
International Journal of Computer Applications (0975 – 8887)

Volume 98– No.9, July 2014

6

From Concept to Algorithmic Implementation: Optimized

Sharing of Resources in Cloud Computing Environment

P. K. Suri

Dean, Research and Development; Chairman

HCTM Technical Campus, Kaithal, Haryana, India

Himanshi Goyal
HCTM Technical Campus

ABSTRACT
Cloud computing environment is referred as a collection of

services which are delivered via the Internet. It depends upon

sharing of resources to maximize the utilization of shared

resources, and to achieve consistency and economies of scale.

Resource management is very important for every system.

Performance, functionality and cost are the three basic factors

that are affected by resource management for system

evaluation. Cloud resource management means to allocate and

schedule computing resources. In this paper, various resource

allocation and scheduling strategies are considered that helps

in achieving high resource utilization and users demands.

Various resource allocation strategies that are discussed in this

paper are based on various parameters such as: location, time,

topology, applications, hardware, priority, QoS etc. to meet

the needs of cloud application. Similarly, scheduling

strategies are based on parameters: cost, time, location, Qos,

priority, load-balancing etc. to achieve high performance

computing and best system throughput.

General Terms
Resource Scheduling, Simulator

Keywords
Cloud Computing, Resource Management, Resource

Allocation Strategies, Scheduling Strategies

1. INTRODUCTION
As the name suggests, cloud computing allocates resources of

local servers or personal devices, enabling applications to be

handled via a resource cloud. Cloud computing has been

lifeline of present day systems that rent computing resources

on-demand, billing is done on pay-as-you-go basis, and enable

geographically segmented users to work on the same physical

infrastructure. Thus, cloud computing acts as a mirage of

infinite computing resources to cloud users so that the

availability can be increased or decreased as per the resource

consumption rate.

1.1 History
Centralized Computing: At the onset of the ‘60s and ’70s, a

centralized computing model was considered to be the best

way of resource sharing. It consisted of supercomputers

strategically and remotely located in an internal data center.

These supercomputers, with all the software, network and

storage devices etc. were not only expensive but under-

utilized, costing millions of dollars and hours of wasted

manpower and energy. Revolutionized phase of the 1980s

brought demand for increasingly more powerful and less

expensive microprocessors. The way for low costs and

simplicity was led by personnel computers at that time.

Distributed Computing [1]:

 Peer to peer network: A peer-to-peer (P2P) network is

defined as distributed network architecture with

interconnected nodes ("peers"). The idea of peer-to-peer

sprang up in 1960s, with creation of ARPANET network

to share files within US research facilities. Despite such

success, the first peer-to-peer network was introduced

after almost 50 years in 1999.

 Cluster Computing: Cluster computing computes of basic

computing in which several nodes in the same physical

location, directly connected with very high speed

connections (LAN) to operate as a single device.

 Grid and Utility Computing played its part in the 1990s

as the Internet and the World Wide Web found their way

into the general computing world moving from obsolete

centralized models to Internet-based computing. Term

utility computing finds its roots from the real world

where service providers maintain basic utility services,

ranging from electrical power, gas, and water to

consumers. Consumers pay in return to service providers

based on basic usage. All grid/cloud platforms enact as

utility service providers. On the better part, cloud

computing offers a broader concept than utility

computing. Grid computing can be largely related to

large-scale cluster computing. Grid computing systems

are more heterogeneous, loosely coupled and

geographically dispersed as compared to cluster

computing systems. For processing a single task, grid

computing uses the capabilities of different computing

units. A task is divided into sub-tasks and then assigned

to different machines and on completion they are sent

back to the machine which is responsible for all the

tasks.

Application Service Providers (ASP) took the game to another

level in the late 1990’s creating the first of many Internet-

enabled applications. It was termed as “on-demand software.”

ASP is generally used to provide computer-based services

over a network. It provides access to a particular application

program by indulging a standard protocol.

Software as a Service (SaaS) is a software delivery

model and is often used in place of ASP. Unlike ASP, SaaS

vendors typically develop and manage their own software. In

SaaS, users pay for software’s as per usage, not as per a

license.

Cloud computing today acts as a mirage of infinite

computing resources to cloud users so that the availability can

be increased or decreased as per the resource consumption

rate. In cloud computing data is stored in the data center of

internet but not locally, and with the use of application

programming interface (API), users can access the stored data.

Cloud computing has been lifeline of present day systems that

rent computing resources on-demand, billing is done on pay-

as-you-go basis, and enable geographically segmented users

to work on the same physical infrastructure.

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.9, July 2014

7

 Centralized Distributed Computing

Fig 1: Evolution of Cloud Computing

1.2 Types of Clouds
Cloud computing system is classified according to the

following types and each is having significant characteristics

[2]:

 Private Cloud: Private cloud is a cloud model which suits

better to the organization that wants to operate solely,

and the services are provided to specified client only.

 Public Cloud: It is a type of model that promotes shared

environment and services are provided to the clients

across the globe.

 Community cloud: It is a type of model which is shared

between several infrastructures, having a common

concern.

 Hybrid Cloud: It is a composition of two or more form of

clouds that remain distinct entities but are bound

together.

Fig 2: Cloud Computing Types

2. RESOURCE MANAGMENT
Resource management is very important for every system.

Performance, functionality and cost are the three basic factors

that are affected by resource management for system

evaluation. If resource management is not efficient then it

directly affects all the three factors i.e. performance,

functionality, and cost in a negative way. Cloud computing is

a complex system and acts as a mirage of infinite computing

resources to cloud users so that the availability can be

increased or decreased as per the resource consumption rate.

Cloud computing rents computing resources on-demand and

billing is done on pay-as-you-go basis. Cloud resource

management strategies are associated with three models

(cloud delivery models) named as, Platform as a Service,

Infrastructure as a Service, and Software as a Service. All the

three models are different from one another. Cloud providers

and users both play an important role in cloud computing

environment. Cloud providers are the one who hold

computing resources in their large data centers and users have

applications that require resources from providers to run.

Providers provide resources on rent to users only on demand

and they pay as per usage.

Cloud resource management is concerned with two

main aspects i.e. resource allocation and job scheduling.

Resource allocation means to allocate resources to the

applications so as to satisfy SLA requirements. In cloud

environment, resources are allocated only on demand i.e.

when a user makes a request. An application may consist of

multiple jobs to which resources are allocated. Hence after

allocating the resources, an efficient scheduling strategy is

required to schedule these jobs to allocated resources so as to

provide high resource utilization and to achieve best system

throughput.

2.1 Resource Allocation
Resource Allocation (RA) is the process of allocating

resources which are available to the needed applications.

Resources are allocated only on demand, providers rent

computing resources on pay-as-you-go basis. An efficient and

optimized allocation strategy is required to allocate scarce

resources and to utilize them within the limit of cloud

environment so as to meet QoS requirements of cloud

applications. The type and amount of requested resources is

decided by the user and is provided in the request made. Then

providers place the requested resources, according to their

availability onto nodes in data centers. The type and amount

of requested resource should be sufficient so as to match the

workload characteristics and to meet the constraints

respectively. An optimal resource allocation strategy should

give a wide berth to the following measures [3]:

 Resource contention

 Scarcity of resources

 Resource fragmentation

 Over-provisioning

 Under-provisioning of resources

2.2 Job Scheduling
An application may consist of multiple jobs to which

resources are allocated. Once the resources (virtual machines)

are allocated to the user, procedure is required to schedule

tasks or jobs on the resources to achieve maximum profit and

efficient resource utilization. In cloud computing resources

are allocated to the user on pay-as-per-use basis, hence job

scheduling is an important task in cloud environment. Job

scheduling strategy is responsible for scheduling jobs on

allocated resources so that resource utilization effectively

increases. There should be efficient and optimized strategies

for job scheduling so as to meet QoS requirements for users.

The objectives of job scheduling strategy are: first, to

maximize the profit second, to meet user’s QoS requirements

third, efficient resource utilization. Forth, high performance

computing and fifth, increase in throughput.

Job scheduling algorithms can be classified into two main

categories:

 Batch mode heuristic scheduling algorithms, and

 Online mode heuristic scheduling algorithms.

In batch mode algorithm, jobs are not scheduled immediately

after arriving in a system. They first entered the queue and

then scheduled after a fixed interval of time (say 1 hr.). First-

come-first-serve, max-min, min-min etc. are the examples of

batch mode heuristic algorithm. But in online mode algorithm,

jobs are scheduled immediately even after they arrive in a

system. Most fit task scheduling is an example of online mode

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.9, July 2014

8

algorithm. For cloud environment, on-line mode heuristic

algorithms are more appropriate than batch mode algorithms

because it is a heterogeneous system and speed of processor’s

varies quickly. The various job scheduling algorithms are the

following [4]:

 First-Come-First-Serve Algorithm: A type of algorithm

in which job which comes first will be served first.

 Round Robin algorithm: In round-robin scheduling, jobs

are scheduled on first-come-first-serve basis but each is

having a limited amount of CPU time to process and if it

is not completed before that time period then CPU is pre-

empted and given to the next job in a queue.

 Min–Min algorithm: A type of algorithm in which short

jobs execute in parallel and then followed by long jobs.

 Max – Min algorithm: It is very much similar to min-min

algorithm but here short jobs execute in parallel with

long jobs.

 Most fit task scheduling algorithm: Job that fits best to

the requirements will be served first.

Fig 3: Elements of Resource Allocation and Job

Scheduling

3. LITERATURE SURVEY
Cloud resource management means to allocate and

schedule computing resources. The main goal of cloud

resource management is to provide high resource utilization,

to achieve best system throughput, and to fulfil user demands.

Efficient resource management directly influences the

efficiency of the whole system. In this section we are focusing

on various resource allocation and scheduling methods that

are already present in the cloud computing environment.

3.1 Resource Allocation Strategies

3.1.1 Topology Aware Resource Allocation

(TARA)
In [5], architecture for optimized resource allocation

is proposed that is based on IaaS i.e. Infrastructure-as-a-

Service based cloud systems. Current IaaS systems allocate

resources independent of the application requirements because

they are unaware of the user’s needs and hence, can affect the

performance for distributed data-intensive applications. To

address this problem, an architecture based on what-if

methodology is proposed to help IaaS system in allocation

decision. The two main aspects of proposed architecture are:

 Prediction Engine: Estimate the performance of resource

allocation by using light weight simulator.

 Genetic algorithm: To find an optimized solution.

Fig 4: Basic Architecture of TARA[5]

3.1.2 Virtual-Machine Based Allocation
In [6], a mechanism is designed for a non-

cooperative cloud environment to allocate virtualized

resources among selfish virtual machines. By non-cooperative

means, virtual machines care only about their own benefits.

Stochastic approximation approach has been considered in the

proposed model. The proposed stochastic mechanism and

management approaches enforced to allocate the virtual

resources efficiently. In [6], QoS performance is also analyzed

under various virtual resource allocations. The proposed

method is very complex and it is not implemented in a

practical virtualization cloud system with real workload.

3.1.3 Linear Scheduling Technique
In [7], a scheduling algorithm is proposed to

schedule tasks and resources. Hence it is named as Linear

Scheduling for Tasks and Resources (LSTR). LSTR

scheduling mainly focuses on two main aspects to allocate the

resources: first, to maximize system throughput and second,

efficient resource utilization. The basic idea of linear

scheduling strategy is to distribute the resources among those

requestors that will maximize the selected QoS parameters.

Linear scheduling strategy does not allocate resources as they

arrive. The initial response is made only after collecting the

resource for a fixed time period (say 1 day or 1 hr) but not

allocating the resource as they arrive.

Algorithm:

Step1: Find all requests that arrive, if any, during a pre-

determined time period.

Step 2: Initialize the threshold value.

Step 3: For every request, if it is less than threshold value then

add to array A else add to array B.

Step 4: Sorts array A[RQi] & B[RQi].

Step 5: For every request in array B, allocate resources and

updates the available resources and threshold value.

Step 6: Then for every request in array A, allocate resources

and updates the available resources and threshold value.

3.1.4 Most-fit Processor Strategy
In [8], a new approach for resource allocation is

proposed named as, most-fit processor policy. The proposed

policy controls resource fragmentation in multi-cluster

environment. In the most-fit policy a job is allocated to the

cluster that produces a leftover processor distribution. It

requires a complex searching process to determine the target

cluster, and may also involve simulated activities. It is

assumed that the clusters are homogeneous and

geographically distributed and the number of processors in

each cluster is binary compatible. The proposed policy

presented that job migration is required to be done at the time

of load sharing activities. It is also showed that the most-fit

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.9, July 2014

9

policy has higher time complexities and negligible time

overheads as compared to the system long time operation.

3.1.5 Nephele Framework
In [9], a new project called Nephele is presented.

Nephele is the first data processing framework for both, task

scheduling and execution. It exploits the dynamic resource

allocation offered by IaaS clouds. A job can have number of

tasks that can be assigned to different types of virtual

machines at the time of job execution, particular task(s).

Nephele’s architecture follows a classic master-worker

pattern.

Fig 5: Architecture of Nephele Framework[9]

Working: In Nephele, a user must start a virtual machine

before submitting a job, which runs the Job Manager (JM). He

is the one who receives client’s jobs, schedule them, and

coordinates their execution. In Nephele, a job is represented

by a Directed acyclic graph i.e. (DAG). Each vertex in the

graph represents a task of the processing job, and edges

represent the communication flow between these tasks. After

receiving a valid job graph from the user, Job Manager

transforms it into an Execution Graph. An Execution Graph is

a primary data structure in Nephele, used for scheduling and

monitoring the execution of a job. Job Manager

communicates with the Cloud Controller (CC) which is

provided by cloud operator to controls VM instantiation.

According to the current job execution phase, Job Manager

can allocate or deallocate virtual machines with the help of

Cloud Controller. The actual execution of tasks is carried out

by a set of instances, and each instance runs a so-called Task

Manager (TM). A Task Manager is the one who receives tasks

from the Job Manager and executes them. After then, it

informs the Job Manager about the tasks completion or

possible errors.

3.1.6 Gossip Strategy
In [10], a gossip-based protocol for resource allocation is

proposed in large-scale cloud environments. The system is

modeled as a dynamic set of nodes. Each node represents the

machines of cloud computing environment. Each node has a

specific CPU capacity and memory capacity. The basic idea

of this protocol is to allocate cloud resources to a set of

applications that have time-dependent memory demands. The

simulation results show that optimal allocation is produced

only when memory demand is smaller than the available

memory in the cloud and the number of applications and the

number of machines does not affect the quality of allocation.

The protocol dynamically maximizes a global cloud utility

function. But additional functionalities are required to make

resource allocation scheme robust to machine failure.

3.1.7 Priority based Allocation
In [11], a new approach is proposed i.e. based on the priority

of various parameters and hence named as priority algorithm.

The motive of the proposed algorithm is to minimize the

wastage and to provide maximum profit. This priority

algorithm decides priority among different user request on the

basis of many parameters like cost of resource, task type,

number of processors needed to run the job or task, time

needed to access etc. In the proposed model, first of all client

sends a job request to the cloud server and then server, the

service provider in cloud computing environment will run the

task submitted by client. The priority among the different user

request is decided by the cloud administrator and hence plays

an important role to make efficient resource allocation.

Algorithm:

Step 1: Insert all values of client request i.e. time, price etc.

into the linked list.

Step 2: Then the priority value is assigned to each request and

its tasks based on the predefined conditions. Priorities that are

assigned in the proposed algorithm are:

 Node priority, and

 Time priority.

Step 3: For each client‘s request check,

If (input value is within the threshold limit), then calculate

sum for each request by adding priority values and other

parameters.

Step 4: Sort the value that is calculated in above step, and

request with least value is ready to execute.

Stop

3.1.8 Auction Based Allocation
In [12], resource allocation is addressed by auction

mechanism. The proposed mechanism is based on basic idea

of sealed-bid auction. Like sealed-bid auction, the cloud

service provider collects bids from all the users and then on

the basis of bid, determines the price. As per according to the

bid-auction, the resource is distributed to the first kth highest

bidders under the price of the (k+1)th highest bid. It is a

simplified approach because allocation is done only on the

basis of bid provided by user. The proposed system reduces

the resource problem into ordering problem, hence simplifies

the cloud service provider decision rule and therefore the

allocation rule. But due to its truth telling property under

constraints, this mechanism does not ensure profit

maximization.

In [13], allocation is done by using market based resource

allocation strategy named as, RSA-M strategy. This market

based allocation strategy uses the concept of equilibrium

theory. The aim of the proposed resource allocation strategy is

to maximize the profits of both the customer agent and the

resource agent in a large data center by using the equilibrium

theory i.e. to maintain balance between the demand and

supply in the market. RSA-M strategy determines the number

of fractions used by one VM and can be adjusted dynamically

according to the varied requirement for resources. The

resource type which is delegated by resource agent is used to

publish the resource’s price, and the one delegated by the

customer agent participates to obtain the maximum benefit for

the consumer. Market Economy Mechanism is responsible to

maintain balance between the resource supply and demand in

the market system.

3.1.9 Application Based Allocation
Application based means allocation is done on the basis of

nature of application. In [14], virtual infrastructure allocation

strategy is designed where allocation is done on the basis of

the workflow representation of the application. To produce an

estimation of executed schedule, the application logic for

work flow based applications can be interpreted and

exploited. And, for each run of the application, helps the user

to estimate the exact amount of consumed resources. In [14],

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.9, July 2014

10

four strategies are designed to allocate resources and schedule

computing: Naive, FIFO, Optimized and services group

optimization.

3.1.10 Queueing Model Based Strategy
In [15], a cloud computing model is proposed for

allocation of resources to the jobs that enter into the cloud by

using queuing models. The arrival of jobs follows non-

homogeneous Poisson process. The proposed model is

analyzed by using various performance factors such as

Utilization, Throughput, Mean number of job requests in the

cloud, and Mean Delay in the cloud. The arrival of job

requests follows non-homogeneous Poisson process stored in

a buffer, scheduled for resource allocation using queuing

models. The scheduling is carried out using request dependent

strategy. In request dependent strategy the resource (virtual

machines (VMs)) allocation rate linearly depends upon the

number of request jobs in the buffer depending on the buffer

content.

Fig 6: Job requests in buffer to cloud system[15]

Following are the characteristics of the system (during a small

interval of time h) in [15]:

 The arrival of the jobs that follows non-homogeneous

poison process is statistically independent.

 [λh+o(h)] is the probability that only one job arrives.

 [n μ h + o(h)] is the probability that only one job is

serviced through the cloud, when there are n jobs in the

buffer

 [o(h)] is the probability of other than above jobs.

 [1- λh- n μ h+o(h)] is the probability that no job arrives

in the buffer and no job servicing occurs, when there are

n jobs in the buffer.

3.1.11 Pre-Copy Approach
In [16], it is suggested that migration of the operating

system instances across distinct physical hosts offers a

separation between hardware and software and is a great tool

for the administrator of data centers and clusters. It provides

many features like load balancing, low level system

maintenance and fault management. Clark et al. on the basis

of this idea proposed a new approach: “pre-copy approach”.

In this approach memory pages are repeatedly copied to the

destination host. But the most important point that is

considered here is, all these things are done without ever

stopping the execution of the system and to make sure that a

consistent snapshot is transferred, page level protection

hardware is provided. In the proposed system, rate-adaptive

algorithm is used for controlling the traffic of different

running services. And in last, it pause the virtual machine and

copies any leftover pages to the destination and afterwards

resumes the execution there.

3.1.12 Negotiation Strategy

In [17], a new approach is presented where

providers and consumers automatically negotiate resource

leasing contracts. A negotiation mechanism that is proposed is

distributed in nature because resource demand and supply can

be uncertain and dynamic. Agents negotiate not only over

contract price but also over a decommitment penalty. By

decommitment penalty means, agents can decommit from

contracts at a penalty (cost). In negotiation mechanism, agents

make contracts according to which resources are provided to

users for a fixed time interval. Feature of decommitment

penalty is introduced to accommodate the highly dynamic

nature of cloud computing platforms.

3.1.13 Location Aware Dynamic Allocation
In [18], a dynamic resource allocation model on

cloud computing environments is proposed that depends upon

two factors: first, utilization level of Physical machines in data

centers and second, location of user and data center. In [18]

dynamic resource utilization management architecture is

proposed to perform location-aware Virtual machine

placement by permitting provider to place a new VM in an

appropriate PM for better performance. The system prevents

performance degradation of the data center by guarantying the

maximized utilization level,

Proposed Model: The system uses utility function, to find out

which Physical machine is appropriate for a new Virtual

machine or migration as follows:

Um = (α * uu) + (β * ut) + (γ * ug)

 (0<=um<=1)

Utilization level (Uu):

For (wc <= we < wt):

Umin + 1-[(we – wc) / (wt – wc)]

For (wt < = we): Umin

Response Time utility (Ut):

For (tc < = te < tt):

 Umin + 1-[(te – tc) / (tSLA – tc)]

For (tSLA <= te): Umin

Geographical Distance Utility:

Ug = 1- [difm / difrange]

3.1.14 Just-In-Time Resource Allocation
In [19], the cost based workload provisioning and “just-

in- time resource allocation” is illustrated. In this type of

method, optimization is dispensed by taking into concern the

step-down of the cost incurred to the application. The cost can

be a mixture of various factors like leasing cost of resources,

cost associated with the changes to the configuration, and the

cost of SLA violations. A perfect solution for efficient

resource utilization is to set a time interval and resources are

changed within the limit of this interval unceasingly in

accordance with the modification in load. In JITRA, there are

three components of the cost function that calls for the

penalty:

 cost for violation of SLA bounds,

 cost of leasing a machine, and

 cost of reconfiguring the application.

But recursive data structures are required to be implemented

for the look-ahead implementation of the time interval for

each task.

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.9, July 2014

11

3.1.15 Utility Function Based Allocation
In [20], resource allocation is based on response

time for multitier cloud computing systems (heterogeneous

servers) as a measure of utility function by considering

communication resources, memory, and CPU. Servers are

characterized on the basis of following characteristics:

memory usage, capacity of processing powers, and

communication bandwidth. For each tier, requests from the

users are distributed among available servers and each

available server is assigned to exactly one of the application.

We can say that, servers can serve only those requests that are

assigned to them. In the proposed strategy, queuing theory is

used to dispatch each client to the server. This system meets

the requirement of SLA (Service Level Agreement) such as

response time and utility function based on its response time.

But in [21], specific resource allocation (CPU,

RAM) is done by considering the utility function as a measure

of application satisfaction. Local Decision Module (LDM) is

used to compute utility function by taking current work load

of the system. Then the module interacts with Global Decision

Module (GDM). GDM is the decision making entity within

the autonomic control loop. The proposed mechanism is based

on a two-tier architecture and resource arbitration process that

can be controlled by using different factors such as

application’s weight.

3.1.16 Adaptive Resource Allocation
In [22], an adaptive approach is presented in

runtime to allocate resources in order to satisfy one of the

most important QoS requirements, and throughput of multiple

workflows in Service Based Systems. A system that adopts

service-oriented architecture (SOA) is known as service-based

systems (SBS) eg: grid computing, web services, cloud

computing etc. In SOA, services are categorized as: atomic

and composite. Atomic services are those that serve only one

type of service-request and cannot be decomposed into

smaller services. All other are considered as composite

services.

In [22], first of all a model is developed for an

atomic service named as Resource Allocation Throughput

(RAT) model, and then it is extended for the entire SBS to

analyze the relationship between resource allocation and

throughputs of the multiple workflows. Based on the RAT

model, a linear programming problem is formulated to find

the optimal resource allocation to serve the user’s requests.

RAT model for atomic services: To an atomic service limited

system resources are allocated. As request for any service

arrive at the queue, the atomic service creates multiple

threads, which utilize the system resource to process the

request and send out the responses. To estimate the amount of

resources, consumed by the atomic service for the processing

of user’s requests following five factors are considered:

Service-request rate (R): The average number of service-

requests arrives at atomic service per second.

Critical resource: Resources of the server that will become a

bottleneck.

Percentage of Allocated critical resource (A): It is provided by

the server over the total available critical resource of the

server.

Throughput of an atomic service (P): The average number of

service responses per second. It is determined by using the

values of R and A.

Throughput requirement of a workflow: The minimum

number of service responses required by the users for a

workflow per second.

A linear programming problem that is formulated to allocate

critical resources of all servers in a SBS is represented as:

1). W, set of workflows in SBS

2). Sv, set of servers in SBS\

3). for each workflow, define priority and throughput as TH

and Pr.

4). Objective Function:

Max. ΣW (TH× Pr)

5). Constraints:

 Throughput (TH) of w is less than equal to Service

request rate (SR) of workflow (w).

 Throughput of w is greater than equal to Service request

rate of w, only if throughput-requirement (TR) of w is

less than equal to Service request rate of workflow (w).

 Cost (C) is less than equal to the percentage of available

critical resource of service-request.

Then the Simplex algorithm [23] is used to solve the linear

programming problem and the optimal throughput of each

workflow is evaluated in SBS.

3.1.17 Hardware Dependent Allocation
In [24], a resource allocation strategy is proposed by

categorizing the cluster in the system. Clusters are categorized

on the basis of the data storage, number and type of

computing and communication resources that they control. All

of the computing resources are allocated within each server.

Generalized Processor Sharing (GPS) is used to allocate

different resources (except disk resource) in the servers and

clusters. The disk resource is allocated based on the client’s

constant need. The proposed strategy performs distributed

decision making by parallelizing the solution to reduce the

decision time. Greedy algorithm is used to find the best initial

solution. By changing resource allocation, the solution could

be improved. But large changes in those parameters cannot be

handled by the system, which are used for finding the

solution.

 In [25], on the basis of CPU consumption amount,

an adaptive resource co-allocation approach is presented. The

presented resource co-allocation is done in stepwise manner in

three phases.

 First, the co-allocation scheme is determined by

considering the CPU consumption amount for each

physical machine (PM).

 Second, simulated annealing algorithm is used to

determine whether to put applications on PM or not. The

configuration solution can be altered by randomly

changing one element.

 In the third step, the exact CPU share that is occupied by

each VM occupies is determined and that can be

optimized by using gradient climbing approach.

The proposed strategy does not consider the dynamic nature

of resource request; it mainly focuses on CPU and memory

resources for co-allocation.

3.2 Scheduling Strategies

3.2.1 Enhanced Max-min Task Scheduling
In [26], an Enhanced Max-min task scheduling

algorithm is proposed. It is a modification of improved max-

min algorithm. Improved task scheduling algorithm is

proposed to improve the efficiency of max-min algorithm. In

improved max-min algorithm, firstly largest task (task with

maximum execution time) is assigned to the slowest resource

(resource having minimum completion time). Then the

scheduled task is removed from the set and all the timings (i.e.

ready time of selected resource and total completion time) are

updated and finally max-min algorithm is applied on

remaining tasks. If the largest task is too large than other tasks

in a set, then it may happen that tasks other than the largest

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.9, July 2014

12

task complete their execution before the completion of largest

task by fastest resource. This leads to increase in make span

because the largest task is executed by slower resource and

load imbalance across resources. To solve this problem,

enhanced max-min algorithm is proposed. In enhanced

algorithm instead of scheduling largest task, task with average

execution time is scheduled first to slowest resource, this

helps in reducing the make span and balancing the load across

resources.

Algorithm:

Step 1: Compute expected completion time for all tasks on all

resources.

Step 2: Assign task with average (or nearest greater than the

average) execution time to the slowest resource.

Step 3: Then remove schedules task from the task-set, and

then update both the ready time of selected resource and

completion time for all tasks on all resources.

Step 4: Now apply max-min algorithm to schedule remaining

tasks:

 First, compute minimum completion time for all the

tasks then among these minimum time values select the

maximum value.

 Second, schedule that task on the resource on which it

takes minimum time and remove from the task set.

 Third, update the ready time of that resource for all the

other tasks and completion time for all other remaining

tasks on all resources and delete the scheduled task from

the task-set.

3.2.2 Priority based Job Scheduling
In [27], a priority based job scheduling algorithm

for cloud computing environment is presented. This job

scheduling algorithm is named as PJSC algorithm. Priority job

scheduling algorithm considers priority at three levels:

scheduling level, resources level, and job level. In priority job

scheduling, every job that is required to schedule has a pre-

determined priority and scheduling is done on the basis of that

priority.

Algorithm:

Step 1: Suppose there are n jobs that are required to be

scheduled on m resources, where (m<<n).

Step 2: Create a n*n comparison matrix of jobs for each

resource, such a matrix is known as consistent comparison

matrix. The matrix is created according to the priority of

resources accessibilities.

Step 3: As there are m resources, m such matrices are created

(one for each resource). Let the matrices are M1, M2… Md and

for i=j, the value of matrix is 1, otherwise:

mij = (1 / mji).

Step 4: Compute priority vector for each of the matrix, let W1,

W2….. Wd are the priority vectors for matrix M1, M2… Md

respectively, the value of w can be calculated as:

W=Eigen value of Matrix*Corresponding Eigen vector.

Step 5: Make a matrix with priority vectors as:

Δ= [W1, W2 ... Wd]

Step 6: Create a d*d consistent comparison matrix for

resources to determine which resource has a higher priority

than others on the basis of decision makers.

Step 7: Let R be the matrix for resource level, calculate

priority vector for matrix R same as that of step 5. Let pr be

the priority vector of matrix R.

Step 8: Calculate priority vector of scheduling jobs. Let PVS

is the priority vector, computed as:

PVS= Δ . pr

Step 9: Finally on the basis of PVS, a job with maximum

priority value is scheduled to a suitable resource and then

update the list of jobs.

3.2.3 Heterogeneous Earliest Finish Time

algorithm
In [28], algorithm is presented for distributed

environment on the basis of earliest finish time. Hence it is

named as, heterogeneous earliest finish time (HEFT)

algorithm. The two main aspects that is considered in the

proposed algorithm are:

 priority, and

 execution time

Algorithm:

Step 1: Compute the average execution time for each task on

each resource.

Step 2: Compute the average communication time between

the resources of two tasks.

Step 3: Ordered the tasks in the workflow on the basis of a

rank function.

Step 4: Assign higher priority to a task with higher rank value.

Step 5: Then schedule tasks in priorities, in the resource

selection phase

Step 6: Finally tasks are assigned according to the earliest

completion time.

3.2.4 Modified Genetic Algorithm
Genetic algorithm (GA) is a search heuristic that

copies the procedure of natural evolution. In [29], a modified

genetic algorithm (MGA) is presented. The algorithm is

proposed by combining two existing scheduling algorithms

such as, smallest cloudlet (job) to fastest processor and largest

cloudlet to fastest processor. MGA schedule tasks according

to the computing capacity of processing elements and

computational complexity. It main goal is to minimizes the

execution time and execution cost as well.

Algorithm:

Step 1: Generate an initial population of individuals by using

the output of following techniques:

 Smallest Cloudlet (job) to Fastest Processor (SCFP),

 Longest Cloudlet (job) to Fastest Processor (LCFP), and

 8 Random Schedules.

Step 2: Evaluate each individual.

Step 3: Repeat following steps until termination condition

occur:

 Select individuals with minimum execution time.

 Crossover between individuals, crossover operator that is

used in the proposed algorithm is two –point crossover.

 Mutate the resultants by using various operators such as:

move, swap, rebalancing etc. but the one that is used here

is swap operator.

 Evaluate modified individuals having relevant fitness.

 Generate a new population

3.2.5 Bees Life Algorithm
In [30], an efficient algorithm that is inspired by the

bees’ colony life is proposed. Hence it is known as Bees Life

Algorithm (BLA). Two behaviors of bee’s life are represented

in the algorithm: one is reproduction and other is food source

searching. The proposed algorithm aims at scheduling jobs to

resources in minimum completion time.

Algorithm:

Step 1: Generate an initial population at random.

Step 2: Evaluate fitness of each individual. Fitness is specified

as:

 fittest bee is queen

 fittest following bees are drones

 remaining bees are workers

Step 3: Repeat the following until terminate condition occur:

/* reproduction behavior */

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.9, July 2014

13

Step 4: Select drones

Step 5: Crossover between individuals by using two-point

crossover.

Step 6: Mutate the resultants by selecting a operator in which

randomly selected task is replaced by another random task.

/* food foraging behavior */

Step 9: Search of food source by W workers in W regions.

Step 10: Recruit bees for each region and then select the fittest

bee from each region

Step 11: Evaluate fitness of population

3.2.6 Improved Cost-Based Algorithm
In [31], an improved cost-based scheduling

algorithm is proposed to schedule tasks in cloud computing

environment. It is designed for the environment where

resources have different computation costs and performance.

The proposed algorithm divides tasks into three different

criteria on the basis of resource processing capabilities.

Changes in traditional cost based strategy implicates that no

relation stands between the varied tasks leading to overhead

resource cost and overhead application base in user friendly

cloud computing environment. Due to job grouping, the

proposed scheduling algorithm improves the

computation/communication ratio.

3.2.7 Short Job Scheduling
In [32], an efficient scheduling algorithm is

proposed for multiple clouds computing environment. The

algorithm is named as, Short Job scheduling algorithm. The

proposed algorithm uses middle-layer architecture to perform

allocation in case of under load and overload conditions. That

means the algorithm is able to handle load conditions. The

concept of process migration is used to handle over load

conditions. As the middle layer exists between the clouds and

users, therefore the request from user will be first accepted by

the middle layer and make the analysis of servers. The middle

layer is responsible for three main tasks:

 First, scheduling the user requests,

 Second, monitor the servers for its capabilities and to

perform the process allocation.

 Third, process migration in overload conditions

Fig 7: Proposed Three-Layer system[32]

Algorithm:

Step 1: Suppose there are M numbers of Clouds and each

cloud is having L number of Virtual Machines associated with

them, and N is the number of user’s requests having some

parameters i.e. process time, required memory etc.

Step 2: For each virtual machine, compute load and available

memory.

Step 3: Assign the priority to each cloud.

Step 4: Arrange the requests according to one of its parameter,

let it be required memory.

Step 5: For each user request, identify cloud and associate

virtual machine for which available memory is greater than

required memory.

Step 6: Now allocate the process to that particular cloud and

virtual machine.

Step 7: For each request, compute free Time slot on priority

cloud. Then record the turnaround time, process time, start

time, and the deadline of the process.

Step 8: Now for each request, check migration is required or

not. If finish time of process is greater than the deadline of

that process then yes otherwise no.

Step 9: For migration, the process is migrate to the next high

priority cloud, that having the free memory and the time slot

3.2.8 DRR Scheduling
In [33], an optimized algorithm is proposed that satisfies the

user requirements like reliability, deadline etc. Hence it is

named as, Deadline-Reliability-Resource-aware (DRR)

scheduling algorithm. The proposed algorithm considers

communication model and the realistic network topology. The

theory analysis of the model demonstrates that, the algorithm

can satisfy the reliability and deadline requirements of the

user. In [33], it is shown that the proposed algorithm can

complete the job under the deadline, if the deadline of DRR

algorithm is set to the value less than that of the make span of

the MaxRe algorithm.

3.2.9 Qos Based Scheduling
In [34], a QoS based predictive max-min, min-

min switcher algorithm named as, QPSMAX-MIN<>MIN-

MIN is presented for scheduling jobs. Before

scheduling the next job, the proposed algorithm

makes an appropriate selection on the basis of

heuristic applied, among the QoS based min-min

or QoS based max-min algorithm. Min–Min algorithm

is a type of algorithm in which short jobs execute in parallel

and then followed by long jobs but in max-min short jobs

execute in parallel with long jobs. The proposed

scheduling algorithm selects the best algorithm

between QoS max-min and QoS min -min according

to the length of jobs while making each

scheduling decision.

Algorithm:

Step 1: Compute expected completion time for all tasks on all

machines.

Step 2: For all jobs, compute minimum completion time and

the machine on which it takes minimum time.

Step 3: Compute standard deviation of completion time for all

unassigned jobs.

Step 4: Find a position in a sorted array (in increasing order of

jobs completion time) of jobs where, computed standard

deviation is less than the difference of two consecutive

completion times.

Step 5: If either that position is less than equal to half of jobs

or standard deviation is less than threshold value then go to

step 6 else go to step 7.

Step 6: Assign first job of the sorted set to machine on which

it takes minimum time and go to step 8.

Step 7: Compute no of jobs in a set (say n) then assign jn job

to the machine on which it takes minimum completion time.

Step 8: Update the ready time of corresponding machine and

update the completion time of all jobs on all machines.

3.2.10 Generalized Priority Algorithm
In [35], a Generalized Priority algorithm is

presented for efficient execution of task. In the proposed

algorithm, user assigns priority to the jobs according to

various parameters such as: bandwidth, size, scheduling

file:///C:/Users/Himanshi%20goyal/Documents/Bluetooth%20Exchange%20Folder/changes%20in%20traditional%20cost%20based%20strategy%20implicates%20that%20no%20relation%20stands%20between%20the%20varied%20tasks%20leading%20To%20overhead%20resourse%20cost%20and%20overhead%20application%20base%20in%20user%20friendly%20cloud%20computing%20%20environment.
file:///C:/Users/Himanshi%20goyal/Documents/Bluetooth%20Exchange%20Folder/changes%20in%20traditional%20cost%20based%20strategy%20implicates%20that%20no%20relation%20stands%20between%20the%20varied%20tasks%20leading%20To%20overhead%20resourse%20cost%20and%20overhead%20application%20base%20in%20user%20friendly%20cloud%20computing%20%20environment.
file:///C:/Users/Himanshi%20goyal/Documents/Bluetooth%20Exchange%20Folder/changes%20in%20traditional%20cost%20based%20strategy%20implicates%20that%20no%20relation%20stands%20between%20the%20varied%20tasks%20leading%20To%20overhead%20resourse%20cost%20and%20overhead%20application%20base%20in%20user%20friendly%20cloud%20computing%20%20environment.
file:///C:/Users/Himanshi%20goyal/Documents/Bluetooth%20Exchange%20Folder/changes%20in%20traditional%20cost%20based%20strategy%20implicates%20that%20no%20relation%20stands%20between%20the%20varied%20tasks%20leading%20To%20overhead%20resourse%20cost%20and%20overhead%20application%20base%20in%20user%20friendly%20cloud%20computing%20%20environment.

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.9, July 2014

14

policy, memory etc. In the proposed strategy, priority is

assigned to both tasks and virtual machines on the basis of

parameters size, bandwidth, processing speed etc. In the

proposed strategy, tasks are prioritized according to their size

and virtual machines are prioritized according to their MIPS

value. That means, tasks having highest size has highest

priority and virtual machine with highest MIPS has the

highest rank. Thus, size and MIPS are the key factor for

prioritizing tasks and virtual machines respectively.

Algorithm:

Step 1: According to computational power of host/physical

server, create VM to different Data center and allocate

cloudlet length. Computational power of a server can be

defined in terms of speed, memory, cost etc.

Step 2: Maintain an index table of virtual machines using load

balancer

Step 3: Assign highest MIPS of virtual machine to highest

length of cloudlet.

Step 4: Sends request with specific id to virtual machine and

update the available resource.

3.2.11 QoS Based Workflow Scheduling
In [36], QoS based strategy is proposed for those

tasks that processed in a specific order according to their

required service. This strategy schedule tasks on the basis of

various QoS parameters such as: Reliability, Deadline, Cost

etc. provided by the user. The idea behind this strategy is to

schedule tasks on the basis of QoS negotiation between user

requirements and the services delivered by servers. QoS

negotiation is achieved by using distribution of QoS

parameters among tasks.

3.2.12 Load- Balanced Scheduling
In [37], an improved load balanced algorithm is

introduced that uses the basics of min-min algorithm. Hence it

is named as “LBIMM” i.e. Load Balance Improved Min-Min

scheduling algorithm. Cloud providers provide the resources

on pay-as-per-usage basis. Therefore the cost per resource

unit depends on the services selected by the user. In return,

the user receives guarantees regarding the provided resources.

To perceive the promised guarantees, user priority aware

algorithm is proposed named as “PA-LBIMM” so that user’s

demand could be satisfied more completely.

LBIMM Algorithm:

Step 1: Compute expected completion time for all tasks on all

resources.

//min-min algorithm:

Step 2: For all tasks do step 3 to 5:

Step 3: Compute minimum completion time for all the tasks

then among these minimum time values select the minimum

value.

Step 4: Schedule that task on the resource on which it takes

minimum time and remove from the task set.

Step 5: Update the ready time of that resource for all the other

tasks and completion time for all other remaining tasks on all

resources.

// rescheduling steps:

Step 6: Repeat step 7 to 10 until less completion time is

produced for smallest task on heavy load resource by any

other resource.

Step 7: Compute task with minimum execution time on heavy

load resource.

Step 8: Compute minimum completion time for that task and

resource on which it takes minimum time.

Step 9: Reassign task to the resource on which it takes

minimum time, if computed minimum completion time is less

than that of make span.

Step 10: After reassigning, update the ready time of both the

resources i.e. heavy load resource and resource on which it

takes minimum time.

PA-LBIMM Algorithm:

Step 1: Divide the tasks into two groups i.e. VIP group and

ordinary group, according to user-priority demand.

Step 2: Compute expected completion time for all tasks of

VIP group on all VIP qualified resources.

Step 3: Apply min-min algorithm for all tasks of VIP group,

same as that of LBIMM algorithm.

Step 4: Compute expected completion time for all tasks of

ordinary group on all resources.

Step 5: Now apply min-min algorithm for all tasks of ordinary

group.

Step 6: Perform rescheduling steps, which are stated in

LBIMM algorithm.

3.2.13 Real Time Scheduling
In [38], a strategy is proposed to schedule real-time

tasks non-pre-emptively in cloud computing environment.

The motive of the proposed strategy is to maximize the

utilization. But increase in throughput and minimize average

response time are the two main considerations of proposed

strategy. Two different time utility functions are associated

with each task at the same time such as:

 a profit time utility function, and

 a penalty time unit function

This approach not only provides the minimum completion

time but also penalizes if not completes within a given

deadline or if real-time tasks abort.

3.2.14 TPD Scheduling
In [39], an efficient scheduling algorithm is

proposed in which first users select their method on the basis

of application requirements and then prioritized. The proposed

algorithm addresses major challenges of scheduling in cloud

computing environment such as: resource utilization,

maximum profit, minimum execution cost etc. As the users

select their method and then prioritized, so the algorithm is

named as “TPD Scheduling Algorithm”, Here T stands for

Task Selection, P Stands for Priority and D stands for

Deadline. In the proposed algorithm, user selects from

following two methods: deadline-based and cost-based.

Algorithm:

Step 1: When users send requests to cloud, valid one’s are

allowed to select method that best fit the tasks requirements.

Step 2: After selecting any method, prioritize them using

following:

 Assign higher priority to the task that will arrive first i.e.

serve the requests on first-come-first-serve basis.

 If two requests have same start time, then assigns priority

on the basis of number user has used the cloud i.e. to the

old user (whose count value is more).

 If cloud count is also same, then priority is assigned

according to the cost based count.

 If it is also same then assign priority on the basis of id,

provided at the time of registration.

Step 3: After assigning priority, schedules the task and update

the application status.

3.2.15 Locality Driven Scheduling
In [40], a heuristic scheduling algorithm is

proposed. It occurs in two phases: in first, tasks allocation is

done and in second, total job completion time is reduced.

Hence it is known as Balance-Reduce (BAR). It is a locality

driven algorithm, because it can dynamically change the

locality of data, by regularly examine the network state. If a

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.9, July 2014

15

job consists of number of tasks, then it is considered to be

completed only when all tasks finish their execution. The first

phase of BAR is balance phase, in which tasks are scheduled

to resources in a balanced way. And second phase is reduce,

in which total job completion time (make span) is reduced.

4. CONCLUSION
Cloud computing has been lifeline of present day systems that

rent computing resources on-demand, billing is done on pay-

as-you-go basis, and enable geographically segmented users

to work on the same physical infrastructure. This paper

presents various resource allocation and scheduling strategies

for resource management in cloud computing environment. In

cloud environment, resource management is required to meet

QoS requirements, to achieve high resource utilization, better

system throughput etc. The strategies that are analyzed above

mainly focus on various parameters such as: time, Qos, cost,

location, and priority etc.

5. ACKNOWLEDGEMENTS
Sincere Thanks to HCTM Technical Campus Management

Kaithal, Haryana, India for their continuous encouragement.

6. REFERENCES
[1] Brijender Kahanwal and Tejinder Pal Singh, “The

Distributed Computing Paradigms: P2P, Grid, Cluster,

Cloud, and Jungle”, International Journal of Latest

Research in Science and Technology, Vol. 1, No. 2, pp.

183-187 , 2012.

[2] Sagar Girase, Rahul Samant, Mayank Sohani, and Suraj

Patil, “Review on: Resource Provisioning in Cloud

Computing Environment”, International Journal of

Science and Research, Vol. 2, No. 11, 2013.

[3] V.Vinothina, Dr.R.Sridaran, and Dr. Padmavathi

Ganapathi, “A Survey on Resource Allocation Strategies

in Cloud Computing”, International Journal of Advanced

Computer Science and Applications, Vol. 3, No. 6, 2012.

[4] Pinal Salot, “A Survey of Various Scheduling Algorithm

in Cloud Computing Environment”, International Journal

of Research in Engineering and Technology, Vol. 2, No.

2, 2013.

[5] Gunho Lee, Niraj Tolia, Parthasarathy Ranganathan, and

Randy H. Katz, “Topology-Aware Resource Allocation

for Data-Intensive Workloads”, ACM SIGCOMM

Computer Communication Review, Vol. 41, No. 1, pp.

120-124, 2011.

[6] Zhen Kong et.al, “Mechanism Design for Stochastic

Virtual Resource Allocation in Non-Cooperative Cloud

Systems”, IEEE 4th International Conference on Cloud

Computing, pp. 614-621, 2011.

[7] Abirami S.P. and Shalini Ramanathan, “Linear Scheduling

Strategy for Resource Allocation in Cloud Environment”,

International Journal on Cloud Computing: Services and

Architecture, Vol. 2, No. 1, pp. 9-17, 2012.

[8] Kuo-Chan Huang and Kuan-Po Lai, “Processor Allocation

Policies for Reducing Resource Fragmentation in Multi

Cluster Grid and Cloud Environments”, IEEE, pp. 971-

976, 2010.

[9] Daniel Warneke and Odej Kao, “Exploiting Dynamic

Resource Allocation for Efficient Parallel Data

Processing in the Cloud”, IEEE Transactions on Parallel

and Distributed Systems, 2011.

[10] FetahiWuhib and Rolf Stadler, “Distributed Monitoring

and Resource Management for Large Cloud

Environments”, IEEE, pp. 970-975, 2011.

 [11] K C Gouda, Radhika T V, and Akshatha M, “Priority

Based Resource Allocation Model for Cloud

Computing”, International Journal of Science,

Engineering and Technology Research, Vol. 2, No. 1,

2013.

[12] Wei-Yu Lin et al, “Dynamic Auction Mechanism for

Cloud Resource Allocation”, IEEE/ACM 10th

International Conference on Cluster, Cloud and Grid

Computing, pp. 591-592, 2010.

[13] Xindong YOU, Xianghua XU, Jian Wan, and Dongjin

YU, “RAS-M :Resource Allocation Strategy based on

Market Mechanism in Cloud Computing”, IEEE,pp. 256-

263, 2009.

[14] Tram Truong Huu and John Montagnat, “Virtual

Resource Allocations Distribution on a Cloud

Infrastructure”, IEEE, pp.612-617, 2010.

[15] Satyanarayana .A, Dr. P. Suresh Varma, Dr. M.V.Rama

Sundari, and Dr. P Sarada Varma, “Performance

Analysis of Cloud Computing under Non Homogeneous

Conditions”, International Journal of Advanced Research

in Computer Science and Software Engineering, Vol. 3,

No. 5, 2013.

[16] Christopher Clark, Keir Fraser, Steven Hand, Jacob

Gorm Hanseny, Eric July, Christian Limpach, Ian Pratt,

and Andrew Warfield, “Live Migration of Virtual

Machines”, 2nd Symposium on Networked Systems

Design and Implementation, 2005.

[17] Bo An, Victor Lesser, David Irwin, and Michael Zink,

“Automated Negotiation with Decommitment for

Dynamic Resource Allocation in Cloud Computing”,

Proceedings of 9th International Conference on

Autonomous Agents and Multi-agent Systems, Vol. 1,

2010.

[18] Gihun Jung and Kwang Mong Sim, “Location-Aware

Dynamic Resource Allocation Model for Cloud

Computing Environment”, International Conference on

Information and Computer Applications, Vol. 24, 2012.

[19] Nilabja Roy, Abhishek Dubey and Aniruddha Gokhale,

“Efficient Autoscaling in the Cloud using Predictive

Models for Workload Forecasting”, Cloud Computing

IEEE International Conference, pp. 500-507, 2011.

[20] HadiGoudaezi and MassoudPedram, “Multidimensional

SLA-based Resource Allocation for Multi-tier Cloud

Computing Systems”, IEEE 4th International conference

on Cloud Computing, pp. 324-331, 2011.

[21] Hien Nguyen et al, “SLA-Aware Virtual Resource

Management for Cloud Infrastructures”, IEEE 9th

International Conference on Computer and Information

Technology, pp. 357-362, 2009.

[22] Stephen S. Yau and Ho G., “An Adaptive Resource

Allocation for Service-Based Systems”, International

Journal of Software and Informatics, Vol. 3, No. 4, pp.

483–499, 2009.

[23] Griva I, Nash SG, and Sofer A., “Linear and Nonlinear

Optimization”, 2nd Education Society for Industrial

Mathematics, 2008.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6008653
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6008653

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.9, July 2014

16

[24] HadiGoudarzi and MassoudPedram, “Maximizing Profit

in Cloud Computing System Via Resource Allocation”,

IEEE 31st International Conference on Distributed

Computing Systems Workshops, pp. 1-6, 2011.

[25] Patricia Takako Endo et al., “Resource Allocation for

Distributed Cloud: Concept and Research Challenges”,

IEEE, pp. 42-46, 2011.

[26] Upendra Bhoi, “Enhanced Max-min Task Scheduling

Algorithm in Cloud Computing”, International Journal of

Application or Innovation in Engineering and

Management, Vol. 2, No. 4, 2013.

 [27] Shamsollah Ghanbari, and Mohamed Othman, “A

Priority based Job Scheduling Algorithm in Cloud

Computing”, International Conference on Advances

Science and Contemporary Engineering, 2012.

[28] Wieczorek M., Prodan R. and Fahringer T., ‘‘Scheduling

of Scientific Workflows in ASKALON Grid

Environment’’, SIGMOD Rec., Vol. 34, No. 3, pp. 56–

62, 2005.

[29] Shaminder Kaur and Amandeep Verma, “An Efficient

Approach to Genetic Algorithm for Task Scheduling in

Cloud Computing Environment, International Journal of

Information Technology and Computer Science, Vol. 10,

pp. 74-79, 2012.

[30] Salim Bitam, “Bees Life Algorithm for Job Scheduling in

Cloud Computing”, 2nd International Conference on

Communications and Information Technology, 2012.

[31] Mrs.S.Selvarani and Dr.G.Sudha Sadhasivam, “Improved

Cost-Based Algorithm for Task Scheduling in Cloud

Computing”, IEEE, 2010.

[32] Poonam Devi, “Implementation of Cloud Computing By

Using Short Job scheduling”, International Journal of

Advanced Research in Computer Science and Software

Engineering, 2013.

[33] Laiping Zhao, Yizhi Ren, and Sakurai, K., “A Resource

Minimizing Scheduling Algorithm with Ensuring the

Deadline and Reliability in Heterogeneous Systems",

IEEE, 2011.

 [34] M. Singh and P.K. Suri, “QPSMAX-MIN<>MIN-MIN: A Qos

Based Predictive Max-Min, Min-Min Switcher

Algorithm for Job Scheduling in a Grid”, International

Journal of Information and Technology, Vol. 7, No. 8,

pp. 1176-1181, 2008.

[35] Dr. Amit Agarwal and Saloni Jain, “Efficient Optimal

Algorithm of Task Scheduling in Cloud Computing

Environment”, International Journal of Computer Trends

and Technology, Vol. 9, No. 7, 2014.

[36] Jayadivya S K and S. Mary Saira Bhanu, “QoS Based

Scheduling of Workflows in Cloud Computing”,

International Journal of Computer Science and Electrical

Engineering, Vol. 1, No. 1, 2012.

[37] Huankai Chen, Professor Frank Wang, Dr Na Helian, and

Gbola Akanmu, “User-Priority Guided Min-Min

Scheduling Algorithm for Load Balancing in Cloud

Computing”, Parallel Computing Technologies National

Conference, pp. 1-8, 2013.

[38] Shuo Liu, Gang Quan, and Shangping Ren, "On-Line

Scheduling of Real-Time Services for Cloud

Computing", IEEE, 2010.

[39] Dr.V.Vaithiyanathan, R.Arvindh Kumar, S.Vignesh,

B.Thamotharan, and B.Karthikeyan, “An Efficient TPD

Scheduling Algorithm for Cloud Environment”,

International Journal of Engineering and Technology,

Vol. 5, No. 3, 2013.

[40] Jiahui Jin, Junzhou Luo, Aibo Song, Fang Dong and

Runqun Xiong, “BAR: An Efficient Data Locality

Driven Task Scheduling Algorithm for Cloud

Computing”, 11th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing, 2011.

IJCATM : www.ijcaonline.org

http://www.techrepublic.com/resource-library/company/the-second-international-conference-on-communications-and-information-technology/
http://www.techrepublic.com/resource-library/company/the-second-international-conference-on-communications-and-information-technology/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6599410
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6599410

