
International Journal of Computer Applications (0975 – 8887)

Volume 99– No.18, August 2014

40

Improvised Round Robin (CPU) Scheduling Algorithm

Abhishek Sirohi
Department of CSE
Galgotias College of

Engineering & Technology

Aseem Pratap

Department of CSE
Galgotias College of

Engineering & Technology

Mayank Aggarwal
Department of CSE
Galgotias College of

Engineering & Technology

ABSTRACT
CPU is a primary computer resource. So, its scheduling is

central to operating system design. To improve both

utilization and the speed of CPU we need to keep several

processes in memory at a time that means we use the sharing

and multiprogramming concepts. CPU scheduling determines

which process run when there are multiple runnable processes

CPU scheduling is necessary because it has a big effect on

resources utilization and overall performance of the system. In

this paper, we are giving an improved CPU Scheduling

algorithm.

Keywords
Scheduling, Time Quantum

1. INTRODUCTION
Scheduling is one of the basic functions of any operating

system, because scheduling of all the computer resources is

done before their use. The CPU the most essential computer

resource. Therefore its scheduling algorithm is a very

important part of the OS design. When multiple processes are

runnable, the OS has the onus of responsibility to decide

which one is to run first. The part of the OS that takes this

decision is called scheduler and the algorithm it works on is

called scheduling algorithm. A CPU scheduler is a part of an

operating system and is responsible for mediating access to

the CPU. OS may have up to three types of schedulers: a long

term scheduler (also known as an admission scheduler or high

level scheduler), a medium-term scheduler and a short-term

scheduler (also known as a dispatcher or CPU scheduler).

1.1 Long-term Scheduler
The long-term scheduler decides which jobs or processes are

to be proceeded to the ready queue i.e. when an attempt is

made to execute a process its inclusion to the set of currently

running processes is either granted or delayed by the long-

term scheduler. Therefore this scheduler governs which

processes are to run on a system, and the degree of

concurrency that is supported at any one time.

1.2 Medium-term Scheduler
The medium-term scheduler temporarily clears the processes

from main memory and places them on secondary memory or

contrarily. This is known as the "swapping of processes out"

or "swapping in".

1.3 Short-term Scheduler
The short-term scheduler (also known as the CPU scheduler)

decides which of processes that are present in the ready

queue, in the memory are to be executed (allocated a CPU)

next following a clock interrupt, an Input-Output (IO)

interrupt and an OS call (system call) or any other form of

signal. Therefore the short-term scheduler makes scheduling

decisions much more frequently than the long-term or mid-

term schedulers. This scheduler can be preemptive, meaning

that it can forcibly remove processes from a CPU i.e. it can

allocate the CPU (allocated to current process) to another

process, or non-preemptive (also known as "voluntary" or

"co-operative"), in that case the scheduler is unable to force

processes off the CPU.

The success of a CPU scheduler depends highly on the design

of good quality scheduling algorithm. Good-quality CPU

scheduling algorithms depends mainly on criteria such as

response time, throughput, CPU utilization rate, waiting time,

turnaround time and. Thus, the main focus of this proposed

work is to develop a generalized optimum good quality

scheduling algorithm suited for all types of jobs.

Fig. 1. Shows the following states have been executed in the

CPU Scheduler.

1. When a process switches from the running state to the

waiting state.

2. When a process switches from the running state to the

ready state.

3. When a process switches from the waiting state to the ready

state.

4. When a process terminates.

The success of a CPU scheduler depends highly on the design

of good quality scheduling algorithm. Good-quality CPU

scheduling algorithms depends mainly on criteria such as

response time, throughput, CPU utilization rate, waiting time,

turnaround time and. Thus, the main focus of this proposed

work is to develop a generalized optimum good quality

scheduling algorithm suited for all types of jobs.

2. SCHEDULING A LGORITHMS

2.1 First Come First Serve
The simplest technique is to let the first process submitted to

run first. This technique is called as first-come, first-served

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.18, August 2014

41

(FCFS) scheduling. In this technique, the processes are

inserted into the end of a queue when they are submitted [2].

The next process is taken from the starting of the queue when

each process finishes running.

i. Algorithm
Step 1: The process whose request comes first is allocated to

the CPU first.

Step 2: The addition of new processes takes place at the tail of

the ready queue.

Step 3: When the termination of the process takes place, the

next process is dequeued from the head of the ready queue

and run it.

ii. Characteristics
There is no prioritization this means that every process can

eventually be complete, hence no starvation.

 High turnaround time, waiting time and response time.

The Process with the longest burst time can monopolize

CPU, even if the burst time of other process is too short.

Hence, throughput is low [3].

2.2 Shortest Job First
The process is allocated to the CPU which has least burst

time. The scheduler arranges the processes with least burst

time in the starting of the queue and processes with longest

burst time in the end of the queue. This algorithm requires

advanced estimations about the time required for a process to

complete [2]. The design of this algorithm is to give

maximum throughput in most scenarios.

i. Algorithm
Step 1: CPU is allocated to the process having the shortest

burst time.

Step 2: If one or more than one process have equal burst time.

{

The CPU is allocated to the process according to the FCFS

scheduling

}

II. Characteristics
The problem with the SJF algorithm is, to have the

knowledge of the length of the next CPU request.

SJF reduces the average waiting time because it services

small processes before it services large ones. Although it

reduce the average wait time, it may affect the processes with

high burst time requests. If the ready list is full, then processes

with large burst times tend to be left in the ready list while

small processes receive service. In extreme cases, when the

system is in very little idle state, processes with large burst

time will never be served. This case of starvation of large

processes is a serious problem of this algorithm.

2.3 Round Robin
The Round Robin scheduling algorithm assigns a small unit of

time, called a time slice or time quantum to the processes. A

queue holds all the ready processes. The scheduler goes

around this queue, allocating the CPU to each and every

process for the defined time quantum. The new processes are

added to the end of the queue.

i. Algorithm
Step 1: Time quantum is selected and then it is assigned for

each process.

Step 2: The CPU is allocated to the process according to the

First Come First Serve (FCFS) scheduling.

Step 3: If (burst time of the process < time quantum).

{

The process is allocated the CPU till it terminates.

}

Else

{

The CPU is occupied by the process till the time quantum is

over and it is added to the end of the ready queue for the next

round of execution.

}

II. Characteristics
If the time quantum is set too short then it may cause many

context switches and it would result in lower CPU efficiency.

 If the time quantum is set too long then it may cause poor

response time and approximates FCFS.

As this algorithm results in high waiting times, the

deadlines are seldom met in a pure RR system.

3. PROPOSED SCHEDULING

ALGORITHM
Step 1: START

Step 2: Calculate the time quantum as follows.

Time quantum =ΣPi/n

Where Pi is the burst time of Process i, n is the number of

process.

Step 3: Arrange the processes in ascending order in the ready

queue such that the head of the ready queue contains the

lowest burst time process.

Step 4: Repeat steps 4, 5, and 6 WHILE ready queue

becomes empty.

Step 5: Allocate CPU to the first process in ready queue for

one time quantum.

Step 6: If the remaining burst time of currently running

process is less than time quantum then

{

Allocate CPU again to the currently running process

for remaining burst time and after completion, go to step 3.

}

Else

{

Remove the currently running process

from the ready queue and put it at the tail

of the ready queue.

}

Step 7: END

3.1 Characteristics
• The starvation of processes with long burst times can be

avoided by giving a time quantum for each.

• No process can monopolize CPU.

• The waiting time, Turnaround time can be optimized.

3.2 Computation of Gantt Chart, Waiting

Time and Turnaround Time
Consider the following data to check the efficiency of the

proposed algorithm

Table 1

Process ID Burst Time

P1 20

P2 34

P3 5

P4 12

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.18, August 2014

42

P5 26

Table 2

Process Id Burst Time

P1 10

P2 1

P3 2

P4 1

P5 5

This is the comparison of various CPU scheduling algorithms

on the basis of Waiting Time (WT) and Turn around Time

(TAT). The data for plotting Chart 1 and Chart 2 has been

taken from the Table 1 & Table 2. The Time quantum has

been calculated by the formula

Time quantum =ΣPi/n

The waiting time and Turn around Time have been calculated

by

Waiting Time= Start Time-Arrival Time

Turn Around Time= Finish Time-Arrival Time

Chart 1: Comparison of Proposed algorithm with other

standard algorithms on basis of Waiting Time (WT) and

Turn around Time (TAT)

The data for plotting chart 1 has been taken from the Table 2.

Chart 2: Comparison of Proposed algorithm with other

standard algorithms on basis of Waiting Time (WT) and

Turn around Time (TAT).

4. RESULTS AND DISCUSSION
The proposed algorithm has been coded and simulated with C

code; it can be an innovative move in case of CPU scheduling

and can be easily implemented in the OS.

Comparison of the Standard algorithms with the proposed

algorithms is shown in chart 1 and chart 2.

It can be clearly observed that the waiting time and turn

around time of the processes are better for the proposed

algorithm as compared to all other standard algorithms

discussed in section 2.

5. CONCLUSIONS AND FUTURE

WORK
The proposed algorithm produced better waiting time and

turnaround time then many standard algorithms. The proposed

algorithm works by comparing the time quantum with the

burst time of the process. This technique is the basis of the

good results produced by this algorithm. This algorithm can

be bettered in future and be made to produce even better

results for a wide range of CPU Scheduling algorithms.

6. ACKNOWLEDGEMENT
We feel highly elated to render our heartfelt thanks to our

mentor and Head of Department Mrs. Bhawna Mallick, who

stimulated and motivated us constantly to take up this great

task of working on this topic. We thank our project

coordinator Mr. Sandeep Saxena to having belief in our

abilities and for providing valuable help in our project.

7. REFERENCES
[1] http://en.wikipedia.org/wiki/Scheduling_(computing)

[2] Sindhu M, Rajkamal R, Vigneshwaran P. An Optimum

Multilevel CPU Scheduling Algorithm. 2010

International Conference on Advances in Computer

Engineering

[3] Wei Zhao, John A. Stankovic. Performance Analysis of

FCFS and Improved FCFS Scheduling Algorithms for

Dynamic Real-Time Computer Systems. IEEE 1989.

[4] Davender Babbar, Phillip Krueger. A Performance

Comparison of Processor Allocation and Job

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.18, August 2014

43

Scheduling Algorithms for Mesh-Connected

Multiprocessors. IEEE 1994.

[5] Umar Saleem and Muhammad Younus Javed. Simulation

Of CPU Scheduling Algorithms. IEEE 2000.

[6] Snehal Kamalapur, Neeta Deshpande. Efficient CPU

Scheduling: A Genetic Algorithm based Approach. IEEE

2006.

[7] Nikolaos D. Doulamis, Anastasios D. Doulamis,

Emmanouel A. Varvarigos, and Theodora A. Varvarigou.

Fair Scheduling Algorithms in Grids. IEEE

TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, VOL. 18, NO. 11,

NOVEMBER 2007.

[8] Xiao-jing Zhu, Hong-bo Zeng, Kun Huang, Ge Zhang.

Round-robin based scheduling algorithms for FIFO IQ

switch. IEEE 2008.

[9] Apurva Shah, Ketan Kotecha. Efficient Scheduling

Algorithms for Real-Time Distributed Systems. 2010 1st

International Conference on Parallel, Distributed and

Grid Computing

[10] Devendra Thakor, Apurva Shah. D_EDF: An efficient

Scheduling Algorithm for Real-Time Multiprocessor

System. IEEE 2011.

[11] Tong Li, Dan Baumberger, Scott Hahn. Efficient and

Scalable Multiprocessor Fair Scheduling Using

Distributed Weighted Round-Robin. ACM 2009.

IJCATM : www.ijcaonline.org

