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ABSTRACT 

Ensuring thermal-uniformity in an integrated circuit chip is 

very essential for its correct operation. Thus, in the Network-

on-Chip (NoC) based system design as well, it is essential to 

attach cores of the application core graph to the routers in the 

topology graph so that thermal uniformity across the chip is 

maintained. However, the performance of the application 

should not be sacrificed to a great extent. Also, the CPU time 

needed to explore the overall search-space is quite high. This 

paper presents a tool to the designers to explore the search-

space in a controlled fashion. The designer can specify the 

communication cost degradation that can be tolerated and the 

amount of effort put in to identify the potential solutions. All 

non-dominated solutions (in terms of communication cost and 

temperature variance) are reported from which the designer 

can choose the appropriate one for implementation.  

General Terms 

Thermal-aware application mapping, Heuristic, Network-on-

Chip 

Keywords 
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1. INTRODUCTION 
In recent years, power density in processor has doubled every 

three years. This rate is expected to increase further within 

next one or two generations, due to the higher rate of 

shrinking feature size, increasing transistor count, and faster 

frequency scaling, compared to the reduction in operating 

voltage [1]. High-performance circuits consume large amount 

of power due to their increased bandwidth requirement, higher 

frequency of operation, and higher level of system integration. 

A good amount of consumed power is converted directly into 

dissipated heat. Such a system must be designed to ensure 

good thermal behavior of the chip, even when the maximum 

power is dissipated by it. A major concern in today’s system 

design is the thermal heating of ICs. As Network-on-Chip 

(NoC) consists of different cores, each having its own power-

profile, area, frequency of operation etc, it results in non-

uniform heating of the chip. This may result in delay variation 

across the chip. This not only affects circuit performance but 

also decreases their reliability. Hence, ensuring thermal 

uniformity across the chip is a necessity. Excessive localized 

heating occurs much faster than chip-wide heating. Since 

power dissipation is non-uniform across the chip, this leads to 

the creation of thermal hotspots that can cause timing errors or 

even physical damage. One solution to this problem is the 

usage heat sink and some other cooling techniques. As a 

result, various cooling solutions have been proposed in the 

literature. As power consumption increases, there is a non-

linear relationship between the cooling capabilities and the 

cost of the solution [2]. Apart from heat sink and cooling 

strategies, another solution to the problem is the placement of 

cores – the placement should be guided not only by their 

communication requirements, but also their temperature 

profile. 

A major challenge in thermal uniformity-aware NoC based 

system design is to determine the association of routers of the 

fabric to the cores of an application. An application consists 

of a set of tasks, each of which is implemented by an IP core. 

As the tasks need to interchange messages between 

themselves, so do the IP cores. After the cores participating in 

an application have been decided, the application can be 

represented in the form of a core graph [3], defined as 

follows. 

Definition 1: The core graph for an application is a directed 

graph,        with each vertex       representing a core 

and the directed edge         representing the 

communication between the cores    and    . The weight of 

edge      , denoted by         , represents the bandwidth 

requirement of the communication from     to    . 

On the other hand, the given NoC topology can be represented 

in the form of a topology graph [3]. 

Definition 2: The NoC topology graph is a directed graph 

       with each vertex       representing a node in the 

topology and the directed edge         representing a direct 

communication between the vertices     and    . The weight of 

the edge      , denoted as      , represents the bandwidth 

available across the edge      .  

A mapping of the core graph        onto the topology graph 

       is defined by the function,                      

                            . 

The function associates core    to router   . Naturally, 

assuming that at most one core can be attached to each router, 

mapping is defined only when        . The quality of such 

a mapping is defined in terms of the total 

                   of the application under this mapping. 

The communication between each pair of cores can be treated 

as flow of a single commodity               . The value 

of commodity   , corresponding to the communication 

between cores    and    is equal to        , the bandwidth 

requirement. If    is mapped to the router         and    is 

mapped to        , the set of all commodities         is 

defined as follows. 

                                                    (1) 

Also,  

                               
                     (2) 

The link between two individual routers    and    of the 

topology has a maximum bandwidth of      . The total 

commodity flowing through such a link should not exceed this 



International Journal of Computer Applications (0975 – 8887) 

Volume 99– No.2, August 2014 

9 

bandwidth. The quantity     
  indicating the value of 

commodity    flowing through the link         is given by, 

    
   

                                                        

                                                                                                      

     (3)  

where,            indicates the deterministic routing path 

between the router nodes   and   in the topology. Satisfaction 

of bandwidth limitations of individual links must be ensured. 

That is, all mapping solutions should satisfy the following 

relation. 

     
    

                                                        (4) 

If all bandwidth constraints are satisfied, the 

                   Tx of a mapping solution is given by, 

                
                                             (5) 

Here,                is the number of hops between the 

topology nodes   and  . For a deterministic shortest path 

routing,          corresponds to the minimum number of 

hops between the constituent nodes. Since 

                   is very much dependent on the 

mapping solution, the overall mapping problem is often 

formulated to optimize the                   , ensuring 

that the bandwidth constraints of all individual links are 

satisfied.                    affects the performance of 

the overall system and its energy consumption, as both of 

these factors are directly proportional to the total         . 

 

Fig.1. Thermal profile for TGFF graph G3 

(Communication-aware   mapping [7]) 

Communication cost = 107888.02 

Temperature variance = 146.83 

Peak Temperature = 462.06°K 

Several application mapping algorithms have been proposed 

in the literature to minimize the communication cost and 

energy consumption of NoC [4]. However, algorithms which 

minimize communication cost of the mapping may not 

consider the thermal effects, resulting in hotspots and high 

peak temperatures. It may also create very high temperature 

variance within the chip, resulting in uneven delay across the 

chip. This paper presents the design of our proposed mapping 

algorithm to minimize both communication cost and 

temperature variance for a given application. Temperature 

variance and peak temperature should be reduced with a 

limitation on permissible communication cost trade-off. Our 

mapping strategy has been developed for mesh topology, 

though it can very easily be extended to any other topologies. 

In the following, this scenario has been discussed with an 

example application core graph (named G3) generated using 

TGFF [5], the random task graph generator. The TGFF tool 

[5] have been used the to generate a few task graphs with    

cores. By varying bandwidth, number of start nodes and in-

out degree for nodes, different task graphs have been 

generated via TGFF. The bandwidths are varied from 

       to          for some graphs and        to 

        for other graphs. The in-out degrees of nodes are 

varied from 1 to 8 to generate both low and high 

communication graphs. Number of start nodes also varied to 

generate different graphs and to see the effect of mapping 

solutions upon them. The bandwidth values for the edges are 

also generated randomly to get heterogeneous communication 

behavior of cores. 64-core NoCs are implemented as 8×8. 

A thermal simulation using HotSpot tool [6] has been applied 

upon a communication-aware application mapping of the core 
graph (G3) using discrete Particle Swarm Optimization [7]. 

Power densities of the cores are generated randomly within 

10–60 (W/cm2) [8]. Router power values are calculated using 

their switching activities. Temperature profile of the 

communication-aware mapping of the application graph G3 

has been shown in Fig. 1. The resulting communication and 

temperature metrics are also noted in the figure. 

Here temperature variance is the summation of squared 

differences of individual tile temperatures from the average 

chip temperature. 

 

Fig.2. Thermal profile for TGFF graph G3 (Thermal 

uniformity-aware mapping) 

Communication cost = 119782.0 

Temperature variance = 110.78 

Peak Temperature = 455.53°K 

                   
  

                                  (6) 

Where,     = Temperature variance of chip 

       = Temperature of ith tile inside the chip 

     = Average temperature of chip 

 N = Total number of tiles inside the chip 

Peak temperature       is the maximum temperature of a tile 

inside the chip. 

                 , for i = 1, 2, …, N                                        (7) 

As shown in Fig.1, there is quite a large variation in 

temperature across the chip, almost 45°. Such a wide variation 

may create a non-uniform delay at different regions of the 

chip. This motivates us to go for a thermal uniformity-aware 

application mapping. The goal of the strategy is to reduce the 

temperature variance across the chip. Peak temperature of the 

chip also gets reduced in some cases. The temperature profile 

of thermal uniformity-aware mapping of G3 application 

benchmark obtained using the technique discussed in this 

paper is shown in Fig. 2. Temperature variance is reduced by 

almost 25%, but the communication cost increases by 11%. 

As shown in Fig. 2, the peak temperature is also reduced by 

1.5%. 



International Journal of Computer Applications (0975 – 8887) 

Volume 99– No.2, August 2014 

10 

This paper presents a thermal uniformity-aware application 

mapping strategy onto mesh-based NoC using a constructive 

heuristic to make the temperature profile uniform, as well as 

reduce the peak temperature with tolerable performance 

degradation. The salient features of the approach are as 

follows. 

1. A trade-off has been established between performance and 

temperature variance of the system. 

2. The technique is flexible in the sense that the user can set 

the tolerance limit for the communication cost in their 

design. The amount of effort the mapper employs (thus, 

the CPU time) is also controllable. 

The rest of the paper is organized as follows. Section 2 

surveys the works reported in the literature on NoC mapping 

techniques. Section 3 discusses the relevant issues in mapping 

algorithm design. Section 4 presents our proposed thermal 

uniformity-aware mapping algorithm. Section 5 embodies the 

results and analysis of the proposed approach. Conclusion is 

presented in Section 6. 

2. LITERATURE SURVEY 
To obtain optimum solution to the application mapping 

problems, several researchers have proposed Integer Linear 

Programming (ILP) based formulations [9–14]. While [9] 

attempts to minimize energy by shutting down certain 

communication links in NoC based chip multiprocessors 

(CMPs), a unified approach of energy efficient application 

mapping has been presented in [10] taking care of all the sub-

problems, such as, application mapping, operating voltage 

assignment, and routing. In [11], the existing ILP [10] has 

been extended to find a trade-off between computation and 

communication energy. In [12], factors that produce network 

contention have been analyzed. It proposes an ILP 

formulation for a contention-aware application mapping 

algorithm in tile-based NoC to minimize inter-tile network 

contention. In [13, 14], authors have presented ILP 

formulation for application mapping onto mesh based NoC to 

minimize energy consumption for different benchmarks.  

PMAP, a two-phase mapping algorithm for placing clusters 

onto processors has been presented in [15], where highly 

communicating clusters are placed on adjacent nodes of the 

processor network. In [3], NMAP, a mapping technique has 

been proposed with minimum path routing in the mesh 

architecture which satisfies the bandwidth constraint and 

minimizes the average communication delay. In [16, 17], 

GMAP, and PBB a branch and bound algorithm, have been 

proposed that map cores onto a tile-based NoC architecture 

satisfying the bandwidth constraint and minimizing the total 

energy consumption. MOCA, a two phase heuristic for low 

energy mesh based on-chip interconnection architecture has 

been proposed in [18]. A binomial IP mapping and 

optimization algorithm (BMAP) has been presented in [19] to 

reduce hardware cost of the on-chip network. Spiral, a 

mapping algorithm has been proposed in [20] which reduce 

the cumulative energy consumption of communication links 

and the overall system execution time. In [21], adaptive 

feedback control based NoC architecture with multiple 

voltage clocks for multiple islands has been proposed to 

minimize the power consumption by exploiting dynamic 

voltage-frequency scaling. Onyx, a bandwidth constrained 

application mapping has been presented in [22] to minimize 

the overall communication cost of NoC. CHMAP [23] is a 

chain-mapping algorithm that produces chains of connected 

cores in order to introduce a method for application mapping 

onto mesh-based NoC. CMAP [24] is a constructive 

application mapping algorithm that maps cores onto NoC 

minimizing total communication cost and energy. In [25], 

authors have taken NMAP [3] as their initial mapping 

solution. A branch-and-bound algorithm, as in [16], has been 

applied upon the NMAP mapping solution to arrive at a better 

solution. CastNet, an energy-aware application mapping and 

routing technique for NoC has been proposed in [26].  

A two-step Genetic Algorithm (GA) for mapping applications 

onto NoC has been proposed in [27], which reduces the 

overall execution time. A multi-objective Genetic Algorithm 

(MOGA) based application mapping technique has been 

proposed in [28], where one-one as well as many-many 

mapping between switches and tiles have been taken into 

consideration to minimize energy consumption and required 

link bandwidth. In [29], CGMAP, a genetic algorithm based 

application mapping technique has been proposed that uses 

the chaotic mapping operator instead of the random processes 

in GA. GAMR [30], a genetic algorithm based mapping and 

routing approach addresses a two phase mapping of IP cores 

onto NoC architecture and generates a deterministic dead-lock 

free minimal routing path for each communication to 

minimize the total communication energy and maximum link 

bandwidth of the NoC architecture. GBMAP, an evolutionary 

approach for mapping cores onto NoC architecture has been 

proposed in [31], which reduces energy consumption and total 

bandwidth requirement of NoC. PLBMR, a Particle Swarm 

Optimization (PSO) based two-phase application mapping 

algorithm proposed in [32] minimizes the NoC 

communication energy and allocates the routing path for 

balancing the link-load. A mapping technique based on 

discrete PSO has been presented in [33]. However, it only 

considers improvement over genetic algorithm based method 

and reports relative improvements only. In [34], a hybrid 

multi-objective algorithm has been proposed, where Dijkstra 

shortest path algorithm has been used to find the shortest path 

among communicating cores to satisfy the bandwidth 

constraints and then a multi-objective pareto based PSO 

technique is applied upon that to improve performance. 

PSMAP [35], a meta-heuristic strategy using PSO technique 

has been proposed to reduce both static and dynamic cost of 

NoC for mesh based application mapping. A discrete multiple 

PSO based mapping technique has been proposed [7] to 

optimize the performances using deterministic initial 

solutions. In [36], an Ant Colony Optimization (ACO) based 

algorithm has been proposed for application mapping onto 

NoC to minimize the bandwidth requirement. The results have 

been compared with random mapping techniques. 

The above mapping techniques do not consider the 

temperature effect during mapping. Temperature affects 

performance, power, and reliability of the system. A 

temperature-aware task mapping and scheduling technique 

has been proposed in [37], which maps tasks using a heuristic 

and a floorplanning tool to reduce the peak temperature. 

Power densities are expected to increase faster in future 

technologies, as the operating voltage no longer scales as 

quickly as it has. The International Technology Roadmap for 

Semiconductor (ITRS) Document (2003) [1] has projected 

very little change in operating voltage. A good amount of 

work has been proposed to design new packages that provide 

good heat removal capacity and arrange circuit boards to 

improve air flow. Chips are packaged with die placed against 

a spreader plate, often made of aluminium, copper or some 

other highly conductive material, which is in turn placed 

against a heat sink of aluminium or copper that is cooled by a 

fan [38]. On the thermal modeling of ICs, HotSpot [6] is an 

accurate and automated fast thermal estimation tool that 
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calculates transient temperature response, given the physical 

characteristics and power of units on the die. It is based on an 

equivalent circuit of thermal resistances and capacitances that 

correspond to micro-architecture blocks and essential aspects 

of the thermal package.  

Dynamic thermal management (DTM) for MPSoC or NoC 

refers to hardware and software strategies which work 

dynamically, at run-time, to control different IP cores 

operating temperature. On the other hand, in case of static 

thermal management (STM), generally the thermal 

management is performed off-line, before the application is 

run and at the time of application mapping. The DTM 

techniques for MPSoC or NoC have been proposed to reduce 

the thermal packaging and cooling costs. It controls 

overheating by keeping the temperature below a critical 

threshold. Computation migration and fetch toggling are 

examples of such techniques [38]. To overcome the 

limitations of worst case thermal management, a distributed 

dynamic thermal management scheme, called ThermalHerd 

has been proposed in [39], [40] for on-chip networks, which 

can dynamically regulate the network temperature profile and 

guarantee safe on-line operations with little performance 

impact. Many thermal management techniques have been 

proposed to reduce the overall power consumption of the chip. 

However, there are some localized temperature problems in 

NoC, referred to as hotspots. In [41], authors have proposed a 

hotspot prevention technique that dynamically reconfigures 

the functionalities at runtime across the IPs in order to balance 

the temperature profile. The temperature management with 

software techniques, especially OS-level task scheduling has 

been proposed in different literatures for both single and 

multi-core processors. A thermal aware dynamic OS-level 

work-load scheduling have been proposed in [42] to get better 

thermal profile with negligible performance overhead. In this 

technique, when temperature reaches the critical value, a 

heuristic is applied to distribute the workload for better 

temporal and spatial temperature distribution.  

In case of static thermal management, the thermal balancing is 

done before the application is run, that is, at the time of core 

placement, depending on communication requirement among 

cores of MPSoC or NoC and their temperature profile. The 

physical location of cores, the load of each core, and the 

communication across the cores of a NoC, contribute to the 

power consumption and are directly related to hotspots [43]. 

An IP virtualization and placement technique based on 

Genetic Algorithm (GA) has been proposed in [44] for regular 

NoC architectures, which attempts to achieve a thermal 

balance while minimizing the communication cost via 

placement. IP virtualization, which maps the logic processing 

unit onto processing elements (PEs), thus allowing the PE to 

virtually perform the computation and communication, affects 

the power consumption and the communication cost. The 

mapping problem formulated in [44] is a three-objective 

optimization problem – communication cost, energy 

consumption, and thermal balance. Communication cost and 

energy consumption are related to          of NoC. A 

pareto based mapping technique using Genetic Algorithm has 

been proposed in [45], which minimizes the average 

         and achieves thermal balance. In NoC, power is 

dissipated when packets traverse through switches and links. 

The dominating power consuming operations are buffer reads 

and writes, switching, routing decisions, channel allocation 

and link utilization. A systematic methodology, such as, 

application independent power-aware routing algorithm and 

buffer sizing for NoC, targeting temperature reduction has 

been proposed in [46]. This achieves significant peak 

temperature reduction. The cores having more communication 

volume should be mapped close to each other for 

minimization of communication cost and energy 

consumption. Because of high communication volume these 

cores have high temperature and easily cause creation of 

hotspot regions. A multi-objective ant colony algorithm 

(MOACA) has been proposed in [47] that maps IP cores onto 

mesh based NoC, which optimizes energy consumption and 

thermal balance. 

In some thermal management techniques, thermal balancing is 

done before the application is run as well as it includes some 

hardware and software strategies which work dynamically, at 

run-time, to control the operating temperature of different IPs. 

A temperature-aware thermal management technique has been 

proposed in [48] for thermal balancing of MPSoC. In this 

technique, authors have first performed an integer linear 

programming (ILP) based static task scheduling for 

minimization of energy consumption and reduction of 

hotspots. Then an OS-level dynamic scheduling as in [42] has 

been applied upon it to arrive at a better thermally balanced 

solution. A temperature-aware task mapping algorithm has 

been proposed in [49] to prevent hotspot in MPSoC platform. 

Next, uniform thermal distribution has been performed using 

adaptive multi-threshold values during run-time. In this 

technique, the algorithm keeps track of the temperature of the 

cores, and swaps the mapped tasks when the core temperature 

is relatively higher than average chip temperature. The cores 

may be switched off if they exceed an absolute maximum 

temperature. For power reduction in NoCs, different voltage-

frequency selection techniques have been proposed.  

The strategies proposed above come up with a single solution. 

Ideally, the synthesis process should be able to explore a large 

number of alternatives and report non-dominated solutions, 

when the solutions are judged from performance and thermal 

angles. This paper attempts to bridge the gap by generating a 

good number of solutions depending upon the amount of 

tolerable performance sacrifice and computational effort that 

the designer is ready to pay. The most suitable solution from 

this set can be chosen by the designer.  

3. RELEVANT ISSUES IN MAPPING 

ALGORITHM DESIGN 
A thermal uniformity-aware mapping strategy has to take care 

of both the resulting temperature distribution and the overall 

communication cost. A strategy attempting communication 

overhead reduction will try to put highly communicating cores 

close to each other, while thermal-aware strategies will 

attempt to put cores consuming high power, far away. The 

amount of emphasis to be put on either aspect will have its 

effect on the solution quality. In the following a discussion 

has been presented on the same, from the three different 

angles. 

A. Core sequencing – the order in which the cores should be 

picked up for mapping by the algorithm. 

B. Objective function formulation – the relative weight to be 

put on the two aspects of optimization. 

C. Communication cost tolerance – that allows the 

algorithm to explore solutions with more thermal 

uniformity around one with almost similar 

communication cost. 
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Table 1: Communication cost and temperature variance of different core sequencing strategies 

 

A. Core Sequencing 

Any heuristic mapping procedure essentially works with an 

ordering of cores (either implicitly or explicitly) to pick up the 

successive cores for mapping to the routers. Thus, a major 

challenge in the development of thermal-aware mapping 

strategy is to identify a technique to order the cores, so that 

the dual purpose of ensuring thermal uniformity and 

minimizing communication cost could be achieved. To evolve 

such a strategy, it’s first tried with the following three 

alternatives that put full emphasis on the power consumed by 

the cores, disregarding the communication requirements. 

Strategy 1: Sort cores in descending order of power 

consumption and map consecutive cores at close proximities. 

Strategy 2: Sort cores in descending order of their power 

consumption and try to map consecutive cores away from 

each other. 

Strategy 3: Alternately select one high power consuming core 

and a low power consuming one. Map consecutive cores in 

this order close to each other.  

To get the mapping solutions picking up cores in either of 

these strategies, a constructive algorithm has employed, 

similar to the initial population generation policy in [7]. Only 

the core ordering is depicted by the strategy. The results 

produced show very good improvement in thermal variation 

over a purely communication cost aware strategy. The 

communication-aware strategy uses the same algorithm, 

however, the cores are picked up in decreasing 

communication requirement order. The communication 

overhead increases significantly, in three strategies making all 

of them unacceptable (Table 1). However, this shows that the 

choice of core order affects the final solution significantly and 

warrants the development of a good ordering strategy. In the 

following, the strategy followed in this work has been 

presented. 

 

To identify a good sequence it proceeds as follows. First, it 

computes the sequence,      of cores sorted in descending 

order of their power consumption values. Communication cost 

of such a solution is quite high, compared to a 

communication-aware mapping (as demonstrated in Table 1). 

For an application with N cores, it next generates N 

sequences, each starting with a unique core. The sequence 

               is the sequence of cores in which the core, 

         appears as the first one. In such a sequence, the 

next core selected is the highest communicating one with the 

core         . In general, if already mapped ith cores from 

the sequence, the (i+1)th core is selected to be the highest 

communicating one with these ith cores. The procedure is 

illustrated in Procedure Find_Core_Sequence. 

For each of N sequences        , it computes distance      , 

defined as follows. 

                                        
 
            (8) 

where index(s, k) is the index of core k in sequence s. Thus, 

       is a measure of similarity between the 

sequences         (sequence with core i as the starting core) 

and       (decreasing order of power sequence). If the 

distance is high, sequence          is almost the opposite of 

the       sequence. If the distance is low,          almost 

resembles the       sequence. Both these sequences are 

unacceptable. Hence, it chooses the sequence which is equal 

or nearest to the average distance. Such a sequence will 

resemble a mix of high and low power consuming cores. This 

is expected to be beneficial for both thermal and 

communication cost minimization. The process has been 

described in procedure Find_Best_Sequence. 

 

 

 

 

TGFF 

Graphs 

Strategy-1 Strategy-2 Strategy-3 Constructive Mapping 

Comm. 

cost 

Temp. 

variance 

Peak 

temp. 

Comm. 

cost 

Temp. 

variance 

Peak 

temp. 

Comm. 

cost 

Temp. 

variance 

Peak 

temp. 

Comm. 

cost 

Temp. 

variance 

Peak 

temp. 

G1(64) 10623.10 126.50 454.14 13280.0 128.31 457.37 14744.40 157.84 460.15 6734.78 184.58 463.07 

G2(64) 137389.0 153.47 458.0 158329.0 111.65 453.56 192636.0 165.92 457.95 113653.0 185.38 462.43 

G3(64) 143073.0 151.05 458.04 152999.0 112.34 455.33 186612.0 153.51 457.92 109327.0 156.01 458.76 

G4(64) 56544.40 138.94 457.80 60123.40 172.77 462.92 64984.90 160.72 462.63 48765.40 174.17 463.79 

G5(64) 7912.20 134.93 457.78 8600.08 120.14 459.53 8567.50 171.78 464.25 5933.51 175.55 464.30 

G6(64) 55068.30 145.65 460.68 61470.10 115.29 455.81 66713.20 146.28 461.04 42086.60 146.98 461.08 

G7(64) 9639.14 173.82 436.72 12553.30 101.54 451.94 14134.80 174.26 464.02 6259.47 179.78 465.55 
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Input: Core graph G, 
Output: Core sequences Nseq 
      
 While all cores are not selected as staring core do 

         Select core core_num 
          Count = 0 
          Nseq [core_num][Count] =core_num  
           While there exists unselected cores in G do 
               Count ++ 
               Let (Ci, Cj) be the edge width highest  
               communication requirement  
               such that exactly one of ci and cj is  
               already selected 
               Set c= ci if Cj is already selected Else Set c=cj 
              Nseq [core_num]=c 
              Mark c selected    

                                       
          

    

                             

                           Core sequence according to 

decreasing power consumption Pseq 
                          
      
 Avgdist = 0 
 For each sequence Nseq[i] do 

                                         
 
    

                                  
     

 
 

        
          
    
                          do 

                                  
               

                        
       
    

        
Return                  

    

B. Objective Function Formulation 

The algorithm gives weight to the temperature variance and 

communication cost of a solution, in order to explore the 

search space by using the following cost function. 

        
    

     
          

         

         
                   (9)                                      

where,       Temperature variance of the mapping 

                   Temperature variance when wt = 1 

 Comm_Cost = Communication cost of mapping 

Best_cost = Communication cost of mapping when   wt = 0 

 

The value wt=1 puts full emphasis on the temperature 

variance minimization, while wt=0 emphasizes 

communication cost reduction. Our algorithm produces a set 

of solutions corresponding to different weights. The designer 

has the option to select any one from the reported solutions. 

More the number of wt values explored, higher will be the 

execution time of the algorithm. In order to limit it, user needs 

to input the parameter Effort (the number of different wt 

values to be explored). The wt values are updated as, 

      
 

        
                                            (10) 

The value Effort = 0 explores two values of wt (0 and 1). 

C. Communication Cost Tolerance 

One problem with the cost function in eq. (9) is that it 

performs a trade-off between improvement in temperature 

variance and degradation in communication cost. Since the 

designer may not be willing to have solutions with high 

communication costs (even though the thermal behavior is 

very good), it is desirable to have another degree of control 

over communication cost degradation. The parameter 

tolerance_limit is the allowed percentage degradation in 

communication cost that the user is ready to sacrifice with 

respect to a fully communication-aware mapping (that is, wt = 

0). To take this into consideration, the algorithm first 

performs a pure communication-aware mapping. In 

subsequent runs, the algorithm considers candidate solutions 

with communication costs within the tolerance limit of this 

mapping only. 

4.  MAPPING ALGORITHM 
The algorithm starts with wt = 0, which optimizes only the 

communication cost. Next, mapping is done with wt = 1, 

which optimizes only the temperature variance having 

communication cost degradation within the tolerance limit. 

Now, two solutions can be – one with reduced communication 

cost and the other with reduced temperature variance. Next, it 

find solutions intermediate to these values. First it selects the 

core sequence using the procedure Find_Best_sequence. The 

number of solutions produced by the algorithm is dependent 

on the Effort value provided by the user. If Effort is less, 

algorithm iterates for less number of times exploring small 

number of solutions. If Effort is more, the algorithm will 

iterate for more number of times, exploring more solutions. 

Each time the algorithm iterates, it uses a different value of 

wt. As Effort increases, algorithm tries to find good solutions 

using different wt values. Finally it outputs all non-dominated 

solutions. A non-dominated solution is one which is better 

than all others in either the communication cost or the 

temperature variance. The designer can select any of these 

solutions for mapping.  

Algorithm Map_Graph calls the function 

Do_Mapping_Cal_Cost to obtain all non-dominated mapping 

solutions generated by putting the first core in a given 

sequence onto each of the router positions. The solutions are 

produced via the function Find_Mapping. Once all such 

solutions have been generated, Do_Mapping_Cal_Cost 

reports only the non-dominated ones for the perusal of the 

designer. 

The procedure Find_Mapping finds mapping of core graph G 

onto topology graph P. This procedure takes starting core and 

starting router position to start mapping. It maps the first core 

to the starting router position provided. It selects next core 

from the Nseq[start_core] sequence and finds positions nearby 

to the already mapped cores. It constructs the set of positions 

consisting of all router positions, one-hop away from any of 

the mapped cores. The communication costs for each of these 

positions is evaluated (using function Evaluate_Positions) and 

the router positions giving minimum communication cost are 

copied into the set Min_Postions. If the set Min_Positions 

contains a single entry, the corresponding router position is 

taken to be the Best_Position for the core. Otherwise, the 

procedure Predict_Best is called to get the best position.  The 

procedure Predict_Best attempts to distinguish between the 

router positions in Min_Positions set. To evaluate the fitness 
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of one such router position in Min_Positions, it places the 

core under consideration at that position and then continues to 

place the remaining cores in G with the core under 

consideration placed at the candidate router position. Fitness 

is computed as a weighted sum of temperature variance and 

communication cost. However, only these solutions qualify 

for fitness calculation for which the degradation in 

communication cost is within the tolerance limit from 

Best_cost (communication cost corresponding to a totally 

communication-aware mapping). The function returns the best 

position which is suitable for optimizing either the 

communication cost, or the temperature variance, or both. 

Mapping continues in similar fashion with remaining cores. 

Function Compute_comm_cost computes the communication 

cost of the mapping produced using eq. (5) (Section I). The 

procedure Find_Thermal_Cost computes the temperature 

profile of the NoC using the power trace and the chip layout. 

The tool HotSpot [6] has been used to generate the 

temperature map. Temperature variance and peak are 

calculated from the generated temperature information. 

                     

                                                           

                     

                            

                                                     

      

                                                       
         
                                                                 

                                       

                

 

                                       

                

 

                                                       
                                   
                                             
                        
                                 
              
     
                                             
              
     
                         do 

      
 

        
 

                                             

              
    

Procedure:                     

Input: Core graph G, Topology Grapg P 
           Start_Core: with which core mapping should start 
           flag: which optimization should be achieved 
           wt: weight for optimization of objective function 
Output: Minimum value of fitness Min_val, Best mapping 
solution Best_mapping enum optimization flag 
Begin 
 For each router position u of P do 
          Mark all cores of G as unmapped 
          Min_val =   
          Best_mapping =   

          Mapping =Find_mapping (G,P,u,Start_core) 
          If (flag==Cost_Opt || flag==Both_Opt) 
                  Cost=Compute_Comm_cost(Mapping, G) 
          If(flag==Temp_Opt || flag==Both_Opt) 
                 Tvar=Find_Thermal_Cost(Mapping, Core_Power); 
      End For 
     Output all non-dominated mapping solutions 
End 
                        
 
                                     

                                                        
                                                 

                                                            
                                    
      

                                  
                          
                                         
      c=Next core from the Nseq[Start_Core] 
        Position=set of position in P with one hop  
                          distance from already mapped  
                           positions 
       Evaluate_Positions (Positions) 
       Min_Positions = Set of Positions with minimum   
                                       communication cost 
        If (cardinality of set Min_Positions == 1) 
                     Best_Position = Min_Positions [0] 
       Else 
                    Best_Position = Predict_best(G,P,Min_ 
                                                   Positions, Start_Core) 
       End If 
       Mapping[Best_position] = c 
       Mark c mapped 
          
               

    

                        

                                                           
                                                      
                            

                                                            
      

Set                /* Holds the cores marked  
                                                     temporarily*/ 
For each position                    do 

                        /* Map c to p*/ 
                         
                                      
 
                                           
                                                    
                                                                 

                                        Router positions in P one hop  
                                                      away from mapped positions  
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           If         /* Communication-aware mapping*/                                              
                              
           Else /*       */ 

                              
              

   
             

/* Discard the 
solution*/ 

                                      
            Else /* Consider both communication and  
                  temperature factors*/ 
                                                   

                          
    

     
          

         

         
  

                Set fitness of         
                  
      End If 
                                            
             
                                                
                           
    

                            

                                       
                                  

                                            
      

                          
                               /* Using the tool    
                                                              HotSpot 5.01*/ 
                                
            

    

 

5. SIMULATION RESULTS 
HotSpot 5.01 [6] has been used to generate the temperature 

profile after mapping the cores onto the routers of a NoC. 

HotSpot requires some basic input files, such as, floor plan of 

the given architecture and the power consumption profile of 

each block to generate the temperature profile. Hotspot 

generates temperature profile using these values and 

parameters specified in a configuration file. The important 

parameter values for configuration are mentioned in Table 2. 

The file generated by HotSpot tool is inspected for 

temperature variance and peak temperature of the chip. The 

model used for simulation in HotSpot is the block model. 

Power consumption of the cores are generated randomly 

between 10-60 (W/cm2) [8] and router power values are 

calculated by their switching activities. Temperature variance 

is calculated using eq. (6), and the peak temperature using eq. 

(7). 

This algorithm has been tested on several graphs and results 

have been noted. First, it has calculated results for different 

tolerance and Effort values for application core graphs 

generated by TGFF [5]. Table 3 summarizes the results. 

Fig. 3 shows the solutions generated by different Efforts as 

shown in Table 3 for different tolerance values. From Fig. 3, it 

can be noted that in case of 5% and 10% tolerances, there is a 

significant difference over temperature variance but limited 

number of solutions are generated due to less tolerance 

allowed for communication cost. As shown in Fig. 4, in case 

of 20% tolerance, the solution points are parabolic in nature,  

 

 

Table 2. HotSpot parameters 

Chip Specifications 

Chip thickness in meter 0.00015 

Silicon thermal conductivity in W/(m-K) 100.0 

Silicon specific heat in J/(m3-K) 1.75×106 

Temperature threshold for DTM (Kelvin) 354.95 

Heat Sink Specifications 

Convection capacitance in J/K  140.4 

Convection resistance in K/W 0.1 

Heat sink side in meter 0.06 

Heat sink thickness in meter 0.0069 

Heat sink thermal conductivity in W/(m-K) 400.0 

Heat sink specific heat in J/( m3-K) 3.55×106 

Heat Spreader Specifications 

Spreader side in meter  0.03 

Spreader thickness in meter 0.001 

Heat spreader thermal conductivity in W/(m-K) 400.0 

Heat spreader specific heat in J/( m3-K) 3.55×106 

Interface Material Specifications 

Interface material thickness in meter 2.0×105 

Interface material thermal conductivity in W/(m-

K) 

4.0 

Interface material specific heat in J/( m3-K) 4.0×106 

 

which is required for such an optimization. There is a good 

difference in temperature variance as well as communication 

cost. For 30% tolerance the solution quality does not improve 

over 20%. This happens due to creation of large number of 

intermediary solutions which appear to be promising at the 
time of their generation but do not yield good complete 
solutions. Fig. 5 shows the CPU time for different tolerance 

values with Efforts 7. It can be noted that CPU time increases 

with increase in tolerance values. From 20% to 30%, there is a 

stiff increase in CPU time. However, from 5% to 20% 

tolerance there is almost a linear increment of the CPU time 

requirement. Therefore, from Fig. 4 and Fig. 5, choosing 20% 

tolerance appears to be a good trade-off between solution 

quality and CPU time. 

Hence, it has chosen 20% tolerance value for all subsequent 

results. Effort also plays important role in finding good 

solutions. As Effort value increases, algorithm finds more 

number of good solutions. Table 4 shows the communication 

cost, corresponding temperature variance and peak 

temperature for different TGFF application graphs with 

different Effort values for 20% tolerance. 

From Table 4, it can be noted that for Effort 7, healthy 

solutions have been found. Fig. 6 shows solutions for different 

Effort values. For less Effort, very few solutions are generated 

and also the solution quality is poor. The observation is more 

prominent in Fig. 7. However running the algorithm for 

higher Effort is time consuming. Fig. 8 shows the CPU time 

behavior for different efforts. From this, it is clear that as 

Effort increases, CPU time also increases almost linearly. 

Table 5 notes comparison among communication cost 

optimization (wt=0), temperature optimization (wt=1) and 

both communication cost and temperature optimization 

(wt=0.5) of different TGFF graphs after mapping onto NoC.  
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Effort 

  

Tolerances of Communication Cost in % 

5 10 20 30 

(Comm. Cost, 

Temp. Variance) 

(Comm. Cost, 

Temp. Variance) 

(Comm. Cost, 

Temp. Variance) 

(Comm. Cost, 

Temp. Variance) 

1 
(113895, 147.09) 

(114577, 140.39) 
(114269, 127.01) 

(111572.0, 134.44) 

(114247.0, 118.33) 

(119782.0, 110.78) 

(123274.0, 108.35) 

(116063, 120.58) 

(116536, 116.54) 

(116983, 115.56) 

(117029, 114.43) 

(126949, 112.70) 

(130985, 107.35) 

3 

(112058, 154.06) 

(113895, 147.09) 

(114577, 140.39) 

(112715, 132.02) 

(114269, 127.01) 

(111572.0, 134.44) 

(112572.0, 124.54) 

(114247.0, 118.33) 

(118768.0, 111.64) 

(119782.0, 110.78) 

(122655.0, 108.96) 

(123274.0, 108.65) 

(110948, 130.20) 

(126949, 112.70) 

(130060, 112.44) 

5 

(112058, 154.06) 

(113895, 147.09) 

(114577, 140.39) 

(112715, 132.02) 

(114269, 127.01) 

(115379, 126.74) 

(111387.0, 136.74) 

(111572.0, 134.44) 

(112572.0, 124.54) 

(112769.0, 123.10) 

(114247.0, 118.33) 

(118768.0, 111.64) 

(119782.0, 110.78) 

(122655.0, 108.96) 

(123274.0, 108.65) 

(110078, 137.13) 

(126949, 112.70) 

(130060, 112.44) 

7 

(112058, 154.06) 

(113895, 147.09) 

(114577, 140.39) 

(111599, 136.15) 

(114269, 127.01) 

(115825, 120.24) 

(119093, 117.08) 

(111387.0, 136.74) 

(111572.0, 134.44) 

(112572.0, 124.54) 

 (112769.0, 123.10) 

(114247.0, 118.33) 

(118768.0, 111.64) 

(119782.0, 110.78) 

(122655.0, 108.96) 

(123274.0, 108.65) 

(110078, 137.13) 

(120576, 114.35) 

(126949, 112.70) 

(130060, 112.44) 

 

Table 3. Different tolerance values and Effort values for TGFF graph G3 (64 cores) 
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From the table it can be noted that improvement in 

temperature variance is quite high, up to 30% for most of the 

cases and degradation in communication cost is limited to 

20% as specified by the user. 

Table 6 notes the communication cost and temperature 

variance of different TGFF graphs after mapping onto NoC 

using different mapping techniques. Here also it can be noted 

that our proposed thermal uniformity-aware algorithm using 

temperature optimization technique and combined 

temperature and communication cost optimization technique 

produce better temperature variance than other mapping 

techniques. Last row of Table 6 shows the communication 

cost of different mapping techniques normalized with respect 

to [7]. It also shows temperature variances normalized with 

respect to the thermal uniformity-aware mapping with weight 

wt = 1.0. The same information has also been plotted in Fig. 9 

and 10 respectively. The thermal mapping produces good 

saving in temperature variance compared to the other mapping 

methodologies. 

6. CONCLUSION 

This paper proposed a thermal uniformity-aware application 

mapping strategy to reduce temperature variance as well as 

peak temperature with tolerable communication cost 

degradation. In this mapping technique a trade-off has been 

established between performance and temperature variance of 

the system. The technique is flexible in the sense that the user 

can set the tolerance limit for the communication cost 

degradation in their design. The parameter Effort can also be 

varied to generate more number of solutions. Thus, it provides 

a performance- and thermal-aware application mapping tool 

for NoC design. As this problem is NP-complete, evolutionary 

based optimization technique can be used for better result. 
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Table 4. Results for different TGFF graphs and different Effort values for 20% tolerance 

 

TGFF 

Applicatio

n  Graphs 

Effort 1 Effort 3 Effort 5 Effort 7 

(Comm. Cost, Temp. 

Variance,Peak Temp.) 

(Comm. Cost, Temp. 

Variance, Peak Temp.) 

(Comm. Cost, Temp. 

Variance, Peak Temp.) 

(Comm. Cost,Temp. Variance, 

Peak Temp.) 

G1 

(64 cores) 

(7284.27, 134.29, 460.38) 

(7886.17, 125.81, 457.57) 

(6988.64, 170.13, 462.83) 

(7284.27, 134.29, 460.38) 

(7886.17, 125.81, 457.57) 

(6988.64, 170.13, 462.83) 

(7284.27, 134.29, 460.38) 

(7886.17, 125.81, 457.57) 

(6988.64, 170.13, 462.83) 

(7284.27, 134.29, 460.38) 

(7326.99, 133.70, 459.77) 

(7886.17, 125.81, 457.57) 

G2 

(64 cores) 

(133467.0, 160.73, 459.53) 

(134613.0, 152.16, 459.26) 

(132452.0, 174.83, 459.84) 

(133467.0, 160.73, 459.53) 

(134613.0, 152.16, 459.26) 

(132452.0, 174.83, 459.84) 

(133467.0, 160.73, 459.53) 

(133753.0, 155.15, 459.37) 

(132452.0, 174.83, 459.84) 

(133085.0, 165.06, 459.62) 

(134613.0, 152.16, 459.26) 

G3 

(64 cores) 

(111572.0, 134.44, 458.39) 

(114247.0, 118.33, 456.09) 

(119782.0, 110.78, 455.53) 

(123274.0, 108.65, 454.15) 

 

(111572.0, 134.44, 458.39) 

(112572.0, 124.54, 458.19) 

(114247.0, 118.33, 456.09) 

(118768.0, 111.64, 456.06) 

(119782.0, 110.78, 455.53) 

(122655.0, 108.96, 454.31) 

(123274.0, 108.65, 454.15) 

(111387.0, 136.74, 458.47) 

(111572.0, 134.44, 458.39) 

(112572.0, 124.54, 458.19) 

(112769.0, 123.10, 457.68) 

(114247.0, 118.33, 456.09) 

(118768.0, 111.64, 456.06) 

(119782.0, 110.78, 455.53) 

(122655.0, 108.96, 454.31) 

(123274.0, 108.65, 454.15) 

(111387.0, 136.74, 458.47) 

(111572.0, 134.44, 458.39) 

(112572.0, 124.54, 458.19) 

(112769.0, 123.10, 457.68) 

(114247.0, 118.33, 456.09) 

(118768.0, 111.64, 456.06) 

(119782.0, 110.78, 455.53) 

(122655.0, 108.96, 454.31) 

(123274.0, 108.65, 454.15) 

G4 

(64 cores) 

(54634.80, 173.02, 462.39) 

(54680.80, 150.33, 462.30) 

(55644.10, 141.60, 461.43) 

(57647.20, 122.10, 459.43) 

 

(54634.80, 173.02, 462.39) 

(54680.80, 150.33, 462.30) 

(54829.80, 144.73, 462.24) 

(55007.30, 141.70, 462.19) 

(56206.30, 141.12, 461.09) 

(57647.20, 122.10, 459.43) 

(53830.80, 175.55, 462.58) 

(54680.80, 150.33, 462.30) 

(54829.80, 144.73, 462.24) 

(55007.30, 141.70, 462.19) 

(56206.30, 141.12, 461.09) 

(57647.20, 122.10, 459.43) 

(53152.60, 176.11, 463.05) 

(54680.80, 150.33, 462.30) 

(54829.80, 144.73, 462.24) 

(55007.30, 141.70, 462.19) 

(56206.30, 141.12, 461.09) 

(57647.20, 122.10, 459.43) 

G5 

(64 cores) 

(6833.53, 143.81, 461.82) 

(6836.40, 142.01, 461.59) 

(6939.91, 140.55, 460.34) 

(7101.82, 139.06, 460.26) 

(6811.29, 162.49, 461.92) 

(6826.01, 144.21, 461.91) 

(6939.91, 140.55, 460.34) 

(7101.82, 139.06, 460.26) 

(6811.29, 162.49, 461.92) 

 (6826.01, 144.21, 461.91) 

(6939.91, 140.55, 460.34) 

(7101.82, 139.06, 460.26) 

(6787.21, 172.09, 462.61) 

(6811.29, 162.49, 461.92) 

(6826.01, 144.21, 461.91) 

(6939.91, 140.55, 460.34) 

(7101.82, 139.06, 460.26) 

G6 

(64 cores) 

(43782.10, 132.77, 459.31) 

(44984.50, 115.57, 454.25) 

(46534.80, 113.60, 455.03) 

(48480.10, 108.98, 453.23) 

(42695.30, 145.45, 460.33) 

(43782.10, 132.77, 459.31) 

(44180.0, 123.61, 458.84) 

(44885.60, 117.11, 456.01) 

(48480.10, 108.98, 453.23) 

(42695.30, 145.45, 460.33) 

(43184.30, 140.04, 460.14) 

(43245.10, 139.13, 460.06) 

(44791.0, 121.87, 456.65) 

(44885.60, 117.11, 456.01) 

(48480.10, 108.98, 453.23) 

(42695.30, 145.45, 460.33) 

(43184.30, 140.04, 460.14) 

(44180.0, 121.61, 458.84) 

(44885.60, 117.11, 456.01) 

 (46534.80, 113.60, 455.03) 

(48480.10, 108.98, 453.23) 

G7 

(64 cores) 

(7153.55, 120.92, 457.30) 

(7203.07, 118.88, 456.77) 

(7288.39, 118.20, 456.71) 

(6868.89, 177.09, 465.42) 

(6982.50, 133.17, 459.82) 

(7153.55, 120.92, 457.30) 

(7203.07, 118.88, 456.77) 

(6868.89, 177.09, 465.42) 

(6982.50, 133.17, 459.82) 

 (7045.54, 130.32, 459.10) 

(7153.55, 120.92, 457.30) 

(7203.07, 118.88, 456.77) 

(6868.89, 177.09, 465.42) 

(6982.50, 133.17, 459.82) 

(7108.58, 127.96, 458.04) 

(7153.55, 120.92, 457.30) 

(7203.07, 118.88, 456.77) 

(7288.39, 118.20, 456.71) 
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Table 5. Optimization results for different graphs with 20% tolerance 

TGFF 

Graph

s 

Comm. Cost 

Optimization  

(wt = 0) 

Temp. 

Optimization (wt = 

1.0) 

Comm. Cost and 

Temp. 

Optimization (wt = 

0.5) 

% of change for wt=1.0 

w.r.t. wt=0 

 

% of change for  

wt=0.5 w.r.t. wt=0 

Comm. 

Cost 

Temp. 

Varianc

e 

Comm. 

Cost 

Temp. 

Varianc

e 

Comm. 

Cost 

Temp. 

Varianc

e 

Comm. 

Cost 

Degradatio

n 

Temp. 

Variance 

Improveme

nt 

Comm. 

Cost 

Degradatio

n 

Temp. 

Variance 

Improveme

nt 

G1 6734.78 184.58 7886.17 125.81 7886.17 125.81 17.10% 31.84% 17.10% 31.84% 

G2 

113653.

0 185.38 

133753.

0 155.15 

133085.

0 165.06 17.69% 16.31% 17.10% 10.96% 

G3 

109327.

0 156.01 

123274.

0 108.65 

119782.

0 110.78 12.76% 30.36% 9.56% 28.92% 

G4 

48765.4

0 174.17 

57647.2

0 122.10 

57647.2

0 122.10 18.21% 29.90% 18.21% 29.90% 

G5 5933.51 175.55 7101.82 139.06 6939.91 140.55 19.69% 20.79% 16.96% 19.94% 

G6 

42086.6

0 146.98 

48480.1

0 108.98 

44885.6

0 117.11 15.19% 25.85% 6.65% 20.32% 

G7 6259.47 179.78 7153.55 120.92 7153.55 120.92 14.28% 32.74% 14.28% 32.74% 

 

Table 6. Communication cost and temperature variance of different mapping techniques 

TGFF 

Graphs 

NMAP 

[3] 

LMAP 

[50, 51] 

PSO based Mapping 

[7] 

Comm. Cost and 

Temp. 

Optimization (wt = 

0.5) 

Temp. Optimization 

(wt = 1.0) 

Comm. 

cost 

Temp. 

varianc

e 

Comm. 

cost 

Temp. 

varianc

e 

Comm. 

cost 

Temp. 

varianc

e 

Comm. 

cost 

Temp. 

varianc

e 

Comm. 

Cost 

Temp. 

Varianc

e 

G1 9207.50 149.66 7441.40 165.40 6734.78 184.12 7886.17 125.81 7886.17 125.81 

G2 
132292.3

8 
185.73 

120209.5

9 
159.43 

107741.9

9 
185.52 

133085.

0 
165.06 

133753.

0 
155.15 

G3 
116337.8

1 
143.69 

118879.4

4 
193.06 

107888.0

2 
146.83 

119782.

0 
110.78 

123274.

0 
108.65 

G4 55244.17 123.79 49694.11 155.94 45598.64 159.95 
57647.2

0 
122.10 

57647.2

0 
122.10 
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Fig 9: Normalized communication cost of different mapping techniques 

 

 

Fig 10: Normalized temperature variance of different mapping techniques
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