
International Journal of Computer Applications (0975 – 8887)

Volume 99– No.3, August 2014

23

Managing Risks in the System Analysis and

Requirements Definition Phase

Shihadeh Alqrainy
Albalqa Applied University

Haneen Hijazi
The Hashemite University

ABSTRACT
System analysis and requirements definition is a risky phase.

It is susceptible to different types of risk factors from the

initial preliminary investigation till the final delivery of the

requirements document. Risks reside in this phase are

considered the ones with the highest severity among other

phases. Being the first phase in the development process, the

occurrence of risks in this phase negatively influences

subsequent phases, affects project progress, and has a negative

impact on the project outcomes. Thus, managing probable

risks in this phase deadly helps project managers control the

majority of risks that might arise later in the subsequent

phase. In order to manage risks properly, probable risks need

to be identified early, then, risk management strategies have

to be proposed and followed in order to avoid and mitigate

their occurrence. In this paper, a total number of 28 risk

factors have been introduced. For each risk factor, a set of

management strategies is proposed. The identified factors and

strategies were the harvest of brainstorming sessions with

senior software practitioners, comprehensive literature survey,

plus ready-made checklist and taxonomies. In order to

validate our results, correlation analysis had been conducted

through a web-based survey. The results confirmed our

assumptions in that all of the identified risk factors have

positive correlation with project failure.

Keywords

Requirements, Risk Factor, Risk Management, Software

Development Lifecycle (SDLC)

1. INTRODUCTION
Each software system passes by a sequence of phases before it

could be used by end-users. Each phase uses the output of the

preceding one. Together, they form what is known the

Software Development Life Cycle (SDLC). Respectively,

these phases are Systems analysis and requirements definition,

design, development, integration and testing, and the

deployment and maintenance phase.

System analysis and requirements definition is the first phase

which represents the "what" phase and definitely the most

important one. Herein, system goals and users needs from the

system are clarified.

Software System analysis is the process of studying a

software project in order to identify its goals and purposes and

create systems and procedures that will achieve them in an

efficient way [1]. By analyzing the system, analysts should

decide whether the system underdevelopment is feasible to

implement especially from economical point of view. System

analysis is much related to what is called requirements

definition. Requirements definition examines what the

stakeholders need without any clarification of how these

requirements could be developed [2]. Software requirements

can be functional and non-functional. Functional requirements

consider the behavioural aspects of the system, while the non-

functional concern with the operational aspects. Defining

requirements involves elicitation, analyzing, and documenting

them [3].

The final output of this phase is the requirements document

(RD). Requirements document writes down software

requirements specification (SRS) either in natural language or

in formal language. In this document, requirements document

is specified at higher level; architectural details are left to the

subsequent design phase [4].

Starting from the requirements phase and ending with the

final acceptance of the system, each phase of the SDLC is

vulnerable to several threats [5]. As any other phase in the

SDLC, the system analysis and requirements definition phase

suffers from a set of probable threats that hinder the

successful completion of the project. Indeed, vulnerabilities in

this phase are very severe; any fault in describing the

requirements may cause other threats appear later in

subsequent phases. Worse, it may cause user unsatisfaction,

resources underestimation, and consequently entire project

failure. These threats are called risk factors.

Hence, risks in this phase need to be managed carefully in

order to mitigate its negatives effects in the future. This

management requires these risks to be identified, and then risk

management strategies to be proposed and applied to avoid

and mitigate from these risks.

Risk Identification is the step that aims at discovering, as

many as possible, potential threats and uncertainties that could

compromise project success. The result of the risk

identification step is a list of risk factors (i.e. technical,

environmental, managerial, and organizational) that could

lead to project failure [6]. Many risk identification techniques

exist; the most currently practiced are checklist and

brainstorming [7]. Risk factors are the uncertain conditions

and influences that affect the cost, duration, and quality of the

project negatively. The purpose behind the identification

process is not the recognition of these risk factors solely.

Rather, to help project managers and developers manage these

risks.

A risk management strategy is a control activity that aims at

dealing with a specific risk factor(s). Not all risk factors are

controllable [8]; some factors might be out of project

manager’s control. Any software risk factor can be either

avoidable or non-avoidable. For the avoidable risk factors,

mitigation strategies are devised and proposed to deal with

risks before they mature into real problems. Else, if the risks

are non-avoidable, or if the risks have matured into real

problems, then contingency plans have to take place in order

to repair from the occurrence of these risks. A mitigation

strategy aims at either avoiding the occurrence of a risk, or

reducing its effects in case of occurrence. This reduction can

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.3, August 2014

24

be achieved by reducing either the severity of the risk or its

likelihood.

Either the mitigation strategies or the contingency plans must

be planned in advance [9]. In other words, avoided the

occurrence of the risks has a priority rather than start to think

of and design strategies. Clearly, applying a mitigation

strategy is better than conducting a contingency plan, since it

is cheaper, and easier than repairing from risk. A risk

management strategy can control more than one risk factor.

As mentioned in the previous sections, the occurrence of a

risk might be as a consequence of another risk, thus,

mitigating the cause may also mitigate the consequence.

In this paper, we investigate the system analysis and

requirements definition phase and identify the major risk

factors threaten this phase and its activities. For each factor, a

set risk management strategies is proposed to manage that

risk. Most of these strategies are avoiding strategies, the other

are mitigating strategies. The rest of this paper is structured as

follows: section 2 summarizes the works related to this

research. In section 3, the identified risk factors and the

proposed risk management strategies are introduced. Section 4

validates our assumptions and analyzes the results of the

questionnaire. Finally, the conclusion and the future work is

shown in section 5.

2. RELATED WORK
Several research works have been conducted around risk

management. These attempts are summarized in this section

as follows:

Keil et al. in [10], identified and prioritized eleven risk

factors. The authors found that there is a relation between the

importance of risks and their perceived level of control.

Building upon this, they introduced a framework for

classifying risks. Four categories were identified; customer

mandate (high importance, low control), scope and

requirements (high importance, high control), execution

(lower importance, high control), and environment (lower

importance, lower control). Instead of mitigating individual

risk factors, mitigation strategies were devised to handle each

type of risks.

Vallabh and Addison [11] reported on risk factors and

controls from the literature. This list of factors and controls

were presented to different project managers from the IT and

finance industry with different experiences, then they were

asked to identify the importance of each risk factor, the

frequency of occurrence for each risk factor and control, and

the effectiveness of each control against each factor. They

found that among the identified ten factors, seven were

reduced using the using the identified controls.

Shahzad and Safvi [9] presented a list of risk factors and

another one of mitigation strategies to a representative set of

students, academics, and professionals in order to assign the

correct mitigation strategy to each specific factor. They used

the list of eighteen risk factors previously identified by

Shahzad and Iqbal in 2007 [12]. For each risk factor a set of

risk management strategies was proposed. Some of these

strategies are mitigation strategies aimed at avoiding, or at

least reducing, the related factor. Others are contingency plans

take place when the risk is matured into a problem.

Shahzad et al. in 2010 [13] prioritized the risk factors

identified earlier by Shahzad and Safvi in 2008 [14] according

to the overall impact for each factor. Then the authors

suggested that risk factors with highest values have to be

addressed first using the defined sets of mitigation strategies.

These factors were classified into avoidable and non-

avoidable factors based on their priorities. Then for the

avoidable risks, a set of mitigation strategies were put in order

to avoid them. For the non-avoidable, a set of contingency

plans are set for each risk factor in case if it matured into a

problem.

Hijazi et al. in 2014 [5], identified a comprehensive list of risk

factors that threaten the software development process.

3. THE PROPOSED RISK

MANAGEMENT STRATEGIES
In this section the risk factors that threaten the requirements

analysis and definition phases are explored. For each factor, a

set of mitigation strategies is proposed to help mitigate that

factor.

3.1 Factor 1: Inadequate estimation of

project time, cost, scope and other

resources
Idealistic view of team capabilities, hidden unknown

variables, and the human desire to good news leads to

unrealistic project schedule, budget, unclear scope, and

insufficient resources, which are considered the major project

failure causes. Moreover, project managers may find it

difficult to estimate the required time, cost, scope and other

resources needed to complete the project.

3.1.1 The proposed strategies:
 Consult Information Sources (i.e. different

stakeholders).

 Use experience results from previous projects.

 Use different estimates from different sources

[13].

 Estimate the amount of the available reusable

code adequately.

 proactive estimating techniques

3.2 Factor 2: Unrealistic Schedule
Unrealistic Schedule is a major cause of project failure. The

schedule is considered unrealistic if the estimated time for the

project as a whole exceeds the delivery date agreed upon

previously. This might be due to inexperienced project

managers, continually changing requirements, and improper

management. Unrealistically, project managers add

constraints on time, and overload the developers to deliver on

time to mitigate this issue.

3.2.1 The proposed strategies:
 Add flexibility to the schedule, by adding extra

contingency factor to the estimated time [15).

 Setup clear milestones.

 Use different time estimation models (i.e.

COCOMO, Putam’s).

 Estimate the amount of the available reusable

code adequately [15].

 Propose changes to the schedule.

3.3 Factor 3: Unrealistic Budget
Unrealistic estimation of cost causes budget runs out early in

the SDLC. To estimate the budget project manager should

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.3, August 2014

25

take the required time, effort, and resources into consideration

[9, 11]. Any improper estimation in this regard may cause

project failure.

3.3.1 The proposed strategies
 Engage project stakeholders in interactive

discussion, case studies and practical exercises

to help them accurately judge the impact of

expenses and make forecasts on project

performance.

 Propose changes to the budget to accommodate

with emergent changes.

3.4 Factor 4: Unclear project Scope
Project managers should clearly define what the project is

supposed to do. This assures that core functionalities are

neither missed nor extra ones be taken into consideration.

3.4.1 The proposed strategies:
 Use estimation tools/matrices to determine the

exact scope.

 Engage developers, analysts and other team

members in the determining project scope [15]

 Estimate the amount of the available reusable

code adequately [15].

3.5 Factor 5: Insufficient resources
An accurate estimation of the required resources and the

available ones should be made early to make sure that system

could be implemented using the available and to avoid

technology change.

3.5.1 The proposed strategies:
 Do not impose a project of new technology and

limited resources [15].

 Experienced developers should advice the

customer with the most suitable tools and

technologies [13].

3.6 Factor 6: Unclear Requirements
If the requirements are unclear, this could lead to

misunderstandings between the different system's

stakeholders. This usually causes a dead lock where the

system needs to rebuild again.

3.6.1 The proposed strategies:
 Structure user requirements.

 Held SCRUM meetings

3.7 Factor 7: Incomplete Requirements
Practically, users can describe at most 60% of the

requirements at the beginning of the project. Thus, new

requirements could arise in later phases. Anyway, any miss in

users needs results in incomplete requirements.

3.7.1 The proposed strategies
 Hold structural interviews and Joint

Application Development (JAD) workshops

[9].

 Use Facilitated Application Specification

Technique (FAST) that helps in collecting

understanding requirements in an informal

way.

 Use hands-on experience.

 Examine existing software.

3.8 Factor 8: Inaccurate Requirements
Accurate requirements should express real user needs exactly

and accurately.

3.8.1 The proposed strategies:
 Hold structural interviews and Joint

Application Development (JAD) workshops

[9].

 Use Facilitated Application Specification

Technique (FAST) that helps in collecting and

understanding requirements in an informal

way.

 Use hands-on experience.

 Examine existing software.

3.9 Factor 9: Ignoring the Non-functional

requirements
Non-functional requirements such as system usability,

maintainability, scalability, testability are given little attention

comparing with the functional requirements which

concentrate on what the system should do rather than how the

system behaves.

3.9.1 The proposed strategies:
 Hold structural interviews and Joint

Application Development (JAD) workshops

[9].

 Use Facilitated Application Specification

Technique (FAST) that helps in collecting

understanding requirements in an informal

way.

 Use hands-on experience.

 Examine existing software.

3.10 Factor 10: Conflicting User Req
Conflicting requirements are inevitable in systems with

several different users and different needs. Each user wants to

see all requirements implemented successfully regardless of

others need.

3.10.1 The proposed strategies:
 Hold structural interviews and Joint

Application Development (JAD) workshops

[9].

3.11 Factor 11: Unclear Description of the

real environment
Analysts should have a clear knowledge about the real

environment wherein the system will operate. Indeed, it's not

an easy task.

3.11.1 The proposed strategies:
 Hold structural interviews and Joint

Application Development (JAD) workshops

[9].

 Apply Ethnography Techniques; which is an

observational technique that can be used in the

organizational environment [2].

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.3, August 2014

26

3.12 Factor 12: Gold Plating
Adding extra functionality to the system that is not considered

in the original scope in order to make the system better may

cause in most cases a threat to the project as much as, if it was

not more than, omitting the in-scope functionalities [4, 11].

3.12.1 The proposed strategies:
 Remove any extra functionality that will not be

used.

3.13 Factor 13: Non-verifiable Req
The requirement is non-verifiable if there is not a finite cost

effective process (i.e. testing, inspection, demonstration, or

analysis) assuring that the software meets the requirements

[2].

3.13.1 The proposed strategies:
 Re-write requirements in a verifiable (i.e.

quantifiable and measurable) structure.

3.14 Factor 14: Infeasible Requirements
Infeasible requirements are the requirements that have

insufficient resources for its implementation within the

project's constraints.

3.14.1 The proposed strategies:
 Do not impose a project of new technology and

limited resources [15].

3.15 Factor 15: Inconsistent Requirements
Inconsistent requirements are the requirements with any

contradictions.

3.15.1 The proposed strategies:
 Hold structural interviews and Joint

Application Development (JAD) workshops

[9].

 Prioritize requirements.

3.16 Factor 16: Non-traceable Req
Non-traceable requirements cannot be referenced later on

easily. This contradicts with documentary and referencing

purposes.

3.16.1 The proposed strategies:
 State the source of each requirement.

 Build the traceability matrix.

3.17 Factor 17: Unrealistic Requirements
Realistic requirements are clear, verifiable, accurate,

consistent, complete, and feasible to be implemented

requirements.

3.17.1 The proposed strategies:
 Since the unrealistic requirements are those

requirements that are clear, verifiable, accurate,

consistent, complete, or feasible, then all the

strategies that are devised to mitigate from

these risks are required to mitigate from the

unrealistic requirements risks.

3.18 Factor 18: Misunderstood domain-

specific terminology
Application specialists and developers use domain-specific

terminologies that are different and not understandable by

most end-users. This might lead to misunderstanding between

both parties [4].

3.18.1 The proposed strategies:
 Formal requirements review [4].

 Develop exploratory prototype.

3.19 Factor 19: Mis-expressing user

requirements in natural language
Different users may use different natural languages and

different conventions. Moreover, many expressions and terms

need more formal language to be expressed.

3.19.1 The proposed strategies:
 Express requirements using structured English.

3.20 Factor 20: Inconsistent requirements

data and RD
Any fault in the gathering and documenting technique may

cause inconsistency between the actual requirements and the

corresponding documented ones.

3.20.1 The proposed strategies:
 Automated-processing of requirements using

automated tools to generate the requirement

document directly from requirements.

3.21 Factor 21: Non-modifiable RD
Ignoring maintainability while documenting requirements

makes it difficult to modify data system usability,

maintainability, scalability, and testability.

3.21.1 The proposed strategies:
 Enhance changeability in the RD by organizing

the document in an easy to use way.

 Avoid redundancy in the requirements

document.

3.22 Factor 22: Continually changing req
In practice, it is difficult or even impossible to describe all

requirements at the initial stages of the project, thus, definitely

requirements change over the SDLC. To accommodate with

this continuous changes, additional work have to be done

which might consume extra time and cost. Beside, test plans

are designed early according to the initial requirements;

hence, testing could not cope with this continuous change.

3.22.1 The proposed strategies:
 Add flexibility to the schedule, by adding extra

contingency factor to the estimated time [2].

 Clarifying that large change in requirements be

done on additional payments [15].

3.23 Factor 23: Project Funding Loss
Lack of commitment from the funding agencies is another

major factor. If the funding was interrupted at any phase, the

project could not be completed.

3.23.1 The proposed strategies:
 Get an adequate commitment from the funding

agencies in the beginning of the project [15].

 Maintain a friendly relationship with funding

agencies [15].

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.3, August 2014

27

3.24 Factor 24: Team Turnover
Unstable employment and better job vacancies threatens most

organizations. Project team members' resignation suddenly

negatively affects the development process.

3.24.1 The proposed strategies:
 Give High salaries.

 Give additional payments and rewards for

extra, well-done work.

 Hold Training sessions and courses on the

latest technologies.

 Establish good relationships with the

employees, and between the employees

themselves.

3.25 Factor 25: Data Loss
Natural disasters, viruses and intruders, developers run away

with codes are all reasons of data loss.

3.25.1 The proposed strategies:
 Data backup must be taken regularly and at

different sites.

 Use anti-viruses and firewalls systems.

 Hire highly trusted team members.

3.26 Factor 26: Time contention
Indeed, time contention is not a serious threat in this phase. It

usually appears in the implementation phase. Nevertheless,

the causes behind this contention reside herein.

3.26.1 The proposed strategies:
 Reuse components.

3.27 Factor 27: Miscommunication
Miscommunication between different project stakeholders

may lead to different troubles. For instance, customers may

under or overestimate their expectations and developers may

not understand the user actual needs.

3.27.1 The proposed strategies:
 Adapt effective communication between

stakeholders along the testing process

3.28 Factor 28: Budget Contention
As is the case in the time contention factor, budget contention

appears in the later phases of the development process when

almost the entire allocated budget for the project is spent.

Nevertheless, requirements phase may suffer from this risk

factor when unrealistic estimation for budget is made from the

beginning and wherein funding agencies suffer uncertainty.

3.28.1 The proposed strategies:
 Allocate a realistic budget for the project from

the beginning plus extra amount.

 Contact with stable funding agencies.

4. CORRELATIONS ANALYSIS
In order to validate our assumptions about the just identified

risk factors, a correlation analysis has been conducted.

Correlation analysis is a statistical measurement of the

relationship between two variables. Correlation between two

variables does not necessary implies causality. The correlation

can be positive, negative, or no correlation. A positive

correlation implies that the values of both variables increase

or decrease together (goes in the same direction). Negative

correlation Indicates that as the value of one variable

increases, the other decreases (and vice versa) (goes in

opposite directions). No correlation means that there is no

relationship between the two variables [16].

Different types of correlation analysis research methods exist;

naturalistic observations, survey method, and the archival

research. Survey method is the most common method since it

is the fastest, cheapest, and the most flexible one. In this

method, a random sample of participants completes a survey,

test, or questionnaire that relates to the variables of interest

[16].

In this context, we used survey method correlation analysis in

order to examine the relationship between each of the

identified risk factors and project failure. To achieve this, a

web-based questionnaire was circulated among different

software practitioners using convenience sampling method.

The sample was chosen randomly to ensure the generalization

of the survey result.

In the questionnaire, all of the 28 identified risk factors were

presented to a large sample of people via email and other

social networks, and they were asked to describe the

relationship between each risk factor and the project failure

(i.e. perfect positive, positive, no effect, negative, perfect

negative).

A total number of 60 responds were returned. After analyzing

the responses, data from respondents were summarized in

table 1. In this table, for each of the identified risk factor, the

percentage of respondents regarding each correlation analysis

value is stated.

Clearly, all the respondents exhibited similar tendencies in

which all the identified risk factors have non-negative

relationships with project failure. They justified their

responses in that all of them will cause loss in time, budget, or

quality of the system and thus lead to project failure. These

results largely strengthen our assumptions; even that the

sampling method followed does not allow us to generalize our

results.

Table 1: Analyzing Questionnaire Data – Correlation

Analysis between each risk factor and project failure

P-pos = perfect positive, p-neg = perfect negative

Risk factor
P-

pos
Pos

No

eff
Neg p-neg

Inadequate estimation

of project time, cost,
scope and other

resources

90% 10% 0% 0% 0%

Unrealistic Schedule
55% 45% 0% 0% 0%

Unrealistic Budget
80% 20% 0% 0% 0%

Unclear project Scope
65% 35% 0% 0% 0%

Insufficient resources
65% 35% 0% 0% 0%

Unclear Requirements
70% 30% 0% 0% 0%

Incomplete

Requirements

55% 45% 0% 0% 0%

Inaccurate

Requirements

50% 50% 0% 0% 0%

Ignoring the Non-
functional

30% 65% 0% 0% 0%

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.3, August 2014

28

requirements

Conflicting User
Requirements

50% 50% 0% 0% 0%

Unclear Description

of the real
environment

65% 30% 5% 0% 0%

Gold Plating
50% 40%

10

%
0% 0%

Non-verifiable

Requirements

35% 60% 5% 0% 0%

Infeasible

Requirements

65% 35% 0% 0% 0%

Inconsistent

Requirements

65% 30% 5% 0% 0%

Non-traceable

Requirements

55% 30% 0% 0% 0%

Unrealistic
Requirements

45% 50% 5% 0% 0%

Misunderstood
domain-specific

terminology

55% 45% 0% 0% 0%

Mis-expressing user
requirements in

natural language

65% 35% 0% 0% 0%

Inconsistent
requirements data and

RD

65%

35%

0%

0%

0%

Continually changing
requirements

70% 30% 0% 0% 0%

Project Funding Loss 80% 20% 0% 0% 0%

Team Turnover 75% 25% 0% 0% 0%

Data Loss 65% 35% 0% 0% 0%

Time contention 65% 30% 5% 0% 0%

Miscommunication 55% 40% 5% 0% 0%

Budget Contention 80% 20% 0% 0% 0%

5. COMPARITIVE ANALYSIS
Shareef Islam [17] proposed Software Development Risk

Management Model- a goal-driven approach, the author’s

proposed common project riskiness factors as shown in figure

1.

Fig 1: Common project riskiness factors

List of risk event and associated factors that Shareef Islam

[17] proposed shown in Table 2.

Table 2: Islam’s List of risk event and associated factors

Determining the project risk factors is not an easy task due to

the nature of the project. Shareef Islam [17] developed a

model and determined the project risks based on the project

benefits at the end. As Shareef Islam [17] claimed that every

project has a common goal to not lose any money. Therefore,

the author decided how risky the project is in terms of cost,

schedule and other related factors as well as shown in table 2.

While the proposed model in this paper described a

comprehensive risk factors affect the failure of the project

during the analysis and requirements phase only as described

in table 1. However, a comprehensive study about the project

risk factors covered all the project phases presented in [5].

5. CONCLUSION AND FUTURE WORK
In this paper a detailed list of risk factors that threaten the

system analysis and requirements definition phase have

introduced. In addition, a set of mitigation strategies was

defined for each risk factor to help developers and projects

managers deal with these risks. In order to validate our

assumptions, a correlation analysis has been performed to

verify the relationship between the identified risk factors and

project failure.

In the future, similar studies could be conducted on other

SDLC phases. Moreover, the proposed sets of factors and

mitigation strategies may constitute the main building block to

develop preventive risk management models, and to integrate

risk management into the Software development process.

6. REFERENCES
[1] Harry J. Systems Analysis and Design. 10th. Boston :

Rosenblatt, (2014).

[2] I, Sommerville. Software Engineering. 9th. USA :

Addison Wesley, (2011).

[3] K. E. Wiegers. Software Requirements. 2nd.

Washington : Microsoft Press, (2003).

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.3, August 2014

29

[4] Board for Software Standardisation and Control. Guide

to the user requirements definition. ESA, 1995.

[5] H. Hijazi, S. Alqrainy, H. Muaidi, and T. Khdour. Risk

Factors in Software Development Phases. European

Scientific Journal, Vol. 10, No. 3, pp. 213-232, (2014).

[6] J. Dhlamini, I. Nhamu, and A. Kachepa, Intelligent Risk

Management Tools for Software Development.

Proceedings of the 2009 Annual Conference of the

Southern African Computer. pp. 33-40, (2009) June 29-

July 1. Eastern Cape, South Africa.

[7] J. Miler and J. Górski. Risk-driven Software Process

Improvement - A Case Study. Proceedings of the 11th

European Software Process Improvement Conference.

(2004) November 10-12. Trondheim, Norway.

[8] S. Zardari . Software Risk Management. Proceedings of

the 3rd International Conference on Information

Management and Engineering. pp. 375-379. (2009).

Kuala Lumpur, Malaysia.

[9] B. Shahzad, and S. A. Safvi. Risk Mitigation and

Managemen Scheme based on Risk Priority. Global

Journal of Computer Science and Technology, Vol. 10,

No. 4, pp. 108-113, (2010).

[10] M. Keil, P. E. Clue, K. Lyytinen, and R. S. Schmidt. A

framework for Identifying Software Project Risks.

Communications of the ACM, Vol. 41, No. 11, pp. 76-

83, (1998).

[11] T. Addison and S. Vallabh. Controlling Software Project

Risks: An Empirical Study of Methods used by

Experienced Project Managers. Proceedings of

SAICSIT. pp. 128-140. (2002) September 16-18. South

Africa

[12] B. Shahzad and J. Iqbal. Software Risk Management

Prioritization of Frequently Occurring Risk in Software

Development Phases using Relative Impact Risk Model.

Proceedings 2nd International Conference on

Information and Communication Technology. pp. 110-

115. (2007) December 16-17. IBA, Karchi.

[13] B. Shahzad, A. S. Al-Mudimigh. Ullah. Risk

Identification and Preemptive Scheduling in Software

Development Life Cycle. Global Journal of Computer

Science and Technology, Vol. 10, No. 2, pp. 55-63,

(2010).

[14] B. Shahzad and S. A. Safvi. Effective Risk Mitigation: A

User Prospective. International Journal of Mathematics

and Computers In Simulation, Vol. 2, No. 1, pp. 70-80,

(2008).

[15] B. Shahzad, I. Ullah, and N. Khan. Software Risk

Identification and Mitigation in Incremental Model.

Proceedings of the International Conference on

Information and Multimedia Technology. pp. 366-370.

(2009) December 16-18. Jeju Island, Korea.

[16] BIBLIOGRAPHY \l 1033 Cherry, K. (n.d.).

Correlational Studies. Retrieved May 25, 2014,

http://psychology.about.com/od/researchmethods/a/correl

ational.htm

[17] Islam, Sh. Software Development Risk Management

Model – agoal – driven approach. Phd thesis.

Technische Universit Munchen : Germany, (2011).

IJCATM : www.ijcaonline.org

