
International Journal of Computer Applications (0975 – 8887)

Volume 99– No.16, August 2014

9

Parallel Implementation of the Max_Min Ant System for

the Travelling Salesman Problem on GPU

Gaurav Bhardwaj

Department of Computer Science and Engineering
Maulana Azad National Institute of Technology

Bhopal, India

Manish Pandey
Department of Computer Science and Engineering

Maulana Azad National Institute of Technology
Bhopal, India

ABSTRACT

In this paper, we have proposed an approach to implement

Ant colony optimization algorithm especially Max-Min Ant

System for solving Travelling Salesman problem on GPU.

GPUs are specially designed microprocessor for graphical

operation and can be used for general purpose operations.

ACO is a nature based inspired algorithm based on heuristics

to find the solution for combinatorial optimization problems

such as TSP. In this paper we have discussed many different

programming issues of GPUs using OpenCL such

synchronized memory access and barriers. We have used a

partial solution for the stochastic probability function used in

ACO for the tour construction to increase the speed-up. Thus

with this implementation we are able to gain a speedup of

4.01x in CPU parallel and up to 11.29x speedup in GPU

parallel.

1. INTRODUCTION
Travelling salesman problem is an NP-hard problem in a set

of combinatorial optimization problem. In travelling salesman

problem we have to found a Hamiltonian circuit having

minimum total edge weight. TSP has various applications

such as JOB Scheduling, DNA sequencing, designing and

testing VLSI circuits, graph coloring, vehicle routing etc.

There are various methods to solve such type problems such

as ANT colony optimization, neural network, Genetic

algorithm etc.

ACO is a heuristic algorithm for solving combinatorial

optimization problem. ACO imitates the behavior of real ants

to search food. Ants communicate indirectly to the agents of

their colony with a trail of a chemical substance called

pheromone. Pheromone is a chemical substance that shows

the trace of an ant. Other ants follow the smell of the food and

the trace of the pheromone to find out the minimum distance

to the food.

Complex problem such as TSP needs huge computational

power as well as time to solve. It takes lots of time for a single

processor to solve such large problems single handedly.

Parallel computing is the new paradigm to solve such type of

problems using General Purpose Graphical Processing Unit.

GPUs are meant to do graphical processing such as simple

arithmetic operations also on graphics in the form of matrices.

So we can utilize GPUs processor to solve our problem to

speed up the computational time.

GPU consist of large no. of processors embedded together in a

chip to perform a specific type of operations. Open CL

(OPEN Computing Language) is the framework used to write

programs that can be executed on heterogeneous platforms.

This paper applies ACO to the Travelling Salesman Problem

in heterogeneous platform using OpenCL framework to

achieve parallelism in ACO. We have compared the time

taken in sequential as well as the parallel program used to

solve this problem.

2. RELATED WORK
Travelling salesman problem is one of the oldest

mathematical problems in history. Scientist had a great

interest to solve such type of problem using different

approaches. M.Dorigo and T.stizzle in 1992 [6] has designed

an biological approach to solve such type of combinatorial

optimization problem such as Travelling Salesman Problem

called ACO. The first ACO algorithm was proposed by them

called Ant System basic approach on ACO. Then many other

algorithm were proposed based on it such Max-Min [13][15]

approach, Ant colony System. All these approaches are

successors of Ant system. M.Dorigo has given the basic

parallel approach to solve ACO parallel as he has discussed

the basic parallel behavior of ants in real life. M.Middendorf

has given the approach for multi colony ant algorithm where

many colonies of ants co-operate each other in finding the

solution. He has also given the approach of transferring of

information between colonies [16]. There after many parallel

approaches has been delivered with the parallel strategies.

This paper describes the parallel implementation of ACO on

heterogeneous platform using OpenCL and comparing their

parameters.

3. TRAVELLING SALESMAN

PROBLEM
Travelling Salesman Problem represents a set of problem

called combinatorial optimization problem. In TSP a salesman

is given a map of cities and he has to visit all the cities exactly

once and return back to the starting city with the minimum

cost length tour of all the possible tour present in that map.

Hence the total no. of possible tour in a graph with n vertices

is (n-1)!.

There are various approaches to solve TSP. Classical

approach to solve TSP are dynamic programming, branch and

bound which uses heuristic and exact method and results into

exact solution. But as we know TSP is an NP-hard problem so

the time complexity of these algorithms are of exponential

time. So they can solve the small problem in optimal time but

as compared to the large problem time taken by these

algorithms are quite high. So no classical approach can solve

this type of problem in reasonable time as the size of the

problem increases complexity increases exponentially.

So many alternate approaches are used to solve TSP which

may not give you the exact solution but an optimal solution in

reasonable time. Methods like nearest neighbor, spanning tree

based on the greedy approach are efficiently used to solve

such type of problems with small size. To overcome this

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.16, August 2014

10

different other approaches based on natural and population

techniques such as genetic algorithm, stimulated annealing,

bee colony optimization, particle swarm optimization etc. are

inspired from these techniques.

4. ANT COLONY OPTIMIZATION
ANT colony optimization technique introduced by Marco

Dorigo in 1991 is based upon the real ant behavior in finding

the shortest path between the nest and the food. They

achieved this by indirect communication by a substance called

pheromone which shows the trail of the ant. Ant uses heuristic

information of its own knowledge the smell of the food and

the decision of the path travelled by the other ants using the

pheromone content on the path. The role of the pheromone is

to guide other ants towards the food.

Ant has the capability of finding the food from their nest with

the shortest path without having any visual clues. At a given

point where there are more than one path to reach to their food

then ants distribute themselves on different paths and the path

and lay pheromone trace on that path and return with same

path. Thus the path with minimum distance will acquire more

pheromone as compared to other paths as the ants will return

faster from that path comparative to the other path. So the new

ants coming in the search of food will move with probability

towards the path having higher pheromone content as

compared to the path having lower pheromone content and in

the end all the ants will move towards the same path with the

minimum shortest path to their food. Now figure 1 shows the

behavior of ants going from the upward direction will return

early as compared to the ants going from the downward

direction so the pheromone content in the upward direction is

more as compared to the downward direction due to that in

the end all the ants will start moving towards the upward

direction which is the shortest path to their food.

Fig 1: If necessary, the images can be extended both

columns

ACO uses the set of artificial ants which co-operate each other

to solve the problem and find the optimal solution of the

problem. ACO can be used to solve combinatorial

optimization problems such as Travelling Salesman Problem,

Vehicle Routing, Quadratic Assignment, Graph Coloring,

Project Scheduling, Multiple Knapsack etc. maximum of the

problems are NP-hard problem i.e. they take exponential time

complexity in their worst case.

In the travelling salesman problem we are given with a set of

cities and the distance between them. We have to found a

shortest tour such that each city should be visited exactly once

and then return to the stating city. Formally we can say that

we have to found a minimal Hamiltonian circuit in a fully

connected graph.

In ACO we stimulate no. of artificial ants on a graph where

each vertex represents the city and the edge represents the

connection between the two cities. Pheromone is associated

with each edge which shows the trace of the ant can be read

and modified by the ants. It is an iterative algorithm where no.

of ants is used to construct a solution from vertex to vertex

without visiting any vertex more than once. At every vertex

ant select the next vertex to be visited stochastically that is

based upon the pheromone as well as the heuristic information

available to it.

ACO algorithm

set parameters and pheromone value

 while termination condition not met do

 construct Ant solutions

 update pheromone

endwhile

in the above algorithm artificial ants will construct a solution.

Ants start with an empty partial solution. At each iteration

partial solution is modified by adding a set of components and

updating the pheromone content. Creating a solution is

completely based on a probabilistic stochastic mechanism.

Updating pheromone value means increasing the pheromone

content on the edges having good solution in order to find the

optimal solution.

4.1 Max-Min Ant System
Max min ant system [13][15]is the successor to the main ACO

based algorithm ant system. Many modification are made in

MMAS with respect to AS. Firstly MMAS exploits only the

best tour found in iteration or the best so far tour. That means

the ant is allowed to update the pheromone content on the best

so far tour or the best tour in iteration. This may lead to

stagnation that is the ant may follow the same path in all

iteration which may lead to the suboptimal solution because

of the excessive pheromone deposition on the best tour till

now which may not be optimal. To overcome this second

modification is done to limit the maximum and minimum

range of the pheromone content. The pheromone content lies

between the range [τmin,τmax] . Third modification is that the

pheromone content is initialized with pheromone content

equivalent to τmax with a very low evaporation rate so that at

initial level there is increase in exploration of paths. Fourth

modification leads to reinitialized pheromone content if the

system approaches the stagnation condition or there is no

more exploration of edges till the time we are not able to get

our optimal solution. With all such modifications MMAS is

capable of exploring the path with more capability than AS

and able to find the more optimal solution as compared to AS.

MMAS algorithm

Initialize pheromone

While termination condition met do

 If stagnation restart

 Construct ant solution

Update pheromone with the best tour or best so far

End while

4.1.1 Pheromone initialization
In MMAS pheromone is initially initialized equivalent to the

value τmax so that we can increase the exploration at initial

level with a very low evaporation rate ρ. When an arc is not

visited by any ant iteration than the pheromone is decreased

by ρ where as next time it may leads to ρ2 time the τmax and so

on which reduces the pheromone content. If incase we

initialize the pheromone content with τmin than the pheromone

updating rate is quite high as compared to the evaporation rate

which may lead to the initial stagnation.

4.1.2 Tour construction
In MMAS tour construction is done using a probabilistic

stochastic mechanism using a probability function. An ant k

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.16, August 2014

11

chooses next node j to be visited from node I with a

probability Pij. Such that

Where Sp represents the set of cities not visited yet by ant k.

probability of cities which are already visited is set to 0 so that

they cannot be visited again. τij is pheromone content on arc i

to j. Where τij is the pheromone content on the edge joining

node i to j . ηij represents the heuristic value which is inverse

of the distance between the city i to j, which is given by:

Where dij is the distance between the cities i to j. α and β

represents the dependency of probability on the pheromone

content or the heuristic value respectively. Increasing the

value of α and β may vary the convergence of ACO.

4.1.3 Pheromone update
In MMAS pheromone content is updated only to the best tour

in iteration or the best so far tour which may lead to good

convergence point but it also lead to the stagnation as only

some good arcs will have very high pheromone content where

as bad arc will have very less pheromone rate as on each

iteration the pheromone content decreases by ρ and after n

iteration if the arc never came in the best solution may lead to

the decreasing of pheromone content by ρn. Pheromone

content is updated as:

Where ∆τ

 = 1/Cbest where Cbest is the length of the best

solution in the iteration or the best so far solution found in the

iterations. In MMAS both best solution in iteration or the best

so far solution is used in MMAS considering at what extend

we are greedy about our solution. It has been studied that for

small no. of cities iteration best is more considered to use but

on other side with large no. of cities the best so far solution is

considered. After iteration pheromone is evaporated with an

evaporation rate ρ which is very low.

4.1.4 Pheromone limit
In MMAS as the name suggests has the upper and lower limit

for the pheromone content [τmin,τmax] . Pheromone content

should be in this limit. If the pheromone content is more than

that of τmax after updating than it is set to τmax similarly with

the case of lower limit.

5. PARALLEL IMPLEMENTATION OF

MMAS ON TSP
The main purpose of this section is to show parallel

implementation of MMAS for TSP. Biologically ants use

parallel approach in search of their food. Ants perform task

based parallelism to search their food. All the ants search their

food parallel simultaneously and synchronize with the help of

the pheromone content in the ground similarly we can use this

approach in artificial ants in ACO [12][14]. Parallel model

used in ACO is a master/worker paradigm. Where master

controls the workers by communicating and capturing the

global knowledge where as worker implements the search. In

this model same copies of the MMAS algorithm are

simultaneously and randomly executed using different random

source. ACO is an iterative approach where at each iteration

master shares the global knowledge of pheromone to its

worker ants to construct a solution. When 1000 of ants

perform the search operation then the solution construction

becomes comparatively fast as compared to sequential

implementations. Parallelism where large number of threads

can be executed simultaneously can be done using GPGPU

(general purpose graphical processing unit). GPU [9] consist

of hierarchy of processing elements and their memory. An

AMD GPU consist of more than one SIMD (single instruction

multiple data) computation engine. Where each computation

engine consists of multiple thread processors which executes

same instruction all the time simultaneously but data items

may vary. Each thread processor has its own L1 cache. Each

thread processor is a four or five way VLIW (very large

instruction word) processor consisting of four or five ALUs

respectively. Parallelism can be attained at both the level of

thread processor and ALUs.

5.1 Pheromone initialize kernel
In this section we initialize the pheromone content using

parallelism as every arc has to initialize a pheromone which is

equal for every arc. Such type of task can be done using data

parallelism approach using N*N size of work group. N is no.

of cities in the problem.

Kernel Pheromone_initialize

for all (i,j) ϵ E in G

 Initialize τij

End for

Where the size of the work group in this case is of N*N which

initialize the pheromone matrix with some initialized value. τij

is the pheromone content at arc i to j in pheromone matrix τ.

The value should be equivalent to τmax. In parallel this kernel

can be executed in O(1) as compared to the sequential O(N2).

Tour construction kernel

5.2 Tour Construction Kernel
In solution construction task based parallelism approach is

used as each ant performs their task independent of each other

to find the best tour. As discussed earlier in this phase ants are

allocated the source node randomly and they have to visit

each node exactly once and have to reach back to their source

node. In iteration they have to choose their next node using

probabilistic stochastic mechanism. This phase has inbuilt

parallelism at the level of each ant as the biological ant find

their tour. Tour is found using probabilistic function given in

eq. 1 . now in order to calculate the Pij we calculate Fij as

partial solution for Pij. Where

Kenrel Partial_probability

for all (i,j) ϵ E in G

 set F(i,j)=

end for

Maximum value of Fij will retain the highest probability Pij for

selecting node j after visiting i. this can also be calculated

using a work group size N*N. as it is all independent from

each other. This partial solution can be calculated in a single

instance in O(1).

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.16, August 2014

12

Now instead of using complete probabilistic function we will

use only partial solution Fij to choose next city to visit. City

having highest Fij is choosing to visit if it’s not visited. To

check the visited city we use a flag table. This flag table

reduces the complexity of checking whether the node has

been visited or not from O(N) to O(1).

Flag table

0 0 0 0 1 1 0 0 0 0

 0 1 2 3 4 5 6 7 8 9

In this flag table 0 represents that the node is not visited yet

where as 1 represents the node has already ben visited. With

the help of this flag table we can check whether the node has

been visited or not.

Kernel Solution_Construction(d, F)// d as weight matrix

Source=get_global_id(0)

Length =0

Starting from the source till all the nodes visited do

For every unvisited node find j from i such that

F(i,j)is max

Visit node j

Length = length + dij

Set flag(j)=1 //visited

Enter j into the tour

Enter source node into the tour

Length = length + dj, source

//synchronization is done here

If global_length >= length

 Set global_length = length

 Id = get_global_id(0)

Barrier (CLK_GLOBAL_MEM_FENCE)

 If id = get_global_id(0)

 Update global_tour =tour

In this kernel we have done synchronization as there is a

global object for length and id which contain the best solution

in iteration or best so far and the id and no two kernels can

access that objects simultaneously. Similarly we have used

barrier to check whether all the kernels had updated their

length than the tour can be updated to global memory object.

Now at the host level there is a length and the tour for that

length.

5.3 Kernel Pheromone update
In this kernel we have to update the kernel with the help of the

eq-2. to update the pheromone we can use a kernel with a

workgroup size of N where we can update the kernel with the

best length tour available at global memory.

Pheromone update

j=get_global_id(0)

i= global_tour[j]

set τi, i+1 = τi, i+1 + 1/global_length

if (τi, i+1 > τmax)

 set τi, i+1 = τmax

This kernel only updates the pheromone with the tour having

best solution so far or the best solution of the last iteration.

This kernel can be executed in O(1).

Kernel pheromone evaporation

5.4 Kernel Pheromone evaporation
This kernel evaporates the kernel with the pheromone

evaporation rate ρ as in eq. 3 this kernel is executed with a

workgroup size of N*N so that N*N independent kernel can

evaporate the kernel in a single instance.

Kernel Pheromone_Evaporation

for all (i,j) ϵ E in G

 set τij= ρ.τij

end for

6. COMPARATIVE ANALYSIS AND

PERFORMANCE EVALUATION
MMAS is implemented sequential as well as parallel to check

the speedup of the algorithm to find the solution.

Parameterization of the kernel to check the best solution is

done. OpenCL parallel implementation on CPU and GPU are

tested on the following hardware specifications:-:

AMD Radeon HD 6450(GPU): 2 Compute units, 625 MHz

clock, 2048MB Global Mem., 32KB Local Mem., 256 work

group size on a system having Intel Core i5 CPU 650 @ 3.2

GHz and 2048MB RAM with AMD APP SDK v2.8.

MMAS sequentially is implemented on the above given

hardware specification with a randomly generated graph with

different no. of nodes as well as some standard graphs to

compare our results. Comparative analysis of the speed up of

graph is shown with the sequential, CPU parallel and GPU

parallel. In GPU parallel we have considered only the kernel

execution time. All the kernels are executed parallel to each

other with the control of the kernels are with Host CPU.

Fig 5 shows the speedup between sequential, CPU parallel

and GPU parallel. In CPU parallel we have used OpenCL

platform to rum the algorithm on CPU parallel. In GPU

parallel same program is implemented on GPU. With respect

to that we are able to achieve 4.01 times speed up in CPU and

up to 11.29 times speed up in GPU.

7. CONCLUSION AND FUTURE WORK
In this paper we have proposed parallel implementation of the

ant colony algorithm, especially MMAS, for the travelling

salesman problem. We have implemented this on AMD

Radeon HD 6450(GPU). We have considered many

programming issues on OpenCL such as synchronization and

barrier where as an approach to reduce the load of the tour

construction process by some pre-processing of probability.

We are able to attain the speed-up of 4.01 at CPU parallel and

up to 11.29 in GPU. All the different steps are tried to be done

at GPU in parallel only.

Future works include other ACO algorithm to be done parallel

and more precise parallel tour construction kernel to form to

increase the speed up. In addition to ACO an hybrid approach

can be used to solve TSP and other combinatorial

optimization problems.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.16, August 2014

13

Fig 1: Shows the speed up between sequential, CPU parallel and GPU parallel

8. REFERENCES
[1] E.Lawler, J.Lenstra, A.Kan, and D.Shomsys Wiley New

York, 1987 The Travelling Salesman Problem

[2] M.Dorigo and T.Stizzle : Bradford Company 2004. Ant

Colony Optimization.

[3] C.Blum. Physics of life reviews, vol. 2, no.4, pp. 353-

373, 2005. Ant colony optimization: Introduction and

recent trends.

[4] Y-S. You. Genetic and Evolutionary computation, 2009.

Parallel ant system for Travelling Salesman Problem.

[5] K.D. boese , A.B. Kahng, and S.Muddu .Operations

Research letters ,16:101-113,1994. A new adaptive

multistart technique for combinatorial global

optimization.

[6] M. Dorigo. PhD thesis, Politecnico di Milano, 1992.

Optimization, Learning, and Natural Algorithms

[7] T. Stizzle and H. H. Hoos. Future Generation Computer

Systems, vol. 16, no8, pp. 889–914, 2000. MAX–MIN

ant system

[8] M. Dorigo and T. Stizzle, A Bradford Book,2004. Ant

Colony Optimization.

[9] Ying Zhang. PHD Thesis 2006. Performance and power

comparisons between fermi and cypress GPUs.

[10] A. Munshi, B. R. Gaster, T.G. Mattson, J. Fung, D.

Ginsburg, Addison-Wesley pub., 2011. OpenCL

Programming Guide.

[11]] G. Reinelt, ORSA Journal on Computing, vol. 3, pp.

376–384, 1991. Tsplib–a traveling salesman problem

library.

[12] M. Manfrin, M. Birattari, T. Stizzle, and M. Dorigo. 5th

International Workshop on Ant Colony Optimization and

Swarm Intelligence, vol. LNCS 4150. Springer-Verlag,

2006, pp. 224–234. Parallel ant colony optimization for

the traveling salesman problem.

[13] T.Stizzle, H.Hoos MAX-MIN ant system and local

search for the Travelling salesman problem

[14] A.Colorni, M.Dorigo, V.Manniezo. Distributed

Optimization by ant colonies. ECAL-91 European

conference of Artificial Life.

[15] T.Stizzle, H.Hoos. MAX-MIN Ant System.IRIDIA

[16] M.Midderndorf, F.rieschle, H.Schmeck . Multi Colony

Ant Algorithms. Journal of heuristics, 8:305-320,2002

1

10

100

1000

10000

100000

4 8 16 32 64 128 256 512 1024 2048

Ti
m

e
 T

ak
e

n

No. of Cities

IJCATM : www.ijcaonline.org

