
International Journal of Computer Applications (0975 – 8887)

Volume 99 – No.15, August 2014

36

A Review of Requirement Engineering Issues and

Challenges in Various Software Development Methods

Tejas Shah

M.Sc. (I.T.) Programme
Veer Narmad South Gujarat University

Surat, India

S V Patel
Department of Computer Science

Veer Narmad South Gujarat University
Surat, India

ABSTRACT

The Requirement Engineering (RE) is a systemic and

integrated process of eliciting, elaborating, negotiating,

prioritizing, specifying, validating and managing the

requirements of a system. The detailed and agreed

requirements are documented and specified to serve as the

basis for further system development activities. The software

industry has moved from traditional software development

method to service oriented software development. While

many researchers and practitioners have observed issues and

challenges in Requirement Engineering phase specific to a

software method, very little attention has been given to

investigate diversity of issues and challenges of RE in

different software development methods under one umbrella.

This paper tries to review significant issues and challenges of

RE from traditional software development method to recent

service oriented software development method. The study

unveils that there is a wide scope for developing new

approaches and techniques in requirement engineering to

resolve problems observed in various SE methods. The review

discussion reveals the need of standardization and automation

of RE process especially for Service oriented software

development.

Keywords

Requirement Engineering, RE phase, SE methods, traditional

software development, service oriented software

development, automation of RE

1. INTRODUCTION
Requirement engineering (RE) is the process by which the

requirements of the systems are determined. RE involves the

activities of discovering the needs of stakeholders,

understanding the context of requirements, modelling,

negotiating, validating, documenting and managing these

requirements. The factors and trends like potential increase in

the scale of software systems, tighter integration of software

and its environment, greater autonomy of software to adapt to

its environment, and increasing globalization of software

development makes the RE phase more challenging.

The organization can achieve significant business benefits by

preventing problems as early as in the requirements

engineering (RE) phase instead of waiting until the project

finished [1]. The RE discipline is known to be crucial for the

success of every project. Hall et al. in [2] reports that a large

proportion (48%) of development problems stem from

problems with the requirements. Moreover, fixing

requirements-related problems consumes a high cost of

rework in later states [3] [4]. The chaos report from the

Standish Group [5] states that 44 % of the reasons for failed

projects have their origin in insufficient RE.

This review aims at observing challenges and issues present in

different software development manifestos. If these problems

are not addressed carefully, it might hinder the adoption of the

method successfully and may have negative consequences

like missed schedule and overrun budget. While many

researchers and practitioners have observed issues and

challenges in Requirement Engineering phase specific to a

software method, very little attention has been given to

investigate diversity of issues and challenges of RE in

different software development methods under one umbrella.

The study unveils that there is a wide scope for developing

new approaches and techniques in requirement engineering to

resolve problems observed in various SE methods. The paper

is organized as follows; Section II elaborates common issues

and challenges of RE applicable to almost all software

development methods. Section III to VII covers problems of

RE in respective software development method. Section VIII

shows summary and analysis of the review and section IX

gives conclusion and future directions.

2. COMMON ISSUES AND

CHALLENGES OF RE IN SOFTWARE

DEVELOPMENT METHODS
For software development many methods exist and it is not

feasible to include all of them here hence we have chosen

widely used methods for studies. These methods include

Traditional software development, Object oriented software

development, agile software development, Component based

software development (CBSD) and Service oriented software

development (SOSD). We first analyze common issues and

challenges which are found in almost all software

development methods.

2.1 Realization of Security at RE Level:
As the recent systems becomes more pervasive, mobile and

operational by many users, the critical processes and data has

been the target by security attacks [6]. The efforts have been

made to identify, model and protect threats and vulnerabilities

in [7] [8] [9] [10] [11]. This approach to RE is reactive and

focuses on low level security requirements. The work on high

level security policies on methodologies for structuring,

modeling and reasoning is done in [12] [13] [14]. But the

behavioral specification of threats, attacks should be

optimized at RE and design level. So to realize the security

and privacy degree at RE level is a prominent challenge

related to Requirement Specification.

2.2 Integration of RE Models:
The modeling conventions, methodologies and strategies

simplifies the RE techniques. Modeling theory which

incorporates RE modeling elements is described in [15]. Most

research projects focuses on a single RE problem such as

elicitation and there has been little work on interconnection of

International Journal of Computer Applications (0975 – 8887)

Volume 99 – No.15, August 2014

37

requirement models and combining RE phases. Well defined

approaches are required to interrelate RE goals, scenarios,

data, functions, state-based behavior and constraints. This

problem affects almost all RE phases and subsequent effect

will be on architecture and design of the system.

2.3 Elicitation Technique Selection:
There are plenty of elicitation techniques available in the

industry for completing elicitation tasks. All the techniques

are used in hybrid manner to gather requirements from

customers. But, there is no standardized technique dedicated

for the respective paradigm.

2.4 Requirements Reuse:
The reuse of existing requirement artifacts makes the RE task

more prescriptive and systematic [6]. The reusability of

requirements facilitates the advantages at design level as well

as in the development of related domain system or

applications. A key challenge is to identify maximum number

of reusable requirements for particular domain and how to

map and model them [16].

2.5 Improvement in Requirement Quality:
The requirements elicited from stakeholders may be

ambiguous, incomplete, inconsistent, incorrect and out-of-

date. Some requirements are specified with only technical

jargons rather than business domain terminology. The Quality

Assurance (QA) task should be initiated from the RE phases

itself and continues towards subsequent phases. To improve

the quality of the requirement is a big challenge for all the

software development methods. Because poor requirement

quality heavily increases development and sustainment cost

and results in delayed schedule [17].

To maintain the quality of the requirement, the inspection

should be used to verify and ensure that all of the

requirements have appropriate characteristics. The

requirement engineers, stakeholder and evaluators need to be

properly trained and required to collaborate with each other to

rework on requirement until requirements turn out to be

feasible and verifiable [17].

2.6 Missing Requirements:
The customer is not aware of giving 100% of what he wants

for the system to be developed. The mid-size and large system

ends up with thousand of requirements and derived into many

subsystems. It’s very hard to spot some missing requirements

and their absence is often missed until the system is

integrated, tested or deployed [17].

The requirement engineer must actively elicit the

requirements from all the group of stakeholders. Mature

methods and techniques can be used to deal with the challenge

of missing requirements.

2.7 Semi-Automatic Process for Generic

Template Creation:
Currently, there are many templates available for collecting

requirements in an interactive manner. These templates are

collecting the requirements using word documents or excel

sheet. There are some RE tools available for requirement

traceability and management. However, these tools and

templates are not having structured process of mapping

requirements to design. This is a big challenge for moving

towards the process of semi-automatic requirement

engineering.

2.8 Excessive Requirements Volatility:
The use of iterative, incremental model of software

development is motivated because of adapting continuous

changing requirement. But, if requirements changes in

uncontrolled manner, then it may have substantial effect on

existing architecture and design. The too much volatility may

change the scope of the system too [17].

To manage the change, the requirements must be baseline and

frozen at appropriate milestone for each release of the system.

When there is nontrivial change of the requirements, budget

and schedule requires modification [17]. To implement this,

we have to take the effective steps like limiting the number of

changes, scale of change within the bounded scope.

2.9 Inadequate Requirements Management:
Many projects store and manage their requirements in paper

documents, spreadsheets with disparate formats managed by

different profile teams. The decentralized and individual

management of scattered requirements makes it difficult to

authorize team members for performing operations on the

requirements [17]. In case of global software development,

dynamic changes take place at all the sites and management of

distributed requirements is hard to implement [18].

The metadata of requirements like status, priority, rationale

should be linked and stored in a compatible tool with

authorization feature [17].

2.10 Accuracy and Performance

Measurement of Requirements:
The performance engineering of the software checks the

overall performance of the product developed. The business

requires new value creation and that is reason of emergent

need of performance engineering in software. But when

requirements are incepted and specified, negotiation and

prioritization parts decides which requirements are finally

crucial and to be included in system development. However

the accuracy and performance measurement matrices are

required for RE activities.

2.11 Interactive RE Tool Support:
Many companies are using specification document, simple

spreadsheets or RDBMS tables to store and manage their

requirement. The requirements and their associated models,

diagrams are often developed and stored in different

incompatible tools which don’t provide proper traceability of

requirements [17]. Without adequate, compatible and

integrated tool support; requirements becomes inconsistent,

bulky, untraceable and out-of-date.

The compatible, versatile, powerful and user friendly tool

should be used to capture requirements and their diagrams,

associated text and metadata. The tool should have features

like efficient elicitation interface, traceability wizard,

negotiation layout and integration of central repository.

2.12 Communication Gap:
Irrespective of software method, the communication gap

between customer and RE team is a major problem. This gap

carries the problems towards modeling, design and

implementation [19]. The distance gap in global software

engineering complicates this gap even though synchronous

and asynchronous tools are used. The stakeholders’ language

and culture diversity increases the complexity in requirement

elicitation and negotiation in global software development.

It’s difficult for the development team to analyze and remove

the inconsistencies, conflicts and redundancies when the

International Journal of Computer Applications (0975 – 8887)

Volume 99 – No.15, August 2014

38

customer uses diverse nomenclature in specifying the

requirements [18] [19]. This requires need of a traceability

tool to monitor the communication activities in an efficient

manner.

2.13 Conflicting and Ambiguous

Requirements:
The different stakeholders’ opinions, objectives, needs may

have different meanings and may conflicts with vague words.

When eliciting the requirements; the terminology, keywords

and domain knowledge should be properly notified [20]. The

methods should be well described to resolve the conflicts of

requirements.

To remove the ambiguity and conflicts, the collected

requirements can be stored in graphics prototype with the

proper techniques. The customers can check this prototype

and remove any conflicting requirement in step-wise

refinement model [20].

2.14 Elimination of Irrelevant

Requirements:
The set of requirements inquired from stakeholders may

include some points which are not at all necessary. Major

defects can be encountered if bad and irrelevant requirements

are elicited. The process of eliminating unnecessary

requirements is time consuming. The step-wise refinement

model solves the issue of irrelevant requirements with the

evaluation of graphics prototype by the customer [20].

2.15 Prioritization of Requirements:
The stakeholder’s wavering mindset changes the priority of

the requirements. Eliciting requirements from stakeholders by

their position in the organization complicates the process of

priority assignment. The identification strategy is required to

give rating on priority requirements.

3. ISSUES AND CHALLENGES of RE in

TRADITIONAL SOFTWARE

DEVELOPMENT
Traditional methodologies are characterized by a sequential

series of steps like requirement definition, planning,

building, testing and deployment. First, the client

requirements are carefully documented to the fullest extent.

Then, the general architecture of the software is visualized

and the actual coding commences followed by various types

of testing and the final deployment [21].

The traditional software development manifesto requires the

user to provide a detailed idea of the exact requirements with

respect to the intended software. This methodology have a

well-defined requirements model which works as a reference

to implementation and coding process for the development

team. The development team will perform the coding

according to the documentation provided by the business

analysts until the system is complete and only then it will be

presented to the clients as final product [22].

The following are the issues and challenges of the RE phase

abided by the traditional software development ideology.

3.1 Addressing NFR (Non Functional

Requirement):
The NFR includes the indirect attributes of the system like

security, privacy, portability, scalability, quality, operability

and many more. The traditional software development method

generally gives less attention to NFRs. For including NFRs

into system the NFR repository can be created which stores

NFR for different domains. We can have the interactive

interface to collect NFR attributes from the user in selective

mode.

3.2 Poor Requirement Traceability:
The tracing of the requirement is mandatory task to link the

source of requirements to the design phase. In many projects,

requirement tracing is manual process and mapping of

requirement to design and architecture is difficult even with

the modern tools used. The poor requirement traceability

makes it difficult to accommodate proposed and actual

changes [17]. The requirement traceability matrix and tool is

needed to monitor the activities of requirements.

3.3 Immutable Requirements:
In waterfall model, requirements are frozen when all the

stakeholders are agreed upon with what system is to be

developed. However there is a tendency of the customer to

change the requirement at any time during the development.

There will not be any movement in requirements once

specification phase gets over. This problem is solvable by

using iterative software engineering models.

3.4 Elicitation End Point:
Depending on the paradigm used, the elicitation process will

stop or continue even after product delivery. The developers

are facing complexity in deciding the end points for elicitation

in traditional software development. This problem can be

easily recognized if all the stakeholders are agreed upon

freezing the requirement elicitation process.

3.5 Business Agility:
As per the market demands, competition and the behaviour of

the system; the business process of the organization must

change to gain the strategic advantage. These changes of

business requirement can occur at any time. The development

methodology of traditional development remains same and

becomes obsolete and outdated with no inclusion of emergent

business processes [23]. The agile methodology solves this

problem with the support of agility and many other features.

3.6 Customer Involvement:
In traditional approach, the customer will give their all needs

and requirements only in the elicitation phase. But there will

be possibility of vast amount of requirements discovery by the

stakeholders at the lateral stages. Because involvement of

customer is limited to elicitation and specification phase,

creative and other functionalities of the system acquired from

the customers will not to be accommodated in intermediate

phases of the development. Moreover, the less involvement of

customers creates problems in negotiation and validation of

the requirements.

4. ISSUES and CHALLENEGES of RE in

OBJECT ORIENTED SOFTWARE

DEVELOPMENT
The industry has already passed through the major method

change as object oriented development after the traditional

software development for the large scale information systems.

Object oriented requirement engineering is an approach to

encapsulating information about process and product, as well

as functionality into requirement objects [24].

In object oriented software development method requirements

are directly represented as requirements objects which can be

organized in generalization hierarchies that reflect different

International Journal of Computer Applications (0975 – 8887)

Volume 99 – No.15, August 2014

39

kinds of requirements [25]. This section presents some of the

issues and challenges faced in the object oriented software

development manifesto.

4.1 Functional Requirement Modeling:
In object oriented software development, UML based RE

approach develops set of use cases for the particular scenario

of the problem. But use cases are not object oriented and

doesn’t specify the functional requirements of the system. In

addition, representation of requirements using class may blur

the concepts of domain objects [26]. The problem of modeling

and specifying the domain object remains challenging

problem for the researchers.

4.2 User Centric Requirement Analysis:
The requirement analysis phase should pay attention towards

requirements from user perspective. The model oriented

requirement engineering (MORE) framework addresses the

requirement in natural language and focuses on document

specific requirements [27]. The analysis of requirement is not

based on user role and semantic identification of objects. The

requirement objects should be represented as semantic

notations which can be understood by the user [28].

However, the business objects, their relationships and detailed

analysis of semantic objects are represented with user centric

approach for large scale information system [28].

4.3 Poor Emphasis of NFR in Use Case

Modeling:
The use cases are not representing the NFRs properly. The

challenge is to include exceptional conditions and path to

enable reliability, security, availability and other non

functional requirements in use case modelling [17].

The parametric evaluation and analysis of security measures

are elaborated with many approaches to address the security

for RE [29]. The misuse cases approach is the inverse of the

standard use cases and describes functions that the system

should not allow [30]. These solutions are prevalent but not

explicitly addressed in use case design.

5. ISSUES and CHALLENGES of RE in

AGILE SOFTWARE DEVELOPMENT
In agile methodology the development team is working in

small iterations and deliver portion of working software at the

end of iteration. This methodology emphasizes more on

customers’ involvement in the development process. The agile

methodology post-dates the traditional one in the evolution of

the software development processes and less rigorous. Agile

developers recognize that software is not a large block of a

structure, but an incredibly organic entity with complex

moving parts interacting with each other [21].

When agile development teams are distributed geographically

in onshore and offshore location, lack of communication is

major challenge for requirement elicitation. Agile method

provides the freedom of making changes in the requirements

even late during software development. The change in the

requirements during early iterations removes the ambiguities

and minimizes the chance of implementing those

requirements later in the software which is very costly [31].

This section describes the issues and challenges of

requirement engineering pertaining to the agile based software

development method.

5.1 Conflicting Viewpoints amongst Team:
The agile team members must use the same technical

language in understanding the requirements. When agile team

is distributed in off-shore locations having larger time

differences, it becomes difficult to have efficient coordination

between team members. There may be conflicting viewpoints

amongst team members which affects the particular iteration

to be delivered to the customer [32].

5.2 Schedule Variations:
In the view of changes in the requirement and nature of agile

methodology, project schedules vary heavily in this

methodology. To control the project completion schedule,

proper training of customers to specify there requirements is

necessary.

5.3 Lack of Standardized RE Activities:
There are no documented RE activities which can be followed

to obtain the user requirement in efficient manner [33]. Agile

releases are too frequent and emergent requirements are

incepted from the customers in every release. The agile

manifesto and all the methodologies should have standardized

and documented set of RE activities.

5.4 Incompatible Interface:
The agile product delivery turns out to be partial releases. The

product developed in one phase might not be compatible with

the next phase. The evolving requirements of the customer

and previous released version can have semantic gaps in the

features [33].

5.5 Difficulties in Evaluating NFR:
There is no specific approach for incorporating and evaluating

the NFR (Non functional requirement) in agile software

development. The partial release is delivered to the client and

he provides feedback for functional and non functional

requirement. But, the client is not having sufficient time to

evaluate the quality criteria of each release of the product

[34].

6. ISSUES and CHALLENGES of RE in

COMPONENT BASED SOFTWARE

DEVELOPMENT (CBSD)
The component is a non-trivial, independent and replaceable

part of a system that fulfils a clear function in the context of a

well defined architecture [35]. The CBSD method includes

purchasing or constructing components. The development

from already build COTS (Commercial off the Shelf) reusable

components provides shorter development time and reduced

cost benefits. The requirement engineering activities for

acquiring, modeling and managing stakeholder needs are

somewhat different in CBSD system. The issues and

challenges of CBSD are as follows.

6.1 Requirements Instability:
The market of COTS products is volatile and changes rapidly.

New components for a specific application domain are

delivered continuously in the market. The customer evaluates

the current version of component and may update the

requirement specifications. This instability may affect the next

version of the component and continuous change in

requirement specifications [26].

International Journal of Computer Applications (0975 – 8887)

Volume 99 – No.15, August 2014

40

6.2 Non-triviality in Selection Process of

COTS Components:
There is no standardized process of selecting COTS

components as per the requirement. Generally, most

organizations perform the process of selecting COTS

components in an ad-hoc manner. The evaluation criteria for

selecting COTS components are subjective and ambiguous.

So customer needs are not effectively described and the

process turns out to be non-trivial [26].

6.3 Evolving Requirements during

Development:
When the evaluation process of selected components is in

progress, the new COTS product version may be released with

added functionalities for the same domain. Another issue is of

new requirement discovery. At the moment when system is

integrating the component, some requirements will be known

after the initial evaluation [26].

6.4 Additional Constraints Specification:
The COTS components require wrapper and glue which

isolate unwanted functionalities and provide functionality to

integrate different components. Generally, the COTS

components are not interoperable with some systems. The

system will include additional constraints due to mismatch of

components with system’s architecture. The connectors are

not reliable and taken from 3rd party during the construction

process. This will give negative contribution to system’s

overall quality attributes and one has to rely on included

components [26]. At the time of specification, additional

desired constraints have to be incorporated to assist the

developer to adapt and tailor COTS components.

7. ISSUES and CHALLENGES of RE in

SERVICE ORIENTED SOFTWARE

DEVELOPMENT (SOSD)
Service-Oriented Computing (SOC) is emerging as the most

prominent and promising software development method to

deal with the constantly increasing information and software

system complexity. This method is increasingly adopted by

public and private organizations and its introduction makes

‘Software as a Service” a unique possibility.

The concept of web service [36] enables the creation of new

business models with the help of Service Oriented

Architecture (SOA) which provides the environment for

distributed, modular and collaborative software development

[37][38]. The SOSD is using various service definition and

access standards like WSDL (Web Services Description

Language) [39] and SOAP (Simple Object Access Protocol)

[40].

The observed issues and challenges of RE in SOSD

specifically related to service specification, discovery,

including NFR in service description are described in the next

section.

7.1 Refinement of Specifications after

Service Discovery:
Service discovery is the important phase which deals with

locating correct service according to user requirements [41].

The discovery can be easily done with the help of UDDI, but

SOSD should comprise of automated dynamic service

discovery with high level language support.

To improve the completeness of requirement specifications,

iterative discovery process is required [42][43][44]. From the

consumer’s side, specification refinement progress leads

towards iterative discovery based on changed specifications.

As the numbers of services are increasing continuously over

the internet, it is a challenging task to find and select

appropriate service amongst all available automatically.

7.2 Innovation and Creativity in RE:
Requirements engineering is a creative process in which

stakeholders and designers work together to create ideas for

new systems that are eventually expressed as requirements.

The innovation provides insights in developer’s mind to apply

innovative ideas in creating desired properties of the future

system [45].

The SOSD requires new ideas, innovations in discovering,

managing and giving required service to consumers. The

service provider has to quickly update the service according to

the market demand and competition. The service provider can

conduct brainstorming techniques and RAD/JAD workshops

to make tangential reference for creative thinking in service

development. [45][46].

7.3 Customer Acceptance on Service

Change:
The consumer’s requirements appear progressively while

using service in practice. To manage the evolved services is a

challenging task because shallow changes are localized but

deep changes may have cascading effect on the other

enterprise services or services of the business partner [47].

The SOSD method should connect RE and design phase for

redesign and redeployment of the services when consumer’s

specifications will change and evolve over time. When

services are brought from hybrid environments, there may be

semantic gaps which should be taken care of in RE and design

part as well [48]. Before mapping web service towards design,

customer acceptance is highly preferable.

7.4 Clustering of Services as per

Requirement:
Services can be grouped according to their domain and area.

Clustering process of service is desirable and it puts services

in the respective category. This process will reduce the

searching and discovery time and increases the domain

knowledge of the stakeholder. The SOSD requires a good

knowledge management strategy for clustering of services

[49].

7.5 Identifying Business Process at RE

Level:
Web services are essential assets of the organization if

properly composed with business requirements. Identification

process of services by their business goals and intentions is a

challenging task. The web service is playing an important role

in inter and/or intra organization business process

management [50]. Business processes of the organization can

be easily converted into services.

The Services are designed to automate business requirements.

Most of the current service description methods fail in

describing business processes in detail [51]. This will raise the

problem of business-software realization [52] and developed

services are not conforming to the business requirements.

7.6 Lack of NFR Description:
The syntax based technique like WSDL describes services in

terms of various operations. But WSDL fails in including and

describing NFR [53] [54]. Moreover, SOA projects are based

International Journal of Computer Applications (0975 – 8887)

Volume 99 – No.15, August 2014

41

on business processes and their transformation is based on

composition of services and not on use cases.

7.7 Changes at SLA Level:
Changes in already operational services may require the

adaptation in Service level agreement (SLA) also. Once

services are in operation, handling changes at the SLA level is

difficult to implement because one has to involve customer

and change the rules, policies and protocols for using and

composing the services [53][55].

8. SUMMARY AND ANALYSIS OF THE

REVIEW
Every software development method is having its own

strength and weakness and developed with evolving market

needs; however some of the issues and challenges affect

further stages of all software methods. After the analysis and

observation of the review, an applicability table (table 1) is

created which maps the challenges and issues found and

present in different software development methods. Issues and

challenges are categorized as per their applicability with

different methods. The comment in the cell shows the reason

for its inclusion. The symbols of the applicability are: √ -

Applicable, ⌐ - Partially Applicable, ≠ - Not Applicable

Table1. Applicability of Issues and Challenges to Software Development Methods

No. Issues and Challenges Traditional

Software

Development

Object

Oriented

Software

development

Agile Software

development

CBSD SOSD

1 Improvement in

Requirement Quality

√ √ √ √ √

2 Inadequate Requirement

Management

√ √

⌐

Frequent short

releases

⌐

Managed

through

component

repository

⌐

Managed

through UDDI

3 Lack of Standardized RE

Activities

√ √ √ √ √

4 Communication Gap √

Formal

Communication

√ √

Informal

Communication

√ ⌐

Exists till

service

discovery

5 Integration of RE Models √ √ √ √ √

6 Business Agility

√ √ ≠ ≠ ≠

Considered in

service

specification

7 Innovation and Creativity in

RE

√ √ √

Creativity in

agility and in

release

√ √

Creativity in

developing

services

8 Elicitation Technique

Selection

√ √ √ √ √

9 Requirement Reuse ≠

Static artifacts

√ √ √

√

10 Conflicting Viewpoints

Amongst Teams

(Global S/W engineering)

√ √ √ √ √

11 Missing Requirements √ √ ⌐

Discovered in

next iteration

⌐

Stated at the

time of updates

⌐

Discovered

when Refining

Service

Specification

12 Excessive Requirements

Volatility

≠ √ √ ⌐

Exists till

component

configuration

⌐

Exists till

service

composition

International Journal of Computer Applications (0975 – 8887)

Volume 99 – No.15, August 2014

42

13 Accuracy and Performance

Measurement of

Requirements

√ √ √ √ √

14 Semi-Automatic Process of

Generic Template Creation

√ √ √ √ √

15 Interactive RE Tool Support √ √ √ √ √

16 Realization of Security at

RE Level

√ √ √ √ √

17 Conflicting and Ambiguous

Requirements

√ √ ⌐

Can be clarified

in next iteration

⌐

Component

repository

removes

ambiguity

⌐

UDDI manages

service conflicts

18 Elimination of Irrelevant

Requirements

√ √ ⌐

Eliminated in

next iteration

≠ ≠

19 Prioritization of

Requirements

√ √ √ √ √

20 Schedule Variations ≠ ≠ √ ≠ ≠

21 Customer Involvement √

Low

Involvement

√ ≠

Continuous

customer

interaction

⌐

Involved till

searching

⌐

Involved till

discovery

22 Incompatible Interface ≠ ≠ √ ≠ ≠

23 Poor Requirement

Traceability

√ √ ≠ ≠ ≠

24 Immutable requirements √ √ ≠

Late changes

can be adapted

≠ ≠

25 Elicitation End Point √ ≠ ≠ ≠ ≠

26 Functional Requirement

Modeling

⌐

Few modeling

techniques

√

Difficult to

model domain

object

≠ ≠ ≠

27 User Centric Requirement

Analysis

√ √ ≠ ≠ ≠

28 Poor emphasis of NFR in

Requirement Modeling

≠

Less use of use

case modeling

√

Security

privacy

patterns in use

cases

⌐

Handled at agile

modeling

⌐

Considered in

component

specification

⌐

Considered in

service

specification

29 Requirements Instability ≠

Stable once

specified

≠ ⌐ √

Volatility in

COTS products

⌐

30 Additional Constraints

Specification

≠ ≠ ≠ √

Mismatch of

components

≠

Universal web

service

31 Non-triviality in Elicitation ≠ ≠ ≠ √

In component

selection

√

In service

selection

32 Evolving Requirement

during Development

≠

Requirements

are frizzed

≠ √ √

New

specification

after evaluation

√

Changes in

specification

after

orchestration

33 Refinement of Specification

after Service Discovery

≠ ≠ ≠ √

Discovery of

components

√

Discovery of

web service

34 Consumer Acceptance on

Service Change

≠ ⌐

Reuse of

requirements

⌐

Emergent

changes

accommodated

√ √

Changes in

consumer

specification

35 Clustering of Services as

per Requirement

≠ ≠ ≠ √ √

International Journal of Computer Applications (0975 – 8887)

Volume 99 – No.15, August 2014

43

36 Identifying Business

Process at RE Level

≠ ⌐

Business

object

identification

√ ⌐

Business

component

mapping

√

Mapping web

service in intra/

inter

organization

37 Lack of NFR Description √

NFR

specification is

missed

√ √ √ √

Service

description

methods not

includes NFR

38 Requirement Change

Management

⌐

Changes in

Agreement

⌐

Changes in

Agreement

⌐

Changes in

Agreement

√

Change rules of

components

configuration

√

SLA change

√ Applicable ⌐ Partially Applicable ≠ Not Applicable

There are 38 issues and challenges covered pertaining to

various software development methods. The figure 1 indicates

the distribution showing applicability of issues and challenges

in different methods. It is observed that agile software

development and SOSD methods are having less applicable

issues and challenges as compared to the other methods.

Figure 1 Distribution for applicability of issues and

challenges

The table 1 describes the issues and challenges in 3 different

levels. The industries have come across with many significant

issues and challenges which are observed in all the software

development methods. The surfaced and filtered issues and

challenges are listed below in table 2 showing 10 points out of

38 issues and challenges which may have rigorous effect in all

the software development methods. All these points should be

resolved and handled properly at all the levels of software

development.

Table 2 Significant Issues and Challenges

No. Issues and Challenges

1 Improvement in Requirement Quality
2 Lack of Standardized RE Activities
3 Integration of RE Models

4 Elicitation Technique Selection
5 Conflicting Viewpoints Amongst Teams

(Global S/W engineering)
6 Accuracy and Performance Measurement of

Requirements
7 Semi-Automatic Process of Generic Template

Creation
8 Interactive RE Tool Support
9 Realization of Security at RE Level
10 Prioritization of Requirements

9. CONCLUSION AND FUTURE

DIRECTIONS
This review is an attempt to study issues and challenges of RE

in major software development methods. In particular, this

review revealed five methods and their RE problems observed

in the industry. The observed key points are: improvement in

requirement quality, realization of NFR at RE level, elicitation

technique selection, communication gap with customers, poor

requirements traceability, RE tool support, prioritization of

requirements, requirement change management. Although the

industrial practices have resolved some issues and facilitate

some solutions to overcome it, the significant challenges still

remain unattended.

These problems give insights to RE practitioner and

researcher to produce high quality of software in terms of a

final product, agile partial release, a COTS component or a

web service. While we cannot generalize from one review,

further research is needed to explore the unidentified

challenges in all the software methods and developing

methodologies or techniques to resolve them at the RE state

itself. Moreover, the recent challenges faced of RE in SOSD

like creativity in RE, refinement of service specification,

inclusion of NFR in service description languages and

clustering of services need attention of RE researchers for

developing automated/semi-automated RE framework for

SOSD.

10. REFERENCES
[1] Sommerville I, Software engineering. 7thEdition.

Addison-Wesley, Harlow, 2004

[2] Hall T, Beecham S, Rainer A, 2002, “Requirements

problems in twelve software companies: an empirical

analysis”, Software IEEE Proceeding 149(5):153–160

[3] Boehm B, Papaccio P, 1988, “Understanding and

controlling software costs”, IEEE Trans Software Eng

14(10):1462–1477

[4] Leffingwell D, “Calculating your return on investment

from more effective requirements management”,

American Programer, 1997, 10(4), pages 13–16

[5] Project failure: Standish Group – Chaos report 1995,

http://pmbullets.blogspot.in/2010/04/project-failure-

standish-group-chaos.html Accessed on 7 July 2014

[6] Betty H.C. Cheng, Joanne M. Atlee, “Research

Directions in Requirement Engineering”, Future of

Software Engineering (FOSE’07) IEEE, 0-7695-2829-

5/07, 2007

http://pmbullets.blogspot.in/2010/04/project-failure-standish-group-chaos.html

International Journal of Computer Applications (0975 – 8887)

Volume 99 – No.15, August 2014

44

[7] J. McDermott and C. Fox, “Using abuse case models for

security requirements analysis”, In Proceeding of the

IEEE Comp. Sec. Appl. Conf., 1999.

[8] S. Uchitel, J. Kramer, and J. Magee, “Negative scenarios

for implied scenario elicitation”, In Proceeding of ACM

SIGSOFT Foundation on Soft. Eng. (FSE), pages 109–

118, 2002.

[9] A. van Lamsweerde, “Elaborating security requirements

by construction of intentional anti-models”, In

Proceeding of the IEEE Int. Conf. on Soft. Eng. (ICSE),

pages 148–157, 2004.

[10] C. B. Haley, R. C. Laney, J. D. Moffett, and B.

Nuseibeh, “The effect of trust assumptions on the

elaboration of security requirements”, In Proceeding of

the IEEE Int. Req. Eng. Conf. (RE), 2004, pages 102–

111.

[11] F. Swiderski and W. Snyder, Threat Modelling,

Microsoft Press, Redmond, WA, USA, 2004.

[12] C. Heitmeyer, “Applying ‘Practical’ formal methods to

the specification and analysis of security properties”, In

Proceeding of Information Assurance in Computer

Networks (MMMACNS 2001), LNCS 2052, St.

Petersburg, Russia, May 2001. Springer-Verlag.

[13] P. Giorgini, F. Massacci, J. Mylopoulos, and N.

Zannone, “Modeling security requirements through

ownership, permission and delegation”, In Proceeding of

the IEEE Int. Req. Eng. Conf. (RE), 2005, pages 167–

176

[14] R. Crook, D. Ince, and B. Nuseibeh, “On modelling

access policies: Relating roles to their organisational

context”, In Proceeding of the IEEE Int. Req. Eng. Conf.

(RE), pages 157–166, 2005.

[15] M. Broy, “The grand challenge in informatics:

Engineering software-intensive system”, IEEE

Computer, 39(10):72–80, 2006.

[16] M. O. Reiser and M. Weber, “Managing highly complex

product families with multi-level feature trees”, In

Proceeding of the IEEE Int. Req. Eng. Conf. (RE), pages

146–155, 2006.

[17] Donald Firesmith, “Common Requirements Problems,

Their Negative Consequences, and the Industry Best

Practices to Help Solve Them”, Journal of Object

Technology, Volume 6, No.1, January-February 2007

[18] Paive Parviainen, “Global Software Engineering,

Challenges and Solution framework”, Thesis of doctor of

philosophy, University of Oulu, May 2012

[19] D. E. Damian, D. Zowghi, “An insight into the interplay

between culture, conflict and distance in globally

distributed requirements negotiations”, In Proceedings of

the 36th Annual Hawaii International Conference on

System Sciences (HICSS ’03), Big Island, Hawaii, USA,

6-9 Jan. 2003. IEEE Computer Society

[20] Nikita Nahar, Pujita Wora, Sakthi Kumaresh, “Managing

Requirement Elicitation Issues Using Step-Wise

Refinement Model”, IJASCSE, Volume 2, Issue 5, 2013

[21] http://www.optimusinfo.com/blog/2014/02/04/traditional

-vs-agile-software-development.html, Accessed on 8th

July 2014

[22] Marian STOICA, Marinela MIRCEA, Bogdan GHILIC-

MICU, “Software Development: Agile vs. Traditional”,

Informatica Economică vol. 17, no. 4,2013

[23] S. Ambler, “Agile Requirements Modeling”, 2012

available at

http://www.agilemodeling.com/essays/agileRequirement

s.htm, Accessed on 10 July 2014

[24] Joseph E. Kasser, “Object-Oriented Requirements

Engineering and Management”, Systems Engineering

Test and Evaluation (SETE) Conference, 2003

[25] H. Kaindl, “Is object-oriented requirement engineering of

interest?”, Journal of Requirement Engineering

(Springer-Verlag), Vol. 10(1), pp. 81-84, 2005

[26] Carina Alves, Joao Bosco Pinto Filho, Jaelson Castro,

“Analysing the Tradeoffs among Requirements,

Architectures and COTS Components”, In proceeding of

Workshop on Requirement Engineering, Buenos Aires,

Argentina, November, 2001

[27] Lu C., Chu W.C., Chang C., Wang C.H., “A Model-

based Object-oriented Approach to Requirement

Engineering (MORE)”, 31st Annual Intl. Computer

Software and Applications Conf., (COMPSAC 2007),

Vol.1, pp:153-156, 2007.

[28] Anandi Mahajan, Dr. Anurag Dixit, “A Survey of

Various Object Oriented Requirement Engineering

Methods”, COMPUSOFT, An International Journal of

Advance Computer Technology, Volume 2, Issue 1, Jan

2013

[29] R. Saranya, “Survey on Security Measures of Software

Requirement Engineering”, International Journal of

Computer Applications (0975-8887) Volume 90 – No 17,

March 2014

[30] Matoussi, Abderrahman and Laleau, Regine, “A Survey

on Non-Functional Requirements in Software

Development Process”, Paris: University of Paris,

Technical Report TR-LACL-2008-7, 2008.

[31] Philip g. Armour, “Agile… and Offshore”,

Communications of the ACM, Vol. 50, Issue 1, ACM

Press New York, NY, USA, dated: Jan 2007.

[32] N. Ganesh, S. Thangasamy, “Issues identified in the

Software Process due to Barriers found during Eliciting

Requirement on Agile Software Projects: Insights from

India”, International Journal of Computer Applications,

Volume 16- No.5, February 2011

[33] M. Usman Malik, Nadeem Majeed Chaudhry, Khurram

Shahzad Malik, “Evaluation of Efficient Requirement

Engineering Techniques in Agile Software

Development”, International Journal of Computer

Applications, Volume 83 – No.3, December 2013

[34] A. Eberlein, F Maurer, “Requirement Engineering and

Agile software development”, 12th International

workshop on enabling technologies, 2003

[35] Brown A. W., Wallnau K.C., “Engineering of

Component-Based Systems, Component-Based Software

Engineering”, Software Engineering Institute, IEEE

Computer Society Press, 1996

[36] M. Bichler, K.J. Lin, “Service-Oriented Computing”,

IEEE Computer, March 2006, pp. 59-68

International Journal of Computer Applications (0975 – 8887)

Volume 99 – No.15, August 2014

45

[37] Erl, T., “SOA Principles of Service Design”, Prentice

Hall PTR, 2007

[38] M. MacKenzie, et al. “Reference model for service

oriented architecture 1.0”, Technical report, Oasis, 2006

[39] W3C: Web services description language (WSDL),

version 2.0 part 1: Core language. Technical Report,

W3C, 2007.

[40] W3C: Simple Object Access Protocol (SOAP), Version

1.2, 2007. http://www.w3.org/TR/soap, Accessed on 6

July 2014

[41] G. Spanoudakis, A. Zisman, and A. Kozlenkov, “A

service discovery framework for service centric

systems”, Proceedings of the IEEE International

Conference on Services Computing (SCC’05), Citeseer,

2005, pp. 251–259

[42] K. Zachos, N. Maiden, X. Zhu, and S. Jones,

“Discovering web services to specify more complete

system requirements,” Lecture Notes in Computer

Science, vol. 4495, 2007, p. 142.

[43] K. Zachos, N. Maiden, X. Zhu, and S. Jones, “Does

Service Discovery Enhance Requirements Specification?

A Preliminary Empirical Investigation”, Service-

Oriented Computing: Consequences for Engineering

Requirements, 2006, SOCCER'06, 2006, pp. 2-2.

[44] K. Zachos, N. Maiden, and R. Howells-Morris,

“Discovering Web Services to Improve Requirements

Specifications: Does It Help?”, Requirements

Engineering: Foundation for Software Quality, pp. 168-

182.

[45] N. Maiden, A. Gizikis, and S. Robertson, “Provoking

creativity: Imagine what your requirements could be

like”, IEEE software, vol. 21, 2004, pp. 68-75.

[46] N. Maiden, S. Robertson, and J. Robertson, “Creative

requirements: invention and its role in requirements

engineering,” Proceedings of the 28th international

conference on Software engineering, ACM, 2006, p.

1074.

[47] Ralyte Jolita, “Viewpoints and Issues in Requirements

Engineering for Services”, In Proceedings of IEEE 36th

Computer Software and Applications Workshops

COMPSACW 2012, pp. 341-346. IEEE Computer

Society

[48] S. Lichtenstein, L. Nguyen, A. Hunter, “Issues in IT

Service-oriented requirements engineering,” Australasian

Journal of Information Systems, vol. 13, 2005, p. 176.

[49] Muneera bano, Naveed Ikram, “Issues and challenges of

Requirement Engineering in Service Oriented Software

Development”, Fifth International Conference on

Software Engineering Advances, IEEE 2010 978-0-

7695-4144-0, DOI 10.1109/ICSEA.2010.17

[50] C. Rolland, R. S. Kaabi and N. Kraiem, “On ISOA:

Intentional Services Oriented Architecture”, Proceeding

of the 19th International Conference on Advanced

Information Systems Engineering, CAiSE 2007, LNCS

4495, Springer 2007, pp 158-172.

[51] J. Cardoso, A. Barros, N. May, and U. Kylau, “Towards

a unified service description language for the internet of

services: Requirements and first developments,” In

Proceedings of the IEEE 7th International Conference on

Services Computing, 2010, pp. 602-609.

[52] B. Shishkov, J. L. G. Dietz, and M. van Sinderen,

“Closing the Business-Application GAP in SOA

challenges and solution directions”, In 2nd International

Conference on Software and Data Technologies,

Proceedings, 2007, vol. SE, pp. 333-336.

[53] Teka, Abelneh Y. and Condori-Fernandez,

Nelly and Sapkota, Brahmananda, “A Systematic

Literature Review on Service Description Methods”, In

8th International Working Conference on Requirements

Engineering: Foundation for Software Quality, REFSQ

2012, 19-22 March 2012, Essen, Germany.

[54] M. Papazoglou, Web Services: Principles and

Technology, 1st ed. Prentice Hall, 2007.

[55] G. Di Modica, V. Regalbuto, O. Tomarchio, and L. Vita,

“Enabling re-negotiations of SLA by extending the WS-

Agreement specification”, In Proceedings of the IEEE

International Conference on Services Computing, 2007,

pp. 248-251.

IJCATM : www.ijcaonline.org

http://doc.utwente.nl/view/author/336483023.html
http://doc.utwente.nl/view/author/336483023.html
http://doc.utwente.nl/view/author/329069578.html

