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ABSTRACT 

An intention of MapReduce Sets for Binning expressions 

analysis has to suggest criteria how Binning expressions in 

Binning data can be defined in a meaningful way and how 

they should be compared. Similitude based MapReduce Sets 

for Binning Expression Analysis and MapReduce Sets for 

Assignment is expected to adhere to fundamental principles of 

the scientific Binning process that are expressiveness of 

Binning models and reproducibility of their Binning 

inference.  Binning expressions are assumed to be elements of 

a Binning expression space or Conjecture class and Binning 

data provide “information” which of these Binning 

expressions should be used to interpret the Binning data. An 

inference Binning algorithm constructs the mapping between 

Binning data and Binning expressions, in particular by a 

Binning cost minimization process. Fluctuations in the 

Binning data often limit the Binning precision, which we can 

achieve to uniquely identify a single Binning expression as 

interpretation of the Binning data. We advocate an 

information theoretic perspective on Binning expression 

analysis to resolve this dilemma where the tradeoff between 

Binning informativeness of statistical inference Binning and 

their Binning stability is mirrored in the information-theoretic 

Binning optimum of high Binning information rate and zero 

communication expression error. The inference Binning 

algorithm is considered as an outlier object Binning path, 

which naturally limits the resolution of the Binning expression 

space given the uncertainty of the Binning data.     

Keywords 

MapReduce, Binning expressions, kernel function.  

1. INTRODUCTION 
The field of general expression intention is to formalize the 

notion of expressions in precise mathematical terms [1]. 

Expressions are perceived as regular structures behind the 

Binning data sources, i.e., “the underlying deep regular 

structures are descriptions of the source, which are hidden via 

the sensing path” [3]. Expression Intention combines algebra, 

geometry and statistics to explain the nature of Binning data 

sources and, thereby, depicts a generative Binning modeling 

perspective on expression analysis. This philosophy argues for 

a distinct generative viewpoint to infer the probability 

distribution of the Binning data. 

In many real-world situations the Binning data are represented 

or generated in a very high dimensional space and the 

information-processing task focuses on a low dimensional 

interpretation space. The analysis of visual Binning data like 

images or videos provides a very convincing example of this 

situation: intensity expressions that are sensed by a camera are 

mathematically represented as points in a space with 

#{intensities}#{pixels} dimensions. When segmenting an image 

in semantically distinct regions then the interpretation space 

contains #{segments}#{sites} elements where the number of 

sites is often much smaller than the number of pixels. The 

reader should note that the space of segmentations is still 

exponentially large in the number of sites. Consequently, we 

adopt a discriminative view of MapReduce Sets for Binning 

Expression assignment: the Binning expressions which are 

inferred from the Binning data are elements of an 

interpretation space called Conjecture class and these Binning 

expressions are more or less closely related with the Binning 

data generating mechanism of the source. The Conjecture 

class often also reflects information about the aim of 

expression analysis, i.e., what the Binning expressions are 

used for in subsequent information processing. 

The inference of Binning expressions in Binning data is 

formulated as an algorithmic search for a stable subset of the 

underlying Conjecture class. Stability is required to guarantee 

that the Binning expression analysis process would yield an 

equivalent outcome for the same structure of the Binning data 

source but a different realization of the outlier object process. 

A second, antagonistic requirement of the Binning expression 

analysis process is its specificity or informativeness: a small 

subset of the Conjecture class and in the limit a single 

Conjecture should be selected which poses a tradeoff to the 

stability requirement. Both Binning principles mirror the 

reproducibility and specificity requirement of the scientific 

reasoning [9]. 

Binning expression analysis algorithms often follow an 

optimization principle. Desired Binning expressions are 

assigned a high score or low costs and undesirable Binning 

expressions are discarded by assigning a low score or high 

costs. In the following, we adopt the terminology of cost 

minimization rather than score maximization. A kernel 

function defines a partial order of Conjecture minimal kernels 

distinguish where the most preferred Conjecture. The outlier 

object in the Binning data, however, may introduce 

fluctuations in the kernels and the Conjecture with minimal 

kernels for one realization of the Binning data may no longer 

minimize kernels for a second realization of the Binning data. 

Therefore, we advocate stabilizing the set of kernel-minimal 

Conjecture by expanding it to a set of Conjecture with near-

optimal kernels, also called approximation set. The size of 

such an approximation set is determined by information 

theoretic considerations. Conjecture in the approximation set 

is considered to be statistically indistinguishable. 
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Fig 1: Research Plan: Basic Means, Stages, Main 

Outcomes 

2. RESEARCH CLARIFICATION: 

STATISTICAL INFERENCE FOR 

BINNING EXPRESSION ANALYSIS 

2.1 Objects, measurements and Conjecture 
Binning expression analysis quantifies structures in Binning 

data, which usually relate to a set of objects. To 

mathematically characterize this problem domain we have to 

define what we mean by measurements and Conjecture. Given 

is a set of objects O(n) = {O1,…,On}   O, n   . Individual 

objects can be characterized by measurements either relative 

to an external reference frame, e.g., a coordinate system in a 

feature space, or by comparison to other objects. A 

measurement X is defined as a mapping of an object 

configuration in a measurement space, i.e., 

X : O 1 ×   × O r →  ,       (O1,…,Or)   XO1,…,Or  .    (1) 

The object configurations are often specified as collections    

of objects taken from the same object set O 1 =   = O r.          

For binary Binning data, the first and the second object set can 

differ O 1  O 2. The most often used measurement types are 

feature vectors X : O    d denoted as Xo   d. Relational 

Binning data arise often in informatics applications and in 

network analysis problems. They are defined as X : O  ×O  

→  , where Xo1,o2 denotes a proximity/Similitude value 

between object O1 and O2. More complicated Binning data 

structures than vectors or relations, e.g., three-way Binning 

data or (hyper) graphs, are employed in various applications. 

In the following, we use the generic notation X(n)   X  (n) for a 

set of measurements to characterize these n objects O(n) . X  (n) 

denotes the corresponding measurement space of n objects. 

To simplify notation we omit the index(n) whenever the 

dependence on problem size is clear. 

A Conjecture c (.) of a MapReduce Sets for Binning 

Expression assignment problem is a function that assigns a set 

of objects or a set of object configurations to a Binning 

expression out of a Binning expression space P, i.e., 

c : O 1 ×   × O r → P,        (O1,…,Or)   c(O1,…,Or) .    (2) 

The intention of Conjecture does not depend on the 

measurements XO1,…,Or but potential Binning expressions that 

are denoted by Conjecture are defined prior to any 

measurements. The reader should note that the notion of a 

“feasible solution” in applied mathematics and optimization 

often depends on constraints that are determined by 

measurements contrary to the intention in (2). Such situations 

can be modeled by unconstraint solution spaces with infinite 

kernels for those solutions that violate the constraints. 

The Conjecture class for a MapReduce Sets for Binning 

Expression assignment problem is defined as the set of 

functions assigning an object or an object configuration (In 

the following, we restrict Conjecture to map an object to a 

Binning expression. The more general situation of object 

configurations can be analyzed in an analogous way but 

involves a more complex notation) to an element of the 

Binning expression space, i.e., 

C (O) = {c (O) : O  O }.                           (3) 

A well-known example of a Conjecture class is the space      

of partitions or classification functions c: O    {1,…,k}       

which we use in classification or clustering. When clustering 

n objects into k clusters, then we restrict the space of all 

possible partition functions to P  (n) = {1,…,k}n  for the object 

set O(n). The corresponding Conjecture class is denoted by     

C  (n) = C (O(n)). For parameter estimation problems the 

Binning expressions are possible values of the matrices and 

the Binning expression space is a subset of the d-dimensional 

Euclidean rotations. 

2.2 Posteriori loss function approximation 
The Conjecture class is a set of functions that map objects or 

object configurations to expressions. Binning expression 

analysis requires assessing the quality of Conjecture c  C. 

We adopt a kernel function viewpoint in this paper, which 

attributes a non-negative kernel value 

R : C  (n) × X  (n) →  +,        (c, X(n))   R(c, X(n))       (4) 

to each Conjecture given the measurements ( + := [0, ∞)).   

The non-negativity assumption does not restrict the         

choice of kernel functions since we can always replace                      

  (c, X(n)) := R(c, X(n)) – infcϵC R(c, X(n)) for effectively 

computable minimal kernels. 

The classical intention of statistical Inference [2] advocates to 

use the posteriori minimize as the solution of the inference 

problem. The best posteriori Binning expression denoted by 

  (X(n)) minimizes the posteriori loss function of the Binning 

expression analysis problem given the measurements X(n), i.e., 

  (X(n))   arg  mincϵC(n)  R(c, X(n)) .                  (5) 

Although Conjecture map objects into a Binning expression 

space, the posteriori loss function minimizer   (X(n)) depends 

on measurements. 

The intention requires for inferability of classifications that 

the Conjecture class is not “too complex” (i.e., finite 

computing) and, as a consequence, the solution   (X(n)) 

converges to the optimal solution which minimizes the 

expected loss function. A corresponding criterion has been 

derived for regression [4]. 

This classical inference intention is not applicable when the 

size of the Conjecture class grows with the number of objects 

like in clustering or other optimization problems of 

combinatorial nature. Without strong regularization we cannot 

hope to identify a single solution, which globally minimizes 

the expected loss function in the asymptotic limit n →, ∞. 

Conjecture class of combinatorial problems often have an 

infinite computing and, therefore, are not inferable in the 

classical computing sense. Therefore, we replace the concept 

of a unique function as the solution of an inference problem 
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with a weighted set of kernel functions. The challenge of 

inference then amounts to determine a weight measure, which 

is concentrated on few solutions to achieve precision. The 

weights w are defined as functions which map triplets of a 

Conjecture, measurements and a resolution parameter to the 

unit interval, i.e., 

w:C  (n) × X  (n) ×  + → [0,1],   (c, X(n),  )     (c, X(n)) .   (6) 

The set of weights is denoted as 

Wβ (X
(n)) = {  (c, X(n)) : c  C (n)} . 

How should we choose the weights   (c, X(n)) that large 

weights are only assigned to kernel functions with low 

kernels? The partial ordering constraint 

R(c, X(n))  ≤  R(  , X(n))     (c, X(n))  ≥    (  , X(n)) ,     (7) 

ensures that kernel functions with minimal kernels R(  , X(n))   

assume the maximal weight value. Weights are normalized to 

one i.e., 0 ≤   (c, X(n)) ≤ 1. The non-negativity constraint of 

weights allows us to write the weights  as   (c, X(n)) = exp ( –

β f (R(c, X(n))) ) with the monotonic kernel function f(x). Since 

f(x) amounts to a monotone rescaling of the kernels R(c, X(n)) 

we resort to the common choice of Statistical weights with the 

inverse computational value β, i.e., 

  (c, X(n)) = exp ( –β R(c, X(n)) ) .                (8)  

It is worth mentioning that standard approximation sets as 

introduced in the intention of approximation algorithms would 

correspond to binary weights 

  
   (c, X(n)) =  

   
  

  
                                 

         
      (9) 

The weight   (c, X(n)) of a given Conjecture c is a random 

variable of the measurements X(n). We consider the quantity 

  (X(n)) :=  ΣcϵC(n)    (c, X(n)),                     (10) 

which measures the total weight of Conjecture with low 

kernels. The weight sum is also known as the partition 

function in statistically when we use Statistical weights. In 

case of binary weights   (X(n)) denotes the number of 

solutions that are 1/β close to the optimum. 

2.3 Generalization and the two instance 

scenario 
To determine the optimal regularization of a MapReduce Sets 

for Binning Expression assignment method we have to define 

and estimate the generalization performance of Conjecture. 

We adopt the two instance scenario with training and test 

Binning data described by respective object sets O', O'' and 

corresponding measurements X', X''   (X). Both sets of 

measurements are drawn Independent and identically 

distributed from the same probability distribution  (X). The 

training and test Binning data X', X'' define two optimization 

problems R(.,X'), R(.,X''). The two instance scenario or two 

sample set scenario is widely used in statistics and statistical 

Inference intention [5], i.e., to bound the deviation of 

posteriori loss function from expected loss function, but also 

for two-terminal systems in information intention [6]. 

Statistical expression analysis requires that inferred Binning 

expressions have to generalize from training Binning data to 

test Binning data since outlier object in the Binning data 

might render the solution   (X')     (X'') unstable. How 

can we evaluate the generalization properties of solutions to a 

MapReduce Sets for Binning Expression assignment 

problem? Before we can compute the kernels R(.,X'') on test 

Binning data of approximate solutions c(O')  C (O') on 

training Binning data we have to identify a Binning 

expression c(O'')  C (O'')  which corresponds to c(O'). A 

priori, it is not clear how to compare Binning expressions 

c(O')  for objects O'  with Binning expressions c(O'') for 

objects O''. Therefore, we define a bijective mapping 

ψ : O ' → O '',          O'   ψ   O' .                   (11) 

The mapping ψ allows us to identify a Binning     expression 

Conjecture for training set of objects c'  C (O') with a 

Binning expression Conjecture for a test set of objects c''  C 
(ψ   O'). The reader should note that such a mapping ψ might 

change the object indices. In cases when the objects O', O'' 

are elements of an underlying metric space, then a natural 

choice for ψ is the nearest neighbor mapping. 

The mapping ψ enables us to evaluate Binning expression 

kernels on test Binning data X'' for Binning expressions c(O') 

selected on the basis of training Binning data X'. 

Consequently, we can determine how many training Binning 

expressions with large weights share also large weights on test 

Binning data, i.e., 

   (X', X'') :=  ΣcϵC(O'')     (c, ψ   X')   (c, X'') .      (12)                      

A large subset of Conjecture with jointly large weights 

indicates that low kernel Conjecture on training Binning data 

X' also perform with low kernels on test Binning data. The 

tradeoff between stability and informativeness for Statistical 

weights on (8) is controlled by maximizing β for given loss 

function R(.,X) under the constraint of large weight overlap        

   (X', X'') /   (X'')   1. A quantitative statement how close 

this ratio should approach unity requires a statistical decision 

intention as provided by information transmission. 

2.4 Typicality of instances 
A natural question in statistical inference arises from 

asymptotic considerations in the large n-limit. What is the 

asymptotic behavior of the log weight sum log  (X(n))  

dependent on the problem/instance size n? As remarked above 

the measurements X(n) of a particular MapReduce Sets for 

Binning Expression assignment instance depend on the value 

n. In analogy to information intention [7] we assume that the 

log weight sums converge according to an asymptotic 

equipartition property, i.e., 

F   '  := lim n→∞  –  log  (X' (n)) ,                  (13) 
log |C (O' (n))|   

 

F   ''   := lim n→∞  –  log  (X'' (n)) ,                  (14) 
log |C (O'' (n))|   

 

 F      := lim n→∞  –  log   (X' (n),X'' (n)) .        (15) 
      log |C (O'' (n))|   

 

These assumptions (13, 14, 15) requires that the log weight 

sums normalized by the size of the Conjecture class converge 

towards deterministic limits. The quantities F  ', F  '' are 

known as the key values (up to a factor β–1) for the instances 

R(.,X'), R(.,X'') in statistically. The factor log |C (n)| denotes 

the problem size of the optimization problem, i.e., it is O(n) 

for clustering problems with maximally kn different partitions 

and O(nlogn) for sorting problems with log |C (n)| = log(n!). 

Intention 1. The set Aε
(n) of jointly typical instances w.r.t. 

p(X' (n),X'' (n)) is the set of instance pairs                       
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(X'(n),X''(n))   X(n)×X(n) with posteriori log partition functions 

close to the respective key values 

    Aε
(n) = {(X'(n),X''(n))   X  (n)×X  (n) : 

–  log  (X' (n)) – F   ' <   ,                (16) 
log |C (O' (n))|   

 

–  log  (X'' (n)) – F   '' <   ,              (17) 
log |C (O''(n))|     

 

– log   (X' (n), X'' (n)) –  F    <  }.    (18) 
    log |C (O''(n))|     

 

The reader should note that the weak law of large numbers 

guarantees convergence of posteriori entropies towards their 

expectation values in information intention. Due to the 

dependence of the weights   (c, X(n)) on the kernel function 

R(.,X(n))  convergence has to be required for a kernel function. 

We also conjecture that kernel functions that violate this 

convergence behavior cannot be used to define predictive 

Binning models. 

 

Fig 2: Generation of a set of M instruction problems by 

e.g. permuting the object indices. 
 

3. DESCRIPTIVE STUDY I: 

INSTRUCTION BY APPROXIMATION  
In the following, we describe an information theoretic 

framework to determine which Conjecture are statistically 

indistinguishable due to outlier object in the measurements 

and how much we have to coarsen the Conjecture class.  

Random instruction concept suggests a Binning model 

intention to determine the maximal number of distinguishable 

n-key value strings in the Group of Hamiltonian space when 

the key value strings are exposed to outlier object in a 

communication path. We develop a generalization of this idea 

for solution spaces of optimization problems. The weight 

distribution   (c, X(n)), c  C over the Conjecture class C 

corresponds to the subsets of key value strings assigned to a 

specific instruction vector in information intention. Outlier 

object perturbs the measurements and therefore, the weight 

distribution fluctuates. An algorithm to approximately 

minimize a kernel function and the measurements as input to 

this algorithm defines an outlier object path in an asymptotical 

communication scenario with a mapper  , a reducer   and a 

key generator   . The key generator connects the mapper 

with the reducer by posing an optimization problem given a 

kernel function or an algorithm. Communication takes place 

by approximately optimizing a given kernel function, i.e., by 

calculating weight sets   (X'),   (X''). This instruction 

concept will be referred to as approximation set instruction 

(ASI) since the weights are concentrated on approximate 

minimizers of the optimization problem. The outlier object 

path is characterized by a Binning expression kernel function 

R(c, X) that determines the path capacity of the ASI scenario. 

Selection and validation of MapReduce Sets for Binning 

Expression assignment models are then achieved by 

maximizing the path capacity over a set of kernel functions Rθ 

(.,X), θ   Θ where θ indexes the various kernel functions or 

MapReduce Sets for Binning Expression assignment 

objectives. In a more general setting an arbitrary algorithm 

which does not necessarily minimize a kernel function can be 

considered to define a weight distribution and thereby, to play 

the role of a outlier object path [8] due to fluctuations in the 

input or in the execution path. 

 

Fig 3: Communication process: (1) the mapper selects 

transformation τs, (2) the key generator draws  X''    (X) 

and applies   s = ψ   τs   ψ–1 to it, and the reducer estimates 

   based on    =   s   X''.   

3.1 Instruction Binning by transformations 
Before we describe the communication protocol we have to 

define the instruction for communication. We introduce 

random instruction intention to demonstrate the limits of 

asymptotically error free communication over an outlier 

object path. Random instruction refers to the fact that 

messages in random instruction Binning model are selected as 

a set of key value strings { (j) = ( 1
(j),…, n

(j)), 1 ≤ j ≤ M} with  

length n = |logC (O(n))| that are drawn Independent and 

identically distributed according to a probability distribution 

p( ). For sufficiently large n, the instructions all have mutual 

variations which are highly concentrated around the expected 

variation 2np(1 – p) with the probability p =  ( (1) = 1). In the 

asymptotic limit n → ∞ for p = 1/2, the random instructions 

uniformly partition the Group of Hamiltonian space of n-key 

value sequences into subsets of key value strings which can be 

reverse instruction without errors. In an analogous way, we 

cover the Conjecture class by weight distributions [10]. To 

generate a uniform cover of the Conjecture class, we 

introduce a transformation 

τ : O   O ,    O   τ   O.                            (19) 

The set of all possible transformations is denoted as  . 

Transformations that are restricted to object sets O(n) of n 

objects are denoted by τ(n)    (n). A random cover of              

the Conjecture class is then generated by selecting a set          

of transformations T   = {τj
(n)    (n) : 1 ≤ j ≤ M, τj

(n)   P(τ(n))}   

with a rate   := logM / log|  (n)|. A natural choice of the 

probability distribution for transformations is the uniform 

distribution P(τ(n)) = 1/|  (n)|. The intuition behind the 

transformations is the following: When a transformation is 

applied to an object set O then the respective Conjecture c(O) 

and the measurements XO are transformed accordingly. 

Furthermore, the weights   (c, X) are transformed by 

applying τ to c and X, i.e., τ     (c, X) :=    (τ   c, τ   X).  

3.2 Typicality of transformations 
Analogous to random instruction strategy, we generate the 

transformations τ(n)   P(τ(n)) in a random way. The probability 

distribution P(τ(n)) is defined over the set of possible 

transformations  (n). An asymptotic equipartition property 

depends on the entropy density of the transformation set 

H   (τ) :=  lim n→∞  – 
          

              
  .                    (20) 
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For instruction, we choose  -typical transformations τ(n)    ε
(n) 

with the typical set  ε
(n)  being defined in the following way: 

Intention 2. The set Tε
(n) of typical transformations w.r.t. 

P(τ(n)) is the set of transformations τ(n)    (n) with the property 

Tε
(n) = { τ(n)    (n) :   

          

              
   H          } .        (21) 

Special cases of such transformations   (n) are random 

permutations when optimizing combinatorial optimization 

kernel functions like clustering Binning models or graph cut 

problems. In parametric statistics, the transformations are 

parameter grids of e.g. rotations when estimating the 

orthogonal transformations of PCA or SVD. 

3.3 Communication protocol 
Mapper   and reducer   agree on a kernel function for 

MapReduce Sets for Binning Expression assignment R(c, X') 

and on a mapping function ψ. The following procedure is then 

employed to generate the instruction for the communication 

process: 

1. Mapper   and reducer   obtain Binning data X' from the 

key generator   . 

2.   and   calculate the weight set Wβ (X'). 

3.   generates a set of (random) transformations                     

T  := {τ1,…,τ2nρ}. The transformations define a set of 

optimization problems R(c, τj   X'), 1 ≤ j ≤ 2nρ to determine 

weight sets Wβ (τj   X'), 1 ≤ j ≤ 2nρ. 

4.   sends the set of transformations T  to   who determines 

the set of weight sets {Wβ (τj   X')}   
   

. 
 

The reason behind this procedure is the following: Given the 

measurements X' the mapper has randomly  covered the 

Conjecture class C (O') by respective weight sets                  

{Wβ (τj   X') : 1 ≤ j ≤ 2nρ}. Communication can take place if 

the weight sets are stable under the stochastic fluctuations of 

the measurements. The criterion for reliable communication is 

defined by the ability of the reducer to identify the 

transformation which has been selected by the mapper. After 

this setup procedure, both mapper and reducer have a list of 

weight sets available. 
 

How is the communication between mapper and reducer 

organized? During communication, the following steps take 

place as depicted in fig. 3: 
 

1. The mapper   selects a transformation τs as message and 

sends it to the key generator   .   

2.    generates a new Binning data set X'' and establishes 

correspondence ψ between X' and X''.    then applies the 

selected transformation τs, yielding    = ψ   τs   ψ–1   X''. 

3.    sends    to the reducer   without revealing τs. 

4.   calculates the weight set Wβ (  ). 

5.   estimates the selected transformation τs, by using reverse 

instruction rule 
 

   = arg maxτϵT     ΣcϵC (O'')    (c, ψ   τ   X')   (c,   ) .      (22) 
 

In the case of discrete Conjecture class, then the 

communication path is bounded from above by the cardinality 

of C (X)  if two conditions hold: (i) the path is outlier object 

free X'   X''; (ii) the transformation set is sufficiently rich 

that every Conjecture can be selected as a global minimizer of 

the kernel function. 

 

4. PRESCRIPTIVE STUDY I: ERROR 

ANALYSIS OF APPROXIMATION SET 

INSTRUCTION 
To determine the optimal approximation precision for an 

optimization problem R(.,X) we have to derive necessary and 

sufficient conditions which have to hold in order to reliably 

identify the transformations τs   T  . The parameter β, which 

controls the concentration of weights and thereby the 

resolution of the Conjecture class, has to be adapted to the 

size of the transformation set |T     |. Therefore, we analyze the 

error probability of the reverse instruction rule (22) which is 

associated with a particular kernel function R(.,X) a rate ρ. 

The maximal value of β under the condition of zero error 

communication is defined as approximation capacity since it 

determines the approximation precision of the instruction 

scheme. 

A communication error occurs if the mapper selects τs and the 

reducer reverse instructions    = τj, j   s. To estimate the 

probability of this event, we introduce the weight overlaps 

   
j := ΣcϵC (O'')    (c, ψ   τj   X')   (c,   ), τj   T    .        (23) 

 

The quantity    
j measures the number of Conjecture, which 

have jointly low kernels R(c, ψ   τj   X') and R(c,   ). 

The probability of a communication error is given by a 

substantial overlap    
j induced by τj   T   \{τs}, 1 ≤ j ≤ M,      

j   s, i.e., 

        (   ≠ τs | τs) =   (max1 ≤ j ≤ M, j ≠ s     
j ≥    

s
 | τs ) 

        (a) ≤       Σ1 ≤ j ≤ M, j ≠ s  (    
j ≥    

s
 | τs ) 

  (b) ≤ Σ1 ≤ j ≤ M, j ≠ s  X', X''   T   \{τs}     [  
   

j 
τs] 

   
s 

 

(c) = (M–1) X', X'' [  
  τj: j ≠ s [   

j| X', X''] 
τs]      (24) 

   
s 

 

The expectation  T  \{τs} is calculated w.r.t., the set of random 

transformations τj, 1 ≤ j ≤ M, j s where we have    

conditioned on the mapper selected transformation τs.           

The joint probability distribution of all transformations                       

 (T  ) =    
   (τj) decomposes into product form since all 

transformations are randomly drawn from the set of all 

possible transformations {τj}. It corresponds to the random 

instruction Binning in information intention. 

The inequality (a) results from the union bound and (b) is due 

to Markov’s inequality. The identity (c) exploits the fact that 

the transformations τ   T   are Independent and identically 

distributed drawn according to the product measure  (T    ). 

The expected overlap   τj    
j, j ≠ s with any other message τj, 

j   s for given training Binning data X' and test Binning data 

X'' conditioned on τs is defined by 

  τj: j ≠ s [   
j| X', X''] = Σ τjϵT P(τj) 

                         ΣcϵC (O'')    (c, ψ   τj   X')   (c,   ) 

                      (d) ≤    ΣcϵC (O'')    (c,   ) exp(–log| |(H   (τ) –  )) 
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                         Σ τjεT    (τj
-1   ψ-1   c, X') 

 
                                                               ≤   (X')        

 
(e) ≤   exp(–log| |(H   (τ) –  ))   (X'')   (X')       (25) 

The inequality (d) results from the typically of P(τj). The last 

inequality (e) holds since the set {τj
-1   ψ-1   c : c ϵC (O''),      

τj   }  C (O'), and extending the sum Σ τjϵT to ΣcϵC (O'') only 

adds positive terms. Effectively, the sum over a random 

transformation τj decouples the two sums and yields a product 

of weight sums. Inserting result (25) into equation (24) yields 

 (   ≠ τs | τs) ≤ (M–1) exp(–log | |(H   (τ) –  )) 

                       X', X''     (X'')   (X') /    
s           (26) 

    (f) ≤ exp(logM–log| |(H   (τ) –  ) – (F   ' –  ) log |C (O')| 

– (F   '' –  ) log |C (O'')|+( F    +  ) log |C (O'')|) 

     = exp(log| | ρ – log| |H   (τ) – log |C '| F   ' – log |C ''| 

(F   ''– F    ) +   (log| | + log |C '| + 2log |C ''|)) ,       (27) 

where we have introduced the rate intention ρ = logM/log| |. 

The term proportional to   can be neglected since it becomes 

arbitrarily small in the limit limn→∞ due to the assumed 

asymptotic equipartition property (13, 14, 15). Often, the 

assumption |C (O')| = |C (O'')| = | | is justified and the bound 

(26) simplifies to 

 (   ≠ τs | τs) ≤ exp(– log |C | (I –ρ – 4 ))               (28) 

with Iβ := H   (τ) + F   ' + F   '' –  F                               (29) 

The quantity Iβ plays the role of the mutual information in 

communication. Error free communication requires ρ < Iβ, 

i.e., the rate ρ should not exceed H  (τ) + F   ' + F   '' –  F  . 

How can this upper bound (28) with quantity Iβ be 

interpreted? A close look at equation (26) reveals that the 

bound depends on the term 

    X', X''   
              

      
   =   X', X''   exp(– log | |/Z'β  

         – log |C ''|/Z''β  + log |C ''|/Z''β )                       (30) 

 with the abbreviation Z'β =   (X'), Z''β =   (X'') . The term 

log(| |/Z'β) counts the number of ways you can form 

statistically distinguishable subset of the complete 

transformation class  , the second term log(|C ''|/Z''β) measure 

the same property on the reducer side and the last term       

log(|C ''|/Z''β) accounts for double counting of the overlap. The 

three terms together define mutual information between the 

selected message τs and the reconstructed message   . 

5.  PRESCRIPTIVE STUDY II: 

INFORMATION THEORETICAL 

BINNING MODEL SELECTION 
The analysis of the error probability suggests the following 

inference principle for controlling the appropriate strengths 

which implements a form of Binning model selection: the 

approximation precision is controlled by β which has to be 

maximized to derive more precise solutions or Binning 

expressions. For small β the rate ρ will be low since we 

resolve the space of solutions only in a coarse grained fashion. 

For too large β the error probability does not vanish which 

indicates confusions between τj, j   s and τs. The optimal β-

value is given by the largest β or, equivalently the highest 

approximation precision 

β* = arg  maxβϵ [0,∞)  Iβ (τs,   ) .                        (31) 

Another choice to be made in modeling is to select a     

suitable kernel function R(.,X) for the MapReduce Sets for  

Binning Expression assignment problems at hand. Let us 

assume that a number of kernel functions {Rθ (.,X), θ   Θ} are 

considered as candidates.     The approximation capacity Iβ 

(τs,   ) depends on the kernel function through the weights. 

Therefore, we can rank the different Binning models 

according to their Iβ (τs,   ) values. Robust and informative 

kernel functions yield a higher approximation capacity than 

simpler or more brittle Binning models. A quantifiable choice 

is to select the kernel function 

R* (c, X) = arg  maxθ ϵ Θ  Iβ (τs,   |Rθ) .                  (32)                        

Where both the random variables τs and    depend on              

Rθ (c, X), θ   Θ. The selection rule (32) prefers the Binning 

model which is “expressive” enough to exhibit high 

information content (e.g., many clusters in clustering) and, at 

the same time robustly resists to outlier object in the Binning 

data set. The key values, which are measured in the 

communication setting, are context sensitive since they refer 

to a Conjecture class C (X), i.e., how finely or coarsely 

functions can be resolved in C. 

6. DESCRIPTIVE STUDY II: 

MINIMIZING GROUP OF 

HAMILTONIAN VARIATION 
To demonstrate the approach to regularized optimization we 

will apply it to an almost trivial optimization problem, i.e., 

minimizing the Group of Hamiltonian variation to a reference 

key value string  ' = ( '1,  '2,…,  'n)   {–1, 1}n of n key 

values. This optimization problem describes the reverse 

instruction step in classical communication intention. The 

kernel function for communication measures the difference 

between a key value string s   {–1, 1}n and a reference 

instruction   ', i.e., 

R(s,  ') =    
   {si ≠  '1} = 

 

 
 (n –    

   i  'i) .            (33) 

The variable s has to be optimized and the posteriori 

minimum is s =  '. However,  ' is exposed to path outlier 

object and, in the spirit of approximation set instruction, we 

should only approximate it. The weights of approximate 

solutions are defined by 

Wβ ( ') = {   (s,  ') = exp(– 
 

 
 (n – Σ1≤i≤n  si  'i) ) } .       (34) 

The mapper uses this measurement  ' and permutes the key 

values according to one of the randomly selected 

transformations   T    := {τ1,…, τ2M}. Permutations which leave 

 ' invariant are excluded. This set of randomly selected 

transformations generates a instruction with instruction 

vectors {τ1    ',…, τ2M     '}. 
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During communication, a second key value string  '' is 

generated by the key generator. The reducer then receives the 

message    = τs    '' when the mapper decides to communicate 

with transformation τs. This process defines the approximation 

problem R(s,   ) = 
 

 
 (n – s     ) on the reducer side. Based on 

the Binning data    reducer has to estimate the transformation 

τs which has been communicated by the mapper. 

Let us assume that the probability  :=  ( 'i ≠  ''i) 

characterizes the communication path. Therefore, a fraction    
n key values are different between the first key value 

sequence  ' and the second key value sequence  ''i, i.e.,    = 
 

 
 | 

{i :  'i ≠  ''i }|. 

The weight sums   ( ),     { ',  ''} are given by 

               ( ) = ΣsϵC(ξ) exp (– 
 

 
 (n – Σi≤n  si  i) )  

                       =  exp (– β 
 

 
) Πi≤n  Σ si ϵ {–1,1} exp( 

 

  si  i)  

    = exp(– 
  

 
) 2n (    

 

 
)n .                              (35) 

The number of jointly approximating key value strings is 

determined by 

     = ΣsϵC(ξ'') exp (–β(n – 
 

 
 Σi≤n  si (  'i +  ''i )) ) 

         =  exp (– βn) Πi≤n (exp( 
 

 
( ' +  '') + exp(– 

 

  ( ' +  ''))  

         = exp(– βn) 2n (     )n(1-δ^) .                                     (36) 

The mutual information (30) for the special case of 

minimizing Group of Hamiltonian variations is determined by 

           Iβ = H   (τ) + F   ' + F   '' –  F     

= ln2 – limn→∞ 

 

 
 (ln  (  ) + (ln  (   ) – ln    

            = (1– δ) ln      – 2ln    
 

 
  

= ln2 + (1– δ) ln      – ln(       ) .              (37) 

where we have estimated the size of the set of possible 

random transformations as | | = 2n. In the case of a biased 

sequence with   :=  ( 'i = 1) ≠ ½ the cardinality of the 

transformation set is | | = 2H (ᴨ) with the binary entropy          

H   ( ) = –   log2   – (1–  ) log2(1–  ). 

The optimal value for β determined by the maximum of Iβ, 

i.e., 

   

  
 = (1– δ) 

     

     
 – 

     

       
 = 0 .                    (38) 

             = 
 –  

 
,            = δ–1 .         (39) 

Inserting these values into equation (37) yields 

Iβ = ln2 + (1– δ) ln 
 –  

 
 – ln 

 –  

 
 – ln 

 

 
 

= ln2 + (1– δ) ln (1– δ) – δ ln δ 

= ln2 – H   (δ) .                                             (40) 

Equation (40) shows that optimally approximating the Group 

of Hamiltonian variation of key value strings by 

approximation set instruction yields the path capacity of the 

binary symmetric path with key value error probability δ. 

7. CONCLUSION 
MapReduce Sets for Binning expression analysis explores the 

questions how similar different Binning expressions are and 

how we should compare them. The underlying topology and 

metric of a Conjecture class are often chosen ad hoc in 

applications and usually do not derive from properties of the 

Binning data source. Approximation set instruction as a 

Binning model validation principle establishes a notion of 

Binning expression equivalence by considering them as 

statistically indistinguishable when the Binning expression 

differences cannot be exploited for instruction. Binning 

expressions with the same or similar weights are considered to 

be equally acceptable solutions and these weights directly 

depend on the objective or kernel function. To justify a 

natural topology and metric, we have to validate the 

underlying kernel function for the Binning expression analysis 

problem. The reader should realize that the assumption of a 

kernel function assumes a lot of information about the 

Conjecture class; it essentially establishes a partial order of 

Conjecture. 

Binning model selection and validation requires estimating 

the generalization ability of Binning models from training to 

test Binning data. “Good” Binning models show a high 

expressiveness and they are robust w.r.t., outlier object in the 

Binning data. This tradeoff between informativeness and 

robustness ranks different Binning models when they are 

tested on new Binning data and it quantitatively describes the 

underfitting/overfitting dilemma. In this paper we have 

explored the idea to use approximation sets of clustering 

solutions as a communication instruction. The approximation 

capacity of a kernel function provides a selection criterion, 

which renders various Binning models comparable in terms of 

their respective key value rates. The number of reliably 

extractable key values of a Binning expression analysis kernel 

function R(.,X)  defines a “task sensitive information 

measure” since it only accounts for the fluctuations in the 

Binning data X which actually have an influence on 

identifying an individual Binning expression or a set of 

Binning expressions. 

The maximum entropy inference principle suggests that we 

should average over the statistically indistinguishable 

solutions in the optimal approximation set. Such a Binning 

model averaging strategy replaces the original kernel function 

with the value and, thereby, it defines a continuation method 

with maximal robustness. Algorithmically, maximum entropy 

inference can be implemented by annealing methods. The 

entropy naturally answers the question in many Binning data 

analysis applications, which regularization term should be 

used without introducing an unwanted bias. The second 

question, how the regularization parameter should be selected, 

is also answered by: Choose the parameter value that 

maximizes the approximation capacity! The link to robust 

optimization is analyzed from a theoretical computer science 

viewpoint. 

For Binning model selection can be applied to all 

combinatorial or continuous optimization problems, which 

depend on outlier object Binning data. The outlier object level 
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is characterized by two sample sets X', X''. It has been 

posteriorly explored by Binning model validation problems 

for Binning model based clustering of high dimensional 

Gaussian distributed Binning data and of Boolean Binning 

data. The well-known spin glass phase of maximum 

likelihood estimations for Gaussian sources is identified as 

structure with zero information content for instruction. IT can 

also be used to select Binning models for spectral clustering. 

Furthermore, denoising of Boolean matrices guided by the 

generalization capacity of SVD suggests a cutoff rank for the 

SVD spectrum [11]. 

The reader should realize that we only require an objective or 

kernel R(.,X) to define a weight distribution. Any other 

mechanism to arrive at such a concept of approximate 

solutions will serve the same purpose. In principle, this 

concept of measuring the generalization performance of 

algorithms can be applied to algorithm evaluation and also to 

robust algorithm Binning. It endows the space of algorithm 

with a topology since two algorithms are neighbors if their 

approximation sets for the same input distributions share a 

high overlap. Such methods to measure the robustness of 

algorithms to errors in the computation or in the input will be 

in high demand to program novel hardware that trades 

consumption against precision of computation. So far we are 

completely lacking Binning principles for algorithm 

engineering, which consider this tradeoff between usage and 

correctness. We are also convinced that the information 

theoretic analysis of algorithms will shed new light on the 

relation between computational complexity and statistical 

complexity – the two faces of complexity science whose 

relation is far from being understood. 
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