
International Journal of Computer Applications (0975 – 8887)

Volume 98– No.9, July 2014

23

Allocation of Join and Semi Join Operations based on

Dynamic Selectivity Factor in a Distributed Database

Query

Richa Arora
Student
DCSE

GNDU, Amritsar

Ankita Bhalla
Student
DCSE

GNDU, Amritsar

R. S. Virk, Ph.D
Asociate Professor

DCSE
GNDU, Amritsar

ABSTRACT

Distributed databases are gaining popularity due to

advancement in technology of computer networks and due

to need of the business. In distributed databases as data is

located at different sites, so to get access to a particular

type of data requires a query to be subdivided into

subqueries and executing those subqueries at different

sites. To accomplish this join operator is used. But using

join sometimes incurs extra communication cost when

complete relation is not required for join. In such cases to

reduce the communication cost involved between two sites

semi join is used. But semi join is not always useful. In

this paper join operator allocation has been done

dynamically by dynamically calculating selectivity factor

for join and semi join for the dynamic distributed database

simulated in MATLAB. This dynamic selectivity factor is

given as input to the simulator built in MATLAB based on

which fragment size for join operation is calculated. The

simulator by using the genetic algorithm computes the

minimum communication cost involved in executing the

query by using combination of join and semi join.

Keywords: Distributed Database, Join, Semi Join,

Selectivity Factor.

1. INTRODUCTION

A collection of files or tables constitute a database.

Database Management System (DBMS) is a set of

programs that enable a user to interact with database like

storing and retrieving information from the database. Now

data sets are becoming enormous that they are almost

impossible to store in centralized databases. So data is

managed through Distributed Database Systems. In

Distributed database systems data is stored at multiple

locations. It may be stored in multiple computers located

in the same physical location, or may be dispersed over

a network of interconnected computers.

Figure 1: Distributed Database System.

Query processing is complex in distributed environment

than in centralized environment because a large number of

parameters affect the performance of distributed queries,

like relations may be fragmented and/or replicated. In

distributed databases as databases are located at

geographically different locations, so a simple query that

needs to access databases from various locations can be

decomposed into sub queries. Those queries have to be

executed in such a way that it provides an appearance of a

centralized database system. For this query has to be

optimized so that it is executed in minimum possible time.

1.1 Join and Semi Join

In distributed databases as data is distributed among

different sites so in order to execute any query there is

need to combine the data from two sites. This can be

accomplished by using joins. For the join operation table

from one site has to be transmitted to other site for join to

take place. It is not necessary that whole of the relation is

required for join. It may be possible that only few values

of the relation are required. In such a case transmitting the

whole relation to other site will create redundancy of data;

it will also incur extra communication cost. In such a case

only part of the relation which is required for joining two

tables should be passed to the other site. This is

accomplished by using semi join. The basic idea behind

semi join is that it reduces the quantity of data and data

communication among sites [1]. In case of semi join, the

unique join attribute values from one relation are sent to

the site containing second relation. Based on the attribute

values of first relation, records from the second relation are

selected by joining the two relations. Then this reduced file

is transmitted to the site containing first relation. If all the

records of the second relation are selected during semi join

operation then there is no use of using semi join. In that

case instead of decreasing, it will increase the

communication cost [2].

2. RELATED WORK

Query processing in distributed databases is a complex

task due to following two reasons:

 Data must be allocated to different sites.

 It must be efficiently accessed, processed and

communicated to meet the desired retrieval and

update requirements by user.

Genetic algorithm provides an efficient way to solve the

above two problems.

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.9, July 2014

24

In [3] Rho and March have designed a nested genetic

algorithm that iteratively allocates data to nodes and to

meet the efficient retrieval and update requirements where

to process and access the data.

Optimizing join queries is a major problem in distributed

database systems, particularly when files are replicated at

different nodes in the network. Rho and March [2] in their

paper developed a genetic algorithm based solution for

efficient query execution plans.

The most important concern in query processing in

distributed databases is minimizing the query execution

time. So different allocation of sub queries to sites and

their execution plans need to be optimized based on query

type. This subquery allocation problem is NP-Hard.

Therefore, Narasimhaiah Gorla and Suk-Kyu Song [4] had

optimized the sub query allocation using genetic

algorithm. It had been found that GA produced better

results in much less time than exhaustive method.

In distributed databases data replication, join node

selection, join order, and reduction by semi join all have

significant impact on the efficiency of the distributed

database system. Rho Sangkyu, T. March Salvatore [5] in

their paper had compared the various distributed database

design models. They have found that replication was most

effective for retrieval intensive and high selectivity

situations. Join node selection, join order, and reduction by

semi join were most effective for balanced retrieval/update

and low selectivity situations.

3. COST MODEL

The cost in distributed database systems is in terms of

execution time. A general formula for determining the total

time is as follows [6]:

Total time = TCPU * #insts + TI/O * #I/Os + TMSG * #msgs +

TTR * #bytes

Where, TCPU is the time of a CPU instruction, TI/O is the

time of a disk I/O, TMSG is the fixed time of initiating and

receiving a message. Thus the communication time of

transferring #bytes of data from one site to another is

assumed to be a linear function of #bytes:

CT (#bytes) = TMSG+TTR *#bytes

The main concentration of this paper will be on CT

(communication time) [6].

4. DATABASE STATISTICS

In distributed databases the main factor affecting the

execution strategy is the size of intermediate relations that

are produced at each level of query execution. When a

subsequent operation is located at a different site, the

intermediate relation must be transmitted over the network.

Therefore, it is of prime interest to estimate the size of the

intermediate results of relational algebra operations in

order to minimize the size of data transfers [6]. In this

paper fragment size for join operations are calculated

dynamically at run time by connecting to the dynamic

database available. Consider a relation R having attributes

A = {A1, A2…An} and fragmented as R1, R2… Rr. The

selectivity factor of an operation is the proportion of tuples

of an operand relation that participate in the result of that

operation [6].

4.1 Selectivity Factor for Join

The join selectivity factor, denoted SFJ, of relations R and

S is given by [7]:

 SFJ(R, S) =
 R

 R

Where, card () returns tuples after joining relations R

and S, card(R) returns tuples in relation R, card(S) returns

tuples in relation S. SFJ is a real value between 0 and 1 [6].

4.2 Selectivity Factor for Semi Join

An approximation for the semi join selectivity factor is

given as [7]:

 SFSJ =

Where card (A(S)) returns the tuples of relation S that

satisfy the joining criteria and card (dom[A]) returns the

number of distinct values of attribute A. If R.A being a

foreign key of S (S.A is a primary key). In this case the

semi join selectivity factor is 1 since =

 [6]. Based on these selectivity factors

fragment size of join and semi join operations are

calculated dynamically through following formula:

 In case of using Join, frag_size= SFJ * size of

relation.

 In case of Semi Join, frag_size= SFSJ * size of

relation

In this paper in place of #bytes, #blocks are used as

here size of relation is considered to be static and it is

considered in blocks. This frag_size determines the

number of blocks (#blocks) which helps in computing

CT, communication cost involved in transmitting the

relations.

5. EXPERIMENTAL SETUP

The following bank database schema has been assumed for

experimental analysis:

account = (account_number, branch_name, balance)

branch = (branch_name, branch_city, assets)

depositor = (customer_name, account_number)

borrower = (customer_name, loan_number)

loan = (loan_number, branch_name, amount)

customer = (customer_name, customer_street,

customer_city)

Figure 2: Schema Diagram for bank enterprise [8].

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.9, July 2014

25

The Experimental query considered is as follows:

Select the details of those customers who are both

depositor and borrower in the bank.

5.1 SQL Query:

Select * from account,branch, borrower, depositor,

loan,customer where

customer.customer_name=depositor.customer_name AND

customer.customer_name=borrower.customer_name AND

borrower.loan_number=loan.loan_number AND

loan.branch_name=branch.branch_name AND

branch.branch_name=account.branch_name

5.2 Query Tree:

Figure 3: Query Tree for Distributed Database.

Figure 4: Screen shot for computing the selectivity

factor for join operation.

Figure 5: Screen shot for computing the selectivity

factor for semi join operation.

As database is dynamic in nature, it may be possible that

certain tuples are deleted or new tuples are added. So if the

cardinality of relation changes, the results will change. It

may be possible that in more than one situations semi join

will become beneficial. So the experiment was conducted

for four different instances of database with varied

cardinalities but for the same query. This dynamically

calculated selectivity factor value is passed to the

simulator which is built in MATLAB which dynamically

computes the intermediate fragment size for join

operations. Fragment size is then multiplied with

communication coefficients to get the communication cost

involved genetically. Lesser is selectivity factor lesser will

be the communication cost involved.

6. RESULTS

The results shown here are taken at four different instances

of dynamic database with varied cardinalities each time. In

the graphs J1, J2, J3, J4 represent the following:

J1 = account branch

J2 = depositor borrower

J3 = borrower loan

J4 = borrower loan customer

For the first join operation that is taking place between

account and branch, branch name being the foreign key in

account relation and primary key in branch relation so in

this case SFSJ (Selectivity factor for semi join) will be 1.

Also changing the cardinalities of these two relations will

not have any effect on SFSJ. This is shown in figure 6 and

figure 7. So for the next instances of database this join for

relation account and branch has been omitted and in figure

8 and figure 9 SFJ and SFSJ has been shown for join

operations J2, J3 and J4. Table 1, Table 2, Table 3, Table 4

represent relations with different cardinalities at different

instances of database.

Table 1: Cardinalities for 1st instance of the database.

Relation Cardinality

account 100

branch 80

depositor 70

borrower 50

loan 55

customer 123

Table 2: Cardinalities for 2nd instance of the database.

Relation Cardinality

account 100

branch 80

depositor 70

borrower 50

loan 55

customer 300

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.9, July 2014

26

Table 3: Cardinalities for 3rd instance of the database.

Relation Cardinality

account 100

branch 80

depositor 70

borrower 9

loan 80

customer 300

Table 4: Cardinalities for 4th instance of the database.

Relation Cardinality

account 50

branch 80

depositors 70

borrower 6

loan 100

customer 200

Figure 6: Selectivity Factor for 1st instance of the database.

Figure 7: Selectivity Factor for 2nd instance of the database.

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.9, July 2014

27

Figure 8: Selectivity Factor for 3rd instance of the database.

Figure 9: Selectivity Factor for 4th instance of the database.

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.9, July 2014

28

Figure 10: Percentage reduction in communication cost for semi join operation for various instances of database.

After experimenting with the actual dynamic database on

calculating the selectivity factor dynamically it is seen that

in very less cases SFSJ<SFJ. Whenever selectivity factor

for semi join comes less than join then only semi join

should be used otherwise join should be used. Whenever

very few tuples are required which is a very rare case for

join operation only then semi join should be used

otherwise normal join should be used.

Figure 10 denotes the percentage reduction in

communication cost wherever semi join is beneficial. In

this graph first bar represent that only at one place semi

join was beneficial for 1st instance of database and

percentage improvement is written above the bar. Similar

is the case for 2nd instance of database. For the 3rd and 4th

instance at two places it is proving to be beneficial than

joins. Although in very less cases semi join is coming out

to be beneficial but percentage reduction in

communication cost is coming as high as 90% in those

cases. So semi join greatly reduces the communication cost

involved but in very few cases.

7. CONCLUSIONS

Distributed database system is a collection of databases

that can be stored at different computer network sites. To

combine data from multiple sites joins are used. In this

paper a simulator has been designed in MATLAB which

genetically computes the minimum cost involved for

executing a query in distributed database. Main

concentration is to reduce the communication cost

involved by using combination of joins and semi joins.

From the results it has been found that in very less cases

semi join has proven to be beneficial. It has been observed

that when very few tuples are required for joining the

relation at other site only then semi join should be used

and semi join is taking 90% less communication cost than

join.

8. ACKNOWLEDGMENTS

Authors are highly indebted to Dr. R. S. Virk, Associate

Professor, DCSE, GNDU, Amritsar for his precious

guidance from time to time.

9. REFERENCES

[1] Lin Zhou, Yan Chen, Taoying Li, Yingying Yu, 2012,

The Semi-join Query Optimization in Distributed

Database System, CITCS

[2] Rho Sangkyu, T. March Salvatore, 1997, Optimizing

distributed join queries: A genetic algorithm approach

[3] Rho Sangkyu, T. March Salvatore, 1994, A Nested

Genetic Algorithm for Distributed Database Design,

IEEE

[4] Narasimhaiah Gorla and Suk-Kyu Song, 2010,

Subquery Allocations in Distributed Databases Using

Genetic Algorithms, JCS&T Vol. 10 No.1

[5] Rho Sangkyu, T. March Salvatore, 2002, A

Comparison of Distributed Database Design Models,

Seoul Journal of Business Vol. 8 No. 1

[6] M. Tamer Ozsu, Patrick Valduriez, 2011, Principles of

Distributed Database Systems, Third Edition,

Springer

[7] A. R. Hevner, S. B. Yao, 1979, Query processing in

distributed database systems IEEE

[8] Abraham Silberschatz, Henry F.Korth, S. Sudarshan,

2006, Database System Concepts, Fifth Edition

IJCATM : www.ijcaonline.org

