes that are frequently accessed by distinct set

of queries. Using the Slop Based Partitioning Algorithm, the

user makes the fragments of a relation on the basis CAM,

which is calculated by AUM and FM. The first row of CAM

is taken for fragmenting the clusters from a relation. The point

between the neighbour attributes of the CAM is considered as

Split-point if slop diminishes between these attributes very

rapidly. The pseudo code for the SBPA is given below:

Algorithm: SBPA

Input: CAM: Clustered affinity matrix

Output: F: set of two fragments

Begin

{Initialization of the variables}

X [1, 1…..N]; //used to store the value from 1

 to N of loop in corresponding index

Y [1, 1…..N]; // used to store the value of slop

Smallest=0; // used to store the smallest slop

 value

Split-point=0; // used to store the point from

 where to fragment the table

{Determine the Split-point}

For i =1 to n do

If (i==1) then

 Y [1, i] =CAM (1, i);

Else

 Y [1, i] =CAM (1, i)-CAM (1, i-1);

End-If

X [1, i] =i;

End-For

Plot (X, Y);

Smallest=Y [1, 1];

Split-point=1;

For i=2 to n

If (Smallest< Y [1, i] then

 Split-point is recorded as X [1, i]

 Smallest=Y [1, i]

 End-If

End-For

End-Begin

This above SBPA is divided into three steps

 Initialization: In this step the user initializes the variables

and array required by algorithm.

 Processing: In the processing step, first row of CAM is

taken for fragmenting the clusters from a relation. The

user takes the difference of CAM (1, i) and CAM (1, i-1)

and store it at Y [1, i].

Table 5. First Row of Clustered Affinity

Matrix

Attribute

Attribute

A1 A3 A2 A4

 A1
42 37 0 5

 Comparison: In the last step the user finds the smallest

value of Y [1, i] which represents the rapid diminishing

of slop. The index i at which value of Y [1, i] is the

smallest the corresponding value of X [1, i] is considered

as Split-point. The following Calculation is performed

with referenced to CAM.

Y [1, 1] =CAM (1, 1) =42, X [1, 1] =1

Y [1, 2] =CAM (1, 2)-CAM (1, 1) = 37-42= -5, X [1, 2] = 2

Y [1, 3] =CAM (1, 3)-CAM (1, 2) = 0-37= -37, X [1, 3] =3

Y [1, 4] = CAM (1, 4)-CAM (1, 3) =5-0 =5, X [1, 4] =4

The Plot command in pseudo code plots the following graph.

The graph shows the slop value Y [1, i] at point i.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.4, August 2014

21

Fig 1: Graph between CAM [1, i] and X [1, i]

The above graph shows the slop diminishes very rapidly

between X [1, i] =2 and X [1, i] =3. So the Split-point is

recorded between second and third attribute of CAM. So the

above Clustered Affinity Matrix can be divided into two

fragments. One fragment contains the attribute {A1, A3} and

second fragment contains the attributes {A2, A4}.

So for the fragmentation of relation R [A1, A2, A3, A4] has

done as below:

[A1, A3] | [A2, A4]

4. EXPERIMENTAL SETUP
An experiment has been carried out to test the working of

proposed Vertical Partitioning algorithm SBPA. It has been

carried out on a system with core i3 processor, 3GB RAM,

Matlab toolbox and MS Access database. A relation with

name Project has been used for partitioning. The Project

relation has been stored in MS Access database as following.

Table 6. Project

PNo PName Budget Location

P1 Instrumentation 150000 Montreal

P2 Database Develop 135000 New York

P3 CAM/CAD 250000 New York

P4 Maintenance 310000 Paris

The Project relation has tested against set of four queries Q1,

Q2, Q3 and Q4 generated from any of the three sites named S1,

S2 and S3.

Q1: Find the Budget from the Project where given its

identification number.

(SELECT BUDGET, FROM PROJECT, WHERE

PNO=Value)

Q2: Find the Name and Budget of all Projects.

(SELECT PNAME, BUDGET FROM PROJECT, WHERE

LOCATION=Value)

Q3: Find the Name of projects located at given city.

(SELECT PNAME, FROM PROJECT, WHERE

LOCATION=Value)

Q4: Find the PNo and total project Budget for each city.

(SELECT PNo, SUM (BUDGET), FROM PROJECT,

WHERE LOCATION=Value)

The Attribute Usage Matrix of the above queries set is as

following.

Table 7. Attribute Usage Matrix Project

Query
Attribute

PNO PNAME BUDGET LOCATION

Q1
1 0 1 0

Q2
0 1 1 1

Q3
0 1 0 1

Q4
1 0 1 1

The frequency of queries Q1, Q2, Q3and Q4 at three sites has

considered as following.

Table 8. Frequency Matrix Project

Query

Site

S1 S2 S3

Q1
20 25 10

Q2
5 2 0

Q3
16 18 30

Q4
3 2 1

5. EXPERIMENTAL RESULT
Using the Bond Energy Algorithm proposed by Hoffer and

severance in [2], Clustered Affinity Matrix is calculated from

Attribute Usage Matrix Project in Table 7. and Frequency

Matrix Project in Table 8. .

Table 9. Clustered Affinity Matrix Project

Attribute

Attribute

PNo Budget PName Location

PNo
61 61 6 0

Budget
61 68 13 7

PName
6 13 77 71

Location
0 7 71 71

After calculating the Clustered Affinity Matrix, relation

project in Table 6. has been partitioned into two fragments

using the SBPA. One fragment named as Project1 has

attributes PName and Location while other fragment named as

Project2 has attributes PNo and Budget as followed. So the

relation project having four attributes PNo, PName, Budget,

Location is partitioned into two fragments for the above given

Attribute Usage Matrix in Table 7. and Frequency Matrix in

Table 8. respectively.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.4, August 2014

22

Table 10. Project1

PName Location

Instrumentation Montreal

Database Develop New York

CAM/CAD New York

Maintenance Paris

Table 11. Project2

PNo Budget

P1 150000

P2 135000

P3 250000

P4 310000

6. CONCLUSION AND FUTURE SCOPE
In this paper, a Vertical Partitioning algorithm SBPA has

presented and successfully implemented for improving the

Query-Response-Time in Distributed Database System. The

proposed algorithm SBPA has used CAM. In the first phase,

CAM is calculated from AUM and FM. In the second phase,

the two fragments of the relation are created by CAM Using

SBPA.

The future scope of the proposed algorithm may be finding

the multiple fragments of the relation.

7. REFERENCES
[1] Abuelyaman, E. S., “An Optimized Scheme for Vertical

Partitioning of a Distributed Database,” in International

Journal of Computer Science and Network Security

(IJCSNS), Vol. 8, No. 1, January 2008, 310-316.

[2] Hoffer, J.A. and Severance, D.J. 1975.The use of cluster

analysis in physical database design. In Proceedings of

the 1st International Conference on Very Large Data

Bases, New York, USA.

[3] Horowitz, E. and Sahni, S. 1978. Fundamentals of

Computer Algorithms. Computer Science Press

Rockville, Maryland.

[4] McCormick, W. T. Schweitzer P.J., and White T.W.,

“Problem Decomposition and Data Reorganization by A

Clustering Technique,” Operation Research, Vol. 20 No.

5, September 1972, 993-1009.

[5] Navathe, S., Ceri, S., Wierhold, G. and Dou, J., “Vertical

Partitioning Algorithms for Database Design,” ACM

Transactions on Database Systems, Vol. 9 No. 4,

December 1984, 680-710.

[6] Navathe, S. and Ra M., “Vertical Partitioning for

Database Design: A Graph Algorithm,” ACM Special

Interest Group on Mamagement of Data (SIGMOD)

International Conference on Management of Data, Vol.

18 No. 2, June 1989, 440-450.

[7] Chu, W. W. and Ieong, I. “A Transaction-Based

Approach to Vertical Partitioning for Relational

Database Systems,” IEEE Transactions on Software

Engineering, Vol. 19 No. 8, August 1993, 408-412.

[8] Bradley, P. S., Fayyad, U. M. and Reina, C., “Scaling

Clustering Algorithms to Large Databases”, in

proceedings of the 4th International Conference on

Knowledge Discovery & Data Mining , June 1998, 9-15.

[9] Guha, S., Rastogi, R. and Shim, K., “CURE: an efficient

clustering algorithm for large databases”, in proceedings

of the 1998 ACM SIGMOD international conference on

Management of data, Vol. 27, Issue 2, June 1998, 73-84.

[10] Ng, R. T. and. Han, J., “Efficient and Effective

Clustering Methods for Spatial Data Mining”,

Proceedings of the 20th International Conference on

Very Large Data Bases, September 1994, 144-155.

[11] Jain, A. and Dubes, R., “Algorithms for Clustering

Data”, Prentice Hall, New Jersey, 1998.

[12] Kaufman, L., Rousseuw, P., “Finding Groups in Data-

An Introduction to Cluster Analysis”, Wiley Series in

Probability and Math. Sciences, 1990.

[13] Zhang, T., Ramakrishnan, R. and Livny, M., “An

Efficient Data Clustering Method for Very Large

Databases”, in proceedings of the SIGMOD international

conference on Management of data, June 1996, 103-114.

8. ABOUT THE AUTHOR
Ashish Ranjan Mishra is student of Master of Technology in

Department of Computer Science & Engineering at Kamla

Nehru Institute of Technology (KNIT), Sultanpur, India. He

has received his Bachelor of Technology degree in 2012 from

College of Science and Engineering (CSE), Jhansi, India in

Computer Science & Engineering.

Dr. Neelendra Badal is an Assistant Professor in the

Department of Computer Science & Engineering at Kamla

Nehru Institute of Technology (KNIT), Sultanpur (U.P),

India. He received B.E. (1997) from Bundelkhand Institute of

Technology (BIET), Jhansi in Computer Science &

Engineering, M.E. (2001) in Communication, Control and

Networking from Madhav Institute of Technology and

Science (MITS), Gwalior and PhD (2009) in Computer

Science & Engineering from Motilal Nehru National Institute

of Technology (MNNIT), Allahabad. He is Chartered

Engineer (CE) from Institution of Engineers (IE), India. He is

a Life Member of IE, IETE, ISTE and CSI-India. He has

published about 30 papers in International/National Journals,

conferences and seminars. His research interests are

Distributed System, Parallel Processing, GIS, Data

Warehouse & Data mining, Software engineering and

Networking.

IJCATM : www.ijcaonline.org

