
International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

29

A Fine Tuned Hybrid Implementation for Solving

Shortest Path Problems using Bellman Ford

Gaurav Hajela

Department of Computer Science and Engineering
Maulana Azad National Institute of Technology

Bhopal, India

Manish Pandey
Department of Computer Science and Engineering

Maulana Azad National Institute of Technology
Bhopal, India

ABSTRACT

In this paper a hybrid implementation for Bellman-Ford to

solve shortest path problems is proposed using OpenCL. Here

first parallel implementation for Bellman-Ford for single

source shortest path (SSSP) problem and all pair shortest path

(APSP) are analyzed on CPU and GPU and based on this

analysis work is divided among CPU and GPU and hybrid

implementation is done. As proper resource utilization is done

here we have termed it a fine tuned implementation. We have

got considerable speedup of 2.88x over parallel

implementation on GPU for SSSP and 3.3x over parallel

implementation of Bellman-Ford for APSP on GPU.

Keywords

Shortest path problem , OpenCL , Graphical processing

unit(GPU).

1. INTRODUCTION
In this world of fastest growing technology, computers are

becoming more powerful than ever before. So it’s a

challenging task to make efficient utilization of all the

resources within a machine. In early days only CPU are

involved in programming but now a day GPU which are

termed as General Purpose Graphical Programming Unit

(GPGPU) are also available as one of the resource which can

be equally utilized and can provide high performance at a

reasonable cost. GPU are well suited for applications which

involve the use of matrices due to its architecture.

One of the applications is shortest path problems on graph

which deals with matrices. Shortest path problems finds lot of

applications in real world like VLSI design, finding directions

between physical locations like Google maps, wechat. This

paper deals with Bellman-Ford algorithm to find shortest path

in a graph. This algorithm works on negative edges also

where majority of algorithms fail and is capable of detecting

negative cycle in graph. So this paper aims to provide hybrid

implementation of Bellman-Ford which will utilize both CPU

and GPU using a standard framework called OpenCL.

OpenCL provides a way to utilize heterogeneous resources in

a system and one can control the execution on particular

hardware. CPU and GPU can be selected explicitly for

execution using OpenCL. The piece of code which controls

the execution is called host code and that which run in parallel

on CPU or GPU is called kernel.

1.1 Bellman-Ford Algorithm
Bellman-Ford algorithm aims to find shortest path from a

single source to all other vertices in graph. It can also be used

to find APSP by applying it to all the vertices in graph.

Bellman-Ford algorithm is shown in Algorithm 1.

Algorithm BellmanFord (s,Dist,Cost,n)

{

1. for i=1 to n do

2. Dist[i] = Cost[s,i];

3. End for

4. for k=1 to n-1 do

5. for each (u,v) in E do

6. Distk[v] = min (Distk-1[v], Distk-1[u] +

Cost[u,v])

7. End for

8. End for

}

Algorithm 1: Algorithm for Bellman-Ford.

Where Cost contains adjacency matrix representation of graph

and is a n*n matrix for given graph G with n vertices,E the set

of edges and V set of vertices. Dist matrix will initially

contain direct edges from source vertex to all other vertices in

the graph and after successful completion it will contain

shortest path length from source to all the other vertices in set

V. Distk[v] will contain shortest path length from ‘s’ to ‘v’

going through atmost ‘k’ intermediate vertices.

Organization of the paper: In Section 2, the previous

modified algorithms have been discussed along with the

improvements made on Bellman Ford algorithm by different

authors. In Section 3 hybrid implementations of Bellman-Ford

algorithm for SSSP and APSP are explained along with host

and kernel algorithm. Comparative analysis and results are

shown in Section 4.

2. RELATED WORK
Bellman Ford is introduced by Richard Bellman and Lester

Ford Jr. in 1958 since then several modifications and

improvements were made on this algorithm. One of the

famous modifications include Yen’s modification in 1970

[5].Other modifications include topological scan algorithm for

Bellman Ford [2] in 1993, which outperforms the standard

algorithm in most of the cases. A hybrid implementation of

Bellman Ford and Dijkstra’s algorithm is given which is

asymptotically better than Bellman Ford in [7]. In 2001, A.S.

Nepomniaschaya presented a STAR procedure for Bellman

Ford on a parallel system with vertical data processing

(STAR- machine) [3] and managed to reduce the complexity

to O(n2). In 2011, Michael J. Bannister and David Eppstein

[1] proposed a randomized variant of algorithm which is

improved by a factor of 2/3 over Yen’s modification(1970)

[4,5]; they have termed this speedup as randomized speedup.

Several parallel implementations on GPU for SSSP

algorithms were proposed. Aydın Buluc, John R. Gilbert and

Ceren Budak [8] have proposed parallel implementations for

SSSP and APSP using CUDA. A CUDA implementation for

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

30

Bellman_Ford is given in [13] and by making algorithm

suitable for parallelism they have got speedup of about 10x.

Recently, Andrew Davidson [9] have presented several work

efficient methods for SSSP problems and got considerable

speedup over serial implementation and other traditional GPU

implementations also.

The results of parallel implementation of Bellman-Ford for

SSSP and APSP in [15] were analyzed and on the basis of that

analysis the work between CPU and GPU is divided and

hybrid implementation for Bellman-Ford is proposed. This

paper aims at proper resource utilization by implementation

and which is clearly illustrated by graphs that it is a fine tuned

implementation.

3. HYBRID IMPLEMENTATION OF

BELLMAN-FORD

3.1 Single source shortest path (SSSP)

problem
Single source shortest path algorithm finds shortest path from

a source vertex to all other vertices in the graph. For a graph

of ‘n’ vertices there can be n*n possible pair of vertices

including same vertex set (v,v) which will be zero for simple

graph as self loop will not be there. So workgroup of (n*n)

will be suitable for SSSP. Each work item in workgroup will

represent a pair (u,v) where where u and v ϵ V.

As illustrated in [15] the parallel algorithm of Bellman-Ford

for SSSP got the speedup as shown in table1.First we will

analyze execution time of parallel implementation for SSSP

on CPU and GPU. From table 1 it is clear that GPU

implementation is nearly 4 times faster than that on CPU.

So we can say if for a particular value of ‘N’ GPU will take ‘t’

time then CPU will take ‘4t’. Then for N.x CPU will take

approximate x3.4t time as algorithm is of the order of O(n3)

and GPU will take approximately (1-x)3.t time. The main

objective of fine tuned implementation is to take such a value

of ‘x’ so that both the time becomes comparable to each other

that is:

x3.4t = α. (1-x)3.t

Both can be finely tuned if α reaches nearby 1. After testing

the implementation for different values of ‘x’, best results are

obtained when vertices are divided in the ratio 1:3.

So we will divide the work in ratio 1:3 among CPU and GPU

so both will take comparable time in parallel and overall

execution time will depend on the one which completes last.

So here for n vertices n/3 will be handled by CPU and 2n/3

will be handled by GPU. Host algorithm is shown in

algorithm 2.

Table 1: Speedup comparison with respect to serial

implementation on specified CPU for SSSP.

NO. OF

VERTICES

PARALLEL_CP

U

PARALLEL_G

PU

64 3 12

128 2.451 10.857

256 3.449 8.827

512 3.638 16.398

1024 3.755 17.378

2048 3.671 17.611

AVERAGE 3.335 13.843

Algorithm OpenCL_Hybrid_BellmanFord_SSSP

 {

1. For k from 1 to n-1 do

2. For all v in V such that (u,v) belongs to E and v

ranges from 0 to n/3 -1 in parallel do

3. Call

KERNEL_BELLMAN_SSSP_CPU(Cost,Dist,k,,W1)

4. For all v in V such that (u,v) belongs to E and v

ranges from n/4 to n in parallel do

5. Call

KERNEL_BELLMAN_SSSP_GPU(Cost,Dist,k,W2)

6. End for

}

Algorithm 2: Algorithm for host code of Hybrid Bellman

Ford for SSSP

Here W1 represent workgroup size which is {n,n/3} so ‘u’

will vary from 0 to n-1 and v from 0 to n/3 – 1 because we

want to assign only n/3 vertices to CPU. Algorithm for CPU is

shown in Algorithm 3.

KERNEL_BELLMAN_SSSP_CPU(Cost,Dist,k,W1)

{

 u = get_global_id(0)

 v = get_global_id(1)

 if k is odd then

 // synchronization is done here

 Dist[1][v] = min(Dist[0][v], combine(Dist[0][u] +

Cost[u][v]))

 if k is even then

 // synchronization is done here

 Dist[0][v] = min(Dist[1][v], combine(Dist[1][u] +

Cost[u][v]))

}

Algorithm 3: Algorithm for kernel of Bellman Ford for

SSSP

While W2 represent workgroup size for GPU which is

{n,2n/3} and algorithm for GPU implementation is

represented in algorithm 4. As first n/3 are handled by CPU so

on GPU we have taken n/3 as offset for v because W2 will

vary from 0 to 2n/3 -1.

KERNEL_BELLMAN_SSSP_GPU(Cost,Dist,k,W2)

{

 u = get_global_id(0)

 v = n/3 + get_global_id(1)

 if k is odd then

 // synchronization is done here

 Dist[1][v] = min(Dist[0][v], combine(Dist[0][u] +

Cost[u][v]))

 if k is even then

 // synchronization is done here

 Dist[0][v] = min(Dist[1][v], combine(Dist[1][u] +

Cost[u][v]))

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

31

}

Algorithm 4: Algorithm for kernel of Bellman Ford on

GPU for SSSP

3.2 All pair shortest path (APSP) problem
To calculate APSP using Bellman-Ford, SSSP will be called

for all the vertices in graph each will act as a source once.So

3D workgroup is used for solving APSP in [15].

As illustrated in [15] Bellman-Ford for APSP will got the

following speedup as shown in table 2.

Table 2: Speedup comparison with respect to serial

implementation on specified CPU for APSP

NO. OF

VERTICES

PARALLEL_CPU PARALLEL_

GPU

64 4.218 12

128 5.103 14.933

256 5.292 17.406

512 6.100 22.101

1024 7.300 26.300

AVERAGE 5.602 18.548

Similarly it is clear from the table 2 that GPU is nearly 3

times faster than CPU. So we have divided the algorithm

accordingly in ratio 1:3 among CPU and GPU on the basis of

equation explained in SSSP section. Host algorithm is shown

in algorithm 5.

Algorithm OpenCL_Hybrid_BellmanFord_APSP

{

1. For k from 1 to n-1 do

2. For all v in G such that (u,v) belongs to G and v

ranges from 0 to n/3 -1 in parallel do

3. Call KERNEL_BELLMAN_APSP_CPU(Cost,Dist,k,W1)

4. For all v in G such that (u,v) belongs to G and v ranges

from n/3 to n in parallel do

5. Call KERNEL_BELLMAN_APSP_GPU(Cost,Dist,k,W2)

6. End for

7. End for

 }

Algorithm 5: Algorithm for host code of Bellman Ford for

APSP

Here W1 represent workgroup size which is {n,n,n/4} so ‘u’

and ‘v’ will vary from 0 to n-1 and s from 0 to n/4 – 1 because

we want to assign only n/4 vertices to CPU. Algorithm for

CPU is shown in Algorithm 6.

KERNEL_BELLMAN_APSP_CPU(Cost,Dist,k,W1)

{

 u = get_global_id(0)

 v = get_global_id(1)

 s = get_global_id(2)

 offset = s*2*n

 if k is odd then

 // synchronization is done here

 Dist[1][v] = min(Dist(offset + [0][v]),

combine(Dist(offset + [0][u]) + Cost[u][v]))

 if k is even then

 // synchronization is done here

 Dist[0][v] = min(Dist(offset + [1][v]),

combine(Dist(offset + [1][u]) + Cost[u][v]))

}

Algorithm 6: Algorithm for kernel of Bellman Ford for

APSP for CPU

KERNEL_BELLMAN_APSP_GPU(Cost,Dist,k,W2)

{

 u = get_global_id(0)

 v = get_global_id(1)

 s = n/3 + get_global_id(2)

 offset = s*2*n

 if k is odd then

 // synchronization is done here

 Dist[1][v] = min(Dist(offset + [0][v]),

combine(Dist(offset + [0][u]) + Cost[u][v]))

 if k is even then

 // synchronization is done here

 Dist[0][v] = min(Dist(offset + [1][v]),

combine(Dist(offset + [1][u]) + Cost[u][v]))

}

Algorithm 6: Algorithm for kernel of Bellman Ford for

APSP for GPU

While W2 represent workgroup size for GPU which is

{n,n,3n/4} and algorithm for GPU implementation is

represented in algorithm 7. As first n/4 are handled by CPU so

on GPU we have taken n/4 as offset for v because W2 will

vary from 0 to 3n/4 -1.

4. COMPARATIVE ANALYSIS AND

RESULTS
All the OpenCL parallel implementations are tested on

following GPU and CPU:

AMD Radeon HD 6450(GPU): 2 Compute units, 625 MHz

clock, 2048MB Global Mem., 32KB Local Mem., 256 work

group size on a system having Intel Core i5 CPU 650 @ 3.2

GHz and 2048MB RAM with AMD APP SDK v2.8.

Implementations are done using using Visual Studio 2010

with OpenCL SDK 1.2. We have tested serial

implementations on the above specified CPU. We have tested

all our implementations on randomly generated graphs having

edge weights between -10 to 10 where bellman ford has

successfully detected negative cycles if present in graph. Rest

of the results are taken on graphs without negative cycle in

which we have considered kernel execution time only.

Comparative analysis of execution time of different variants

of algorithm is shown in Figure 1 and Figure 2. For parallel

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

32

implementations only kernel execution time is considered.

Speedup of different variants for SSSP and APSP is shown in

Table 3 and Table 4 respectively.

Table 3: Speedup comparison of hybrid implementation

with respect to parallel implementation on specified GPU

for SSSP

NO. OF VERTICES SPEED UP

64 1

128 1.4

256 3.44

512 2.19

1024 3.95

2048 5.32

AVERAGE 2.88

Table 4: Speedup comparison of hybrid implementation

with respect to parallel implementation on specified GPU

for APSP

NO. OF VERTICES SPEED UP

64 1.09

128 2.23

256 4.29

512 3.81

1024 5.06

AVERAGE 3.30

5. CONCLUSION AND FUTURE WORK
Fine tuned hybrid implementation proposed in this paper has

got considerable speedup of 2.88x over parallel

implementation on GPU for SSSP as both are assigned work

accordingly and have taken equivalent amount of time.

Similarly hybrid implementation for APSP has got speedup of

about 3.3x over parallel implementation on GPU. In future

focus will be to partition the algorithm for hybrid

implementation rather than dividing the vertices among CPU

and GPU. Partitioning algorithm among CPU and GPU can be

more efficient.

Figure 1: Comparative analysis of execution time of different variants of Bellman Ford for SSSP

64 128 256 512 1024 2048

SERIAL 12 76 821 6900 61293 480976

PARALLEL_GPU 1 7 93 421 3527 27311

HYBRID 1 5 27 192 891 5128

1

10

100

1000

10000

100000

1000000

E
x
ec

u
ti

o
n

 t
im

e(
m

S
ec

)

Comparision of execution time of different variants of Bellman-Ford with

Hybrid implementation

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

33

Figure 2: Comparative analysis of execution time of different variants of Bellman Ford for APSP.

6. REFERENCES
[1] Michael J. Bannister and David Eppstein , “Randomized

Speedup of the Bellman Ford Algorithm” in

arXiv:1111.5414v1 [cs.DS] 23 Nov 2011.

[2] Andrew V. Goldberg, Tomasz Radzik , A Heuristic

improvement of the Bellman Ford algorithm. Appl.

Math. Lett. Vol. 6, No. 3, pp. 3-6, 1993.

[3] A.S. Nepomniaschaya, An Associative Version of the

Bellman-Ford Algorithm for Finding the Shortest Paths

in Directed Graphs, V. Malyshkin (Ed.): PaCT 2001,

LNCS 2127, pp. 285–292, 2001.

[4] J. Y. Yen., An algorithm for finding shortest routes from

all source nodes to a given destination in general

networks. Quarterly of Applied Mathematics 27:526-530,

1970.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.

Stein. Problem 24-1: Yen's improvement to Bellman

Ford. Introduction to Algorithms, 2nd edition, pp. 614-

615. MIT Press, 2001.

[6] R. Bellman. On a routing problem. Quarterly of Applied

Mathematics 16:87-90,1958.

[7] Yefim Dinitz , Rotem Itzhak , Hybrid Bellman-Ford-

Dijkstra Algorithm.

[8] Aydın Buluc , John R. Gilbert and Ceren Budak ,

“Solving Path Problems on the GPU” , Journal Parallel

Computing Volume 36 Issue 5-6, June,2010 Pages 241-

253.

[9] Andrew Davidson , Sean Baxter, Michael Garland , John

D. Owens , “Work-Efficient Parallel GPU Methods for

Single-Source Shortest Path “ in International Parallel

and Distributed Processing Symposium, 2014

[10] Owens J.D., Davis, Houston, M., Luebke, D., Green, S.,

“GPU Computing”, in: Proceedings of the IEEE,

Volume: 96 , Issue: 5 , 2008.

[11] A. Munshi, B. R. Gaster, T.G. Mattson, J. Fung, D.

Ginsburg, “OpenCL Programming Guide”, Addison-

Wesley pub., 2011.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.

Stein, Introduction to Algorithms, Second Edition. The

MIT Press, Sep. 2001.

[13] Kumar, S.; Misra, A.; Tomar, R.S. ,”A modified parallel

approach to Single Source Shortest Path Problem for

massively dense graphs using CUDA” in Computer and

Communication Technology (ICCCT), 2011 2nd

International Conference on , vol., no., pp.635,639, 15-17

Sept. 2011.

[14] Atul Khanna, John Zinky , “The Revised ARPANET

Routing Metric”, in 1969 ACM.

[15] Gaurav Hajela, Manish Pandey, “Parallel

implementations for solving shortest path problem using

Bellman-Ford” in IJCA June 2014 edition

64 128 256 512 1024

SERIAL 696 4241 38172 267113 2136742

PARALLEL_GPU 58 284 2193 12086 81244

HYBRID 53 127 511 3172 16031

1

10

100

1000

10000

100000

1000000

10000000

E
x
ec

u
ti

o
n

 T
im

e(
m

S
ec

)

Comparision of execution time of different variants of

Bellman-Ford with Hybrid implementation

IJCATM : www.ijcaonline.org

