
International Journal of Computer Applications (0975 – 8887)

Volume 99– No.3, August 2014

34

Improved Security Evaluation of the Software by using

PSSS based Security Analyzer

 Surkhab Shelly Anil Kumar
 Department of CSE Department of CSE

 Guru Nanak Dev University Guru Nanak Dev University

ABSTRACT
After analyse the three security processes (CLASP, SDL AND

PSSS) it has been selected that the PSSS as security approach to

develop a secure project since of its advantages over the other

two security processes. The most important objective of PSSS

security process is to improve the effectiveness of software

security projects. The overall objective of this paper is to

evaluate the security analysis of the given software and return a

security report which allows programmers to take certain action

based upon the outcomes. The main objective of this dissertation

is to develop a secure application using PSSS process and the

other objectives are- To integrate the each activity of each phase

of PSSS in each phase of software development. This paper

initiated security process by establishment of a security

Engineering approach consisting of security activities forming a

process to support the development of more secure software. The

validation of the security model has been done by approach by

developing a security report through analysis. Thus, one can

make its product more secured by rewrite and replacing some

security threats in secure manner.

Keywords

PSSS MODEL, SECURITY AND SDLC, CLASP, SDL, ISO,

SSE-CCM

1. INTRODUCTION
The application of a efficient, well-organized, quantifiable

approach to the development, operation, and continuation of

software; that is, the application of engineering to software or

Software engineering is the branch of systems engineering

concerned with the development of huge and difficult software

intensive systems[1]. It has focused on the real-world goal for

services provide by, and constraints on such systems; the

accurate requirement of system construction and behaviour, and

the implementation of these condition; the activities requisite in

order to develop an assurance that the specifications and real

world goals have been met; the advancement of such systems

over time and across system families. It involves the elicitation

of the systems requirements, the specification of the system, its

architectural and detailed design. In addition, the system wants

to be verified and validated, a set of activities that usually take

more than 50% of all improvement resources. Testing techniques

and tools at different levels (unit, integration, and system) are

essential. Software development being a human intensive

process, management and quality control techniques are also

required to run successful projects and construct quality systems.

In generally systems, including telecommunication systems,

software is the overruling component in terms of cost and

complexity. Good software engineering practice and tools can

therefore make a substantial distinction, even to the amount that

they may be the driving force of the project success.

1.1 Security in SDLC
When defining security in the SDLC, two areas must be address.

The first area is the SDLC process itself. The second area is

application operational security. One should understand the

SDLC process and related security activities and the specific

application and operational security controls that are available to

the application designer. Security reflects the systems capability

to protect itself from accidental or planned exterior attack. The

primary goals of software security are the protection of the

confidentiality, integrity, and availability (CIA) of the

information assets and resources that the software creates, stores,

processes, or transmit together with the executing programs

themselves. Preserving confidentiality is about preventing

unauthorized disclosure; preserving integrity is about preventing

unauthorized alteration; and preserving availability is about

preventing unauthorized destruction or denial of access or

service. One more method of looking at security in computer

systems is that we attempt to protect the services and data it

offers aligned with security threats. There are four types of

security threats to consider: Interception refers to the condition

that an unauthorized party has gained access to a service or data.

Interception happen when data are illegally copied, for example,

once breaking into a person’s private directory in a file system.

An example of interruption is when a file is infected or missing.

In general, interruption refers to the condition in which services

or data become unavailable, broken, damaged, and so on.

Modifications involve unauthorized altering of data or tamper

with a service so that it no longer adheres to its original

specifications. Examples of modifications include intercept and

then changing transmitted data, tampering with database entries,

and altering a program so that it secretly logs the activities of its

user. Fabrication refers to the situation in which added data or

activity are generated that would usually not exist. For example,

an intruder may effort to add an entry into a password file or

database. Similarly, it is sometimes possible to break into a

system by replay before sent messages.

1.2 SDLC Security Issues
The goal of a good SDLC process is to capture, verify, and

implement all the requirements needed to make the application

of use to the organization. These requirements consist of security

needs defined around confidentiality, integrity, and availability

of the information system. If security requirements are

accurately identified and the appropriate security controls added

are to the application to meet these requirements, the result is a

secure application. But in reality, developing applications

involve tradeoffs to meet budget, resource, and time constraints

placed on the project. In several cases, security is the first

necessity to be dropped [2].

An additional security SDLC issue is the lack of security

training and knowledge along with developers and system

designers. Poor design decisions are prepared when developers

are not aware of existing security risks. As a result of these

SDLC security shortcoming, security is frequently an addition,

and security controls are implemented as add-ons after the

project is complete and security issues come to light.

Applications built this way become overly complex, expensive,

and hard to maintain. This ensures that security is further

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.3, August 2014

35

compromised and the application system suffers from continual

security problems. Even if a system is designed and developed

with security in mind, systems modify over time. New

equipment, software, and functionality are added to systems

repeatedly over time. These changes must be authorized and

track and security issues require to be evaluating as part of a

configuration management process.

2. LITERATURE REVIEW
This section deals with the research issues interrelated to

software security. The purpose of this paper is to help you

recognize the important role that security plays in the SDLC. A

number of small and large organizations and departments have

devoted their time to build up policies, strategies, guidelines to

create a secure application.

Prem kumar and Stuart , 2000 [3] has discussed that almost

every software controlled v system faces threats since potential

adversaries, from Internet-aware client applications running on

PCs, to difficult telecommunications and power systems

accessible above the Internet, to commodity software with copy

protection mechanisms. Software engineers must be cognizant of

these threats and engineer systems with credible defences,

whereas still delivers value to customers. Shreyas 2000 [4] has

discussed that since the creation of distributed systems, security

of software systems has been an issue of massive concern.

Traditionally, security is integrated in a software system after all

the functional requirements have been addressed. It has focused

on utilize of Software Architecture to solve certain problems that

are faced in the engineering of secure systems.

Mike, 2003 [5] has presented Systems Security Engineering

Capability Maturity Model (SSE-CMM). This model provides

industry best practice guidance not including being specific as to

how security solutions are implemented. The SSE-CMM

provides a broad list of “base practices” from which the security

engineer can profit when defining the objectives of the security

implementation. Louise 2004 [6] has presented a structure for

developing security requirements of information systems. In this

method, qualitative metrics are used to give up experimental

information that can be used to develop the evaluation process

specially risk assessment, vulnerability assessment, protection

profiles, and test coverage which are significant aspects of

systems specification.

Nithin 2007[1] has discussed that Security is an important issue

in the development of information systems; presently the

common approach towards the inclusion of security within a

system is to classify security requirements after the definition of

a system. Conversely, as pointed earlier, this approach leads

many times to problems and systems full of security

vulnerabilities. It should be possible to remove such problems

through the integration of security concern at every phase of the

system development.

Bart et al, 2009 [7] has discussed the three high-profile processes

for the development of secure software namely OWASP’s

CLASP, Microsoft’s SDL and McGraw’s Touch points are

evaluate and compare in detail. Development processes for

software construction are common knowledge and mainstream

practice in most development organizations. Unfortunately, these

processes suggest little support in order to meet security

requirements.

Eric et al, 2010 [8] has surveyed and contrasts the security

models of existing programming languages and platforms. As it

identified, there is an inbuilt trade-off between simplicity and

flexibility. Simple models tend to provide stronger security

guarantees and are less likely to provoke implementation bugs.

Francisco et al, 2010 [9] has proposed a security engineering

approach to support software security through a specialized

process that helps develop more secure software, entitled Process

to Support Software Security (PSSS). PSSS can be seen as a

heavy process as well as useless because there are other security-

based software processes. PSSS offers 37 positive security

activities to be adapted and specialized based on corporate

software development preference. Pavel et al, 2010 [10] has

discussed the significance of the implementation of IT best

practices in enterprises and to identify the explanation challenges

managers are facing when creating a standardized IT control

framework in order to achieve alignment of best practices to

business requirements. Gefei et al, 2012 [11] has proposed ST-

Editor which is a supporting tool for the creation and the

protection of STs according to ISOIIEC 15408. By using the ST-

Editor, users can create and maintain STs easily, quickly, and

safely because ST-Editor can provide a helpful and protected

editing and maintain environment to assist users to describe and

edit STs. Danielito, 2012 [12] has discussed that Software

security is one of those legacy problems that will not be solved

overnight. By addressing all the phases of the Software

Development Life Cycle with the principles of secure and

resilient software you are well on your way to recovering the

overall software security problem and thus further develop the

situation for the organizations, community and business sector.

Mandal and Pal, 2012 [13] has explain several SDLC models but

it rarely followed by organizations for the real project

implementations as it lack suitability. On the way to examine the

reasons for non-suitability of these models, it is exposed that

there are insufficient parameters and metric for judging the

characteristics of any SDLC model. James, 2013 has explained

that security plays an important role in the Software

Development Life Cycle (SDLC). The paper defines security as

it applies to the SDLC and discusses overall SDLC security

issues. It then covers each phase of the SDLC and specific

security controls and issues for each phase. If companies follow

the SDLC phases and integrate the suitable security activities the

system in this manner, the security shortcomings of the system

will be discovered.

2.1 Security Processes
Process
The IEEE defines a process as" a sequence of steps performed

for a given purpose". A secure software process can be defined

as the set of activities performed to develop, maintain, and

deliver a secure software solution. Activities may not necessarily

be sequential; they could be concurrent or iterative.

2.1.1 CLASP
CLASP is a pre-defined set of documented processes and tools

that can be integrated into any software development process. It

is designed to be both easy to adopt and effective. The Open

Web Application Security Project (OWASP) is an open

community dedicated to enabling organizations to conceive,

develop, acquire, operate, and maintain applications that can be

trusted. One of their more prominent projects is called the

Comprehensive, Lightweight Application Security Process, or

CLASP [7].

CLASP is rich with an extensive collection of freely available

and open source security resources that make implementing

those activities practical and achievable. It includes a set of 24

top-level activities and additional resources, which can be

tailored to the development process in use. The primary goal of

CLASP is to support the construction of software in which

security takes a central role. CLASP provides an extensive set of

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.3, August 2014

36

security resources that facilitate and support the implementation

of the activities.

2.1.2 SDL
Bart defined the SDL to address the security issues they

frequently faced in many of their products. SDL comprises a set

of activities, which complement Microsoft’s development

process and which are particularly aimed at addressing security

issues. SDL can be characterized as follows [7]:

 Security as a supporting quality: The primary goal of SDL

is to increase the quality of functionality driven software by

improving its security posture. Security activities are most

often related to functionality-based construction activities

 Well-defined process: The SDL process is well organized

and related activities are grouped in stages. Although these

stages are security specific, it is straight forward to map

them to standard software development phases.

 Good guidance: SDL does a good job at specifying the

method that must be used to execute activities, which, on

average, are concrete and often somewhat pragmatic. For

instance, attack surface reduction is guided by a flow chart

and threat modelling is described as a more detailed sub

process. As a result, the execution of an activity is quite

achievable, even for less experienced people.

There are always disadvantages with everything:

 End-user does not see the solution until the system is almost

complete.

 Users get a system that meets the need as understood by the

developers. There may be a loss in translation.

 Documentation is expensive and time-consuming to create.

It is also difficult to keep current.

 Users cannot easily review intermediate products and

evaluate whether a particular product (e.g., dataflow

diagram) meets their business requirements

2.1.3 PSSS (Process to Support Software Security)
PSSS was designed to follow the iterative and incremental life

cycle approach which facilitates the coordination between the

PSSS and any particular corporate development process. In order

to use the PSSS with other life cycles, this would need

validation. There is no need to use all the activities of the PSSS.

They can be adapted to function effectively within the

organizational development process. It is an important aspect to

have each activity as integrated as possible into the life cycle

phases and one approach to reach this integration is to apply

each activity in parallel with the phases [9].The main

advantages gained by applying and following the PSSS are:

 Assurance that security was considered during the system

development through elaboration of security activities and

artifacts, such as attack trees and abuse case, and those

potential security vulnerabilities, threats and risks would be

treated.

 Identification and definition of security requirements based on

a set of security assessments to protect the system against

security problems.

 Assurance that the limited project resources were effectively

applied based on security assessments and according to the

major negative security impacts.

2.2 COMPARATIVE ANALYSIS OF

SECURITY PROCESSES

Table 1: Comparative Analysis of security Processes

Processes

Parameters

CLASP SDL PSSS

Full Form Comprehensive,

Lightweight
Application

Security

Process.

Security

Development
Life cycle.

Process to Support

Software Security.

Functionality It is a pre-
defined set of

documented

processes and
tools that can be

integrated into

any software
development

process.

Microsoft
defined it to

address the

security issues
it frequently

faced in many

of their
products.

Structured to provide
visibility towards

Information security

Nature It is light weight

and more
affordable for

small

organizations.

It is

heavyweight
and rigorous

and suitable

for large
organizations&

time

consuming.

It is suitable for both

small and large
organizations.

Composition It includes set of
24 top level

activities which

can be used to
develop the

software process

SDL
comprises a set

of activities,

which are
particularly

aimed at

addressing
security issues.

The PSSS is formed
by 37 activities

grouped in a set of 11

sub processes.

Implementation It does not

perform manual
code inspection.

It performs

manual code
inspection.

It also performs

manual code
inspection.

Security design

Principles

It determines

implementation
strategies for

security of

software.

It determines

implementation
strategies for

security of

software.

It determines

implementation
strategies for security

of software.

Limitations Weakness

Analysis cannot
be performed in

this process.

This process
cannot build and

execute process

improvement
program.

Weakness

analysis
cannot be

performed in

this process.
It cannot build

& execute

process
improvement

program.

Weakness analysis

can be performed in
this process.

This process can

build and execute
process improvement

program.

3. EXPERIMENTAL SETUP
This chapter explains experimental setup of proposed work. The

activities or sub processes are performed for the security analysis

of a project by following PSSS security process. For performing

these activities a complete and accurate knowledge about

security Vulnerability should be must. All these activities are

performed only for three security vulnerabilities that are File

handling, Pointers and Conditional operators.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.3, August 2014

37

3.1 Plan Security
The information regarding security of a project is defined in

terms of three security vulnerabilities that are use of Pointers,

File Handling Operations and Conditional Operators. These

three aspects are to be taken to plan the security for developing a

secure project. Programming Environment C++ is taken and Mat

lab tool is used for developing a project. For each aspect, a set of

ten programs of C++ is considered in which occurrence and

density of these three security vulnerabilities will be evaluated.

3.2 Assess security vulnerability
In this sub process, vulnerabilities assessment methods like how

many times a pointers, file handling operations and conditional

operators are referenced and how many times number of pointers

, file handling operations and conditional operators are used in

the form of pointer density, file handling density, conditional

operators density respectively are planned for identification. For

analyzation of identified security vulnerabilities, density values

for these security vulnerabilities are to be taken. For example

there is various memory errors related to C++ programming like

attempting to free memory already freed, this problem comes

under memory leaks.

Attempting free memory already freed

#include <stdlib.h>

#include <string.h>

...

char *oldString = "Old String";

char newStrig = strdup(oldString);

if(newString == ENOMEM) ... // Fail!!!!

...

free(newString);

This example illustrates that any routine which is supplied by the

C libraries or ones written within an application which allocate

memory must have the memory freed.

3.3 Model Security Threat
This sub process identifies the security threats for these three

security vulnerabilities. For example in case of pointers there are

some security suspects which cannot be ignored like always

initialize the pointer when declared, allocate memory from the

heap and return it to the heap at the same level to avoid memory

leaks, Catch an exception to delete memory when necessary,

always zero a pointer variable once the pointer is no longer

valid. Another possibility which may have negative impact and

can cause the major damage to software is programming

mistakes related to memory corruption. Memory when altered

without an explicit assignment due to the unintentional altering

of data held in memory or the altering of a pointer to a specific

place in memory. For example: - Buffer overflow (Overwrite

beyond allocated length-overflow) it is overflow by one byte.

Example 2:- Index of array out of bounds (array index overflow-

index too large/underflow-negative index)

Index of array out of bounds

ptr = (char *) malloc(strlen(string_A));// Should

be //(string_A + 1) to account for null termination.

strcpy(ptr, string_A); // Copies memory from

string_A//which is one byte longer than its

destination ptr.

3.4 Assess Security Impact
This sub process reviews the critical activities for security and

prioritizes these according to their impact. Out of these three

identified security vulnerabilities which vulnerability is

considered as prior? For example efficient use of pointers can be

taken as prior as compared to file handling operations because

memory allocation is directly linked with effective use of

pointers. Once the pointer variable has served its purpose, then it

is a waste of memory to keep it, and therefore, it is a good

practice to deallocate it when no longer needed. In case of

Handshaking, file handling is more prior than other two. So we

can say priority of these security vulnerabilities depends upon

the nature of the developer that what he want in his application.

3.5 Assess Security Risk
It refers to the risk associated with identified security

vulnerability. In other words if there is a great use of pointers,

file handling operations and conditional operators then what are

the risks, which can be evaluated are assessed. For example, if

Exception handling is not used then in some exceptional

conditions, processed data is not able to store with in a data

structure. For example, a floating point divide by zero exception

allow to the program to be resumed, by default while out of

memory condition might not be resolvable transparently.

3.6 Security Needs
Specify security needs means specification of security needs of

the system according to stakeholder as well as customer. Like

allocation of memory and deallocation of the memory depends

upon various situations. Improper use of dynamic memory

allocation can include security bugs or program crashes. Under

this process, an agreement is prepared about the security

requirements.

3.7 Verify and Validate security
This sub process defines the security verification and validation

approach and Perform security verification and security

validation of above mentioned three security vulnerabilities.

Here we verify these vulnerabilities by finding the occurrences

of pointers, file handling operations and conditional operators in

C++ programs. It will give an idea of the existence of these

security vulnerabilities in a particular program.

Freeing memory that was not allocated

#include <stdlib.h>

char *textString = malloc(128*sizeof(char));

if(textString == ENOMEM) ... // Fail!!!!

...

free(textString);// Don't free if allocation failed

here

Buffer overflow

char *a = malloc(128*sizeof(char));

memcpy(a, data, dataLen);// Error if dataLen too

long.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.3, August 2014

38

3.8 Monitor Security behaviour
The security monitoring tends to measure the effect of the given

security vulnerabilities on a given function or modules. For

example: - Pointer persistence, in this problem function returning

a pointer from stack which can get overwritten by calling

function.

Pointer persistence

int *get_ii()

{

int ii;// Local stack variable

ii = 2;

return ⅈ

}

main()

{

int *ii;

ii = get_ii();//After this call the stack is given up by

routine

// get_ii() and its values are no longer safe.

... Do stuff

..ii may be corrupt by this point.

}

Pointers are a special problem for persistent data types because

there may be more than one pointer to the same object in a data

structure. If this was dumped in a naive way, there would be two

identical copies of the object in the dump, rather than one

object and two pointers to it. It would also be impossible to

dump a structure with back pointers because the dump

mechanism would get stuck in an infinite recursion.

4. PERFORMANACE EVALUATION
Simulation has been designed and implemented using MATLAB

tool. Ten different programs are selected for experimental

purpose. Subsequent section contains various results of the given

programs.

Figure 1 has shown security analysis of given three security

vulnerabilities. Program 1 has been selected for experimental

purpose in which blue colour denotes file handling operations,

green shows pointers and red colour denotes conditional

operations. Y-axis shows the occurrence of the given three

security vulnerabilities.

 Fig 1: security analysis of operations of First program

Figure 2 has shown the analysis of the of security ratio of

program 1. It has been clearly shown that the ratio of pointers is

very high than other operations.

 Fig 2: Security ratio of operations of first program

Table 2: Density analysis of given program

NAME LO

C

FILE

HANDLING

DENSITY

POINTER

S

DENSITY

CONDITIONAL

OPERATORS

DENSITY

1 1682 53.3 86.6 6.60

2 278 46.6 6.60 13.3

3 688 73.3 33.3 26.6

4 390 26.6 20.0 6.60

5 388 86.6 46.0 13.3

6 344 46.6 33.3 6.60

7 324 33.3 20.0 6.60

8 337 73.3 73.3 6 .60

9 977 6.60 46.6 20.0

10 406 73.3 66.6 6.60

Table 2 has shown the density of three security vulnerabilities

that are File Handling, Pointers, and Conditional operators of

different programs which have been taken for Experimental

purpose. Here File Handling density shows the effect or impact

of file handling operations in different programs of C++.

Basically it shows the ratio of occurrence of file handling

operations in C++ programs. Similarly Pointers density and

Conditional operators density shows the impact of the pointers

and conditional operators in each program of C++.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.3, August 2014

39

Fig 3: File handling density analysis of each program

Figure 3 has shown the file handling operations density of the

ten different programs. It has been shown that the 6th program

has highest density so more insecure with respect to handshaking

operations. Whereas the program 9 is more secure having lowest

density among other programs.

Fig 4: Pointers density analysis of each program

Figure 4 has shown the Pointers density of the ten different

programs. It has been shown that the 1st program has highest

density so more insecure with respect to memory leakage

operations. Whereas the program 2 is more secure having lowest

density among other programs.

Figure 5 has shown the Conditional operators density of the ten

different programs. It has been shown that the 3rd program has

highest density so more insecure with respect to memory leakage

operations. Whereas the many programs are more secure having

lowest density among other programs.

Fig 5: Conditional operator’s density analysis

Fig 6 has shown the Density of the ten different programs. It has

been shown that the more secured program is 4th one. However

the 1, 3, 4, 8 and 10th program are found to be insecure among

other programs.

Fig 6: Density analysis

To validate the proposed security model’s verification we have

run all the program and found that the in real time the security

also depend on the relationship of conditional operators density

along with either file handling operations density and the

pointers density. Figure 7 has shown the run time analysis of

program 1. It has been clearly shown that the density has

affected the actual calling a lot.

Fig 7: The run time analysis of program 1

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.3, August 2014

40

5. CONCLUSION & FUTURE WORK
This Paper has evaluated the security analysis of the different

projects. The overall objective is to evaluate the various reasons

which make the programs more insecure in nature. The review

has shown that the conditional operations, pointers and file

handling operators can be the security vulnerabilities for any

source code or project. To achieve the objectives ten different

programs has been considered in this research work. A suitable

simulation is done using MATLAB tool to evaluate the effect of

different security threads. It has been found that the main

security leakage reasons are pointers and file handling operators.

But declaration of these operators does not lead us for more

density. Because when we run this software in real time the

effect of the conditional operator become more critical because it

recall each critical operation again and again (file handling and

pointers).

In near future some more software will also be considered for

experimental purpose. Also one can enhance this model by

improving the process of density analysis of each program by

using fuzzy set theory.

6. REFRENCES
[1] Nithin Haridas (2007) “Software Engineering – Security as

a Process in the SDLC” © SANS Institute Pg No: 1-27

[2] James Purcell (2013) “Defining and Understanding Security

in the Software Development Life Cycle”

[3] Premkumar and Stuart (2000) “Software Engineering for

Security: a Roadmap” Copyright ACM 1-58113-253-

0/00/6, Pg No:227-239

[4] Shreyas (2002) “Software Engineering for Security:

Towards Architecting Secure Software” Information and

Computer Science Dept. University of California, Irvine

CA 92697

[5] Mike Phillips (2003) “Using a Capability Maturity Model to

Derive Security Requirements” © SANS Institute 2003

[6] Louise Yngström, Job Asheri Chaula, and Stewart

Kowalski (2004) “Security metrics and evaluation of

information systems security” Department of Computer and

Systems Sciences, Stockholm University/KTH Forum 100,

164 40 Kista, Sweden

[7] Bart De Win, Riccardo, Koen Buyens, Johan Gregoire and

Wouter Joosen (2009) “On the secure software

development process: CLASP, SDL and Touchpoints

compare” see front matter2008 Elsevier B.V. All rights

reserved.doi:10.1016/j.infsof.2008.01.010, Pg No.1153-

1171

[8] Eric Bodden, Ben Hermann, Johannes Lerch and Mira

Mezini (2010) “Reducing human factors in software

security architectures”

[9] Francisco José Barreto, Arnaldo Dias Belchior and Adriano

Bessa Albuquerque (2010) “Security Engineering Approach

to Support Software Security” IEEE 6th World Congress on

Services, Pg No. 48-55.

[10] Pavel Nastase, Floarea Nastase and Corina Ionescu (2010)

“challenges generated by the implementation of the it

standards cobit 4.1, itil v3 and iso/iec 27002 in enterprises”

[11] Gefei Sun, Kenichi Yajima, Junichi Miura, Kai Shi,

Yuichi Goto, and Jingde Cheng, (2012) “A Supporting

Tool for Creating and Maintaining Security Targets

According to ISO/IEC 15408” 978-1-4673-2008-

5/12©2012 IEEE Pg No. 745-749

[12] Danielito (2012) dcvizcayno.wordpress.com

[13] Mandal and S. C. Pal (2012) “Investigating and Analyzing

the Desired Characteristics of Software Development

Lifecycle (SDLC) Models” International journal of software

engineering research & practices vol.2, issue 4, ISSN:

2231-2048 e-ISSN: 2231-0320 © RG Education Society

(INDIA) Pg No.10-14.

IJCATM : www.ijcaonline.org

