
International Journal of Computer Applications (0975 – 8887)

Volume 98– No.8, July 2014

29

Sampling Process Model for Coordination and

Communication in Free/Open Source Software Projects

Preet Kanwal

Research Scholar
Department of Computer
Science and Applications,

Panjab University, Chandigarh
India

Anu Gupta
Associate Professor

Department of Computer
Science and Applications,

Panjab University, Chandigarh
India

Ravinder Kumar Singla
Professor

Department of Computer
Science and Applications,

Panjab University, Chandigarh
India

ABSTRACT

The Free/Open Source Software (F/OSS) development

environment consists of three components: The development

process, the community of software development volunteers

and the coordination and communication tools. The rise and

expansion of Internet make this concept of cooperative

software development model a dominant force in comparison

to the traditional software development. Various project

hosting sites for F/OSS projects across an entire range of

applications have come up offering a multitude of services for

developers as well as users. Various aspects of F/OSS are

being studied by researchers. Coordination and

Communication become key factors in F/OSS development

for information dissemination among its decentralized and

geographically spread-out teams of volunteers. It becomes

important to choose the right sample to study this aspect. This

paper proposes a four-phase sampling process model

especially suited for studies related to coordination and

communication aspects in F/OSS although it can be extended

to all aspects of F/OSS development with suitable changes in

the parameters.

Keywords

F/OSS; FLOSS; Coordination; Communication; CC Tools;

SVN, SRDA; Source List ; Sampling Process Model.

1. INTRODUCTION
The global reach with 24x7 availability of Internet has made

Free/Open Source Software (F/OSS), an innovative

development methodology, a dominant force [1-2]. In general,

the F/OSS development environment consists of three

components: the development process, the community of

volunteers [3] and the coordination and communication tools

(CC Tools). The cooperative and group assisted methods of

software creation, modification and distribution allowing code

reuse by distributed self-learning and self-organizing teams

form the backbone of F/OSS development in a decentralized

and distributed software development environment. Software

repositories and allied coordination and communication

infrastructure provide a base for cooperative development.

Thus, the tools which support cohesion among geographically

spread-out volunteers for effective coordination and

communication have become an important aspect in the

F/OSS development process.

With F/OSS research becoming extensive on each aspect of

its development environment, it is very important to

understand the process of selection of case studies for

effective and meaningful research.

2. LITERATURE REVIEW
Internet has been observed as a necessary condition for F/OSS

to evolve along with cooperative customs which could allow

co-developers to be attracted [4]. Crowston et al. have based

their study of understanding Free/Libre Open Source Software

(FLOSS) success on information system (IS) research in order

to identify processes that enhance the performance of FLOSS

development teams. They observed that success indicators in

traditional closed software development were influenced by

‘use environment’ like system quality, use, user satisfaction

and organizational impacts. They further highlighted the fact

that FLOSS success tends to look more at the ‘development

environment’ which is publicly available [5]. The studies on

F/OSS development process have mainly focused on the

participants and the processes involved in this form of

development to understand the success of this model. The

research areas have been categorized into three main

perspectives: Developers, Metrics and Tools [6].

The researchers have highlighted the importance of formal

and informal communication in coordination of software

development in general [7]. CC Tools which can be used by

F/OSS projects have been suggested [8]. A study, while

acknowledging the fundamental relevance of communication

in F/OSS development, proposed an Extended Information

System Model comprising of eight interrelated dimensions

which links quality, success, communication and

contributions in F/OSS projects [9]. The majority of

development activity in F/OSS utilizes asynchronous

communication which has the advantage of maintaining total

record of communications [10, 11, 12]. Researchers used

random sampling to test whether the process maturity is

related to the success of F/OSS projects, especially where

processes related to coordination and communication are

concerned [13]. Another study used two data sets of different

sizes – successful projects and a random set from

SourceForge.net to explore the possible benefits of CC Tools

on efficiency of open source projects. The study focused on

tools offered by Sourceforge.net only. Various parameters

used for analysis included number of developers, project age,

number of downloads, web hits, project size (in bytes), lines-

of-code and development status. Negative influence of tool

adoption on efficiency was found for data set comprising of

successful projects whereas data set of random projects

showed positive influence. Thus, mixed results so obtained

were non-conclusive regarding effect of CC Tools on

efficiency of Open Source projects. Many researchers have

acknowledged the fact that the selection of Open Source

projects to study the impact of CC Tools, must be made very

carefully and more extensively [14].

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.8, July 2014

30

Most of the research work on F/OSS has been focused on a

few case studies of widely accepted successful projects.

Majorly convenience sampling has been adopted across the

literature for case selections. For an objective view of F/OSS

concept, it is imperative that larger samples need to be

considered and selected. This raises the question as to how to

select the sample in accordance with the aspect to be studied.

The following sections present the methodology used to

develop a Sampling Process Model to select case studies from

a single hosting site with focus on research in CC Tools.

3. METHODOLOGY

3.1 Aim of the Study
The aim of the study is to develop a Sampling Process Model

for selecting case studies for research on coordination and

communication aspect in development of F/OSS projects.

3.2 F/OSS Empirical Research – The

Longitudinal Aspect
Literature review revealed two main approaches of F/OSS

Development process. The first approach comprised of seven

iterative phases: Problem Discovery, Finding Volunteers,

Solution Identification, Code Development and Testing, Code

Change Review, Code Commit and Documentation and

Release Management [15]. The Second approach identified

six stages: Planning, Pre-Alpha, Alpha, Beta, Stable and

Mature [16]. In actual practice, both these approaches are

integrated. This integration is depicted in Fig. 1 where the

first approach representing the Developer’s perspective of

development works iteratively for each stage described in the

second approach which is from a Project’s Progress

perspective. The volunteers may join the project at any

phase/stage and the developer pool of a project may change

over time. Trace data about volunteers, code development,

time spans as well as communication is recorded in various

CC Tools and is publicly available through repositories and

project hosting sites.

Since the source code is available and can be modified by

anyone who has skills and interest, F/OSS projects are

developed incrementally over longitudinal time frames. The

software requirements and the corresponding coordination and

communication requirements of the volunteers may change

over this incremental longitudinal development span.

Longitudinal research allows researchers to study the same

data set over an extended time span in order to observe the

changes over time. Thus a longitudinal study of the F/OSS

projects would provide significant insight into the various

aspects of development process, coordination and

communication requirements and the significance of various

CC Tools.

Fig 1: F/OSS Development Process: An Integrated Cycle - Stage Approach

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.8, July 2014

31

3.3 Sampling Process and Model

Development
Sample design i.e. deciding the way of selecting a sample is

the first requirement for model development. The Sampling

process comprises of several stages [17]:

 Clearly defining the Population of concern

 Deciding the Sampling Unit for the study.

 Specifying a Source List or Sampling Frame, a set of items

or events possible to measure

 Determining the Sample Size

 Determining the parameters of interest and Data which can

be collected

 Specifying a Sampling Method for selecting items or events

from the frame

 Implementing the Sampling Plan

 Sampling and Data Collecting

For sampling, an initial research setting for data collection is

required to be fixed in accordance with the aim of the study.

The foremost requirement of proposed sampling process is to

choose F/OSS project hosting site for selecting candidate

projects or case studies. The type and number of data sets as

well as the sources of data collection have to be

predetermined. The criteria may need to be refined during the

actual selection depending upon the constraints of the chosen

study. The following sections explain the various steps

followed for sample selection to study the role of CC Tools in

F/OSS development by way of proposing a project sampling

process model and the challenges of making the appropriate

selections.

4. RESEARCH SETTING FOR DATA

COLLECTION

4.1 Choosing Project Hosting Site for

Sample Selection
Various project hosting sites for open source software have

come up offering a multitude of services for developers as

well as users. Choosing a single source allows control for

difference in available tools and project visibility [18]. For

this particular study, SourceForge.net [19] has been chosen as

it is one of the leading F/OSS project hosting sites. It offers

user friendly interface and provides statistics for various

aspects related to project development. The project support is

provided through code repositories, forums, bug trackers,

mailing lists etc.

4.2 Formulation of Data Sets
Formulation of data sets is based on the following parameters:

 Project Category - The interface provided by

SourceForge.net allows search and listing criteria for

projects based on filters which include category,

translation, license, programming language, development

status and operating system. The data sets would be formed

from two broad categories: System Software Projects

having significance for developers and system

manufacturers and Allied Applications Projects having

significance for those who integrate the F/OSS applications

with their core area [20].

 Code Repository - Various source code management tools

being used across projects on SourceForge.net include

CVS, SVN, Git and Mercurial. Subversion (SVN) has been

adopted on a large scale across the hosting site thus

allowing flexibility to choose a large sample for the study.

 Project Popularity - The projects on SourceForge.net can

be listed in sorted order by factors like most popular,

relevance, date of last update, name and rating. User

interest is an important point of consideration for the

selection process for studies taking into account the

volunteers’ perspective. The number of downloads

represents an objective measure of user interest in the

project and its success. Thus, the data sets would be formed

from the chosen categories in sorted order of popularity (in

terms of weekly downloads).

4.3 Data Collection Sources
The various sources identified for collecting data for the study

are as below:

 SourceForge.net - Manual inspection of the hosting site is

required to create Source List or Sampling Frame from

which sample projects would be chosen and then gather

project information which is not available through public

code repository and research data archives.

 Subversion (SVN) Repositories - F/OSS for SVN

repository access would be used to access the project logs

for extracting developer related data.

 SourceForge Research Data Archive (SRDA)

implemented by University of Notre Dame, Notre Dame,

USA. - The access to the data archive comprising of

monthly dumps of over 100 relations/tables is provided via

user-id and password to academic and scholarly researchers

only after submitting a research proposal and signing the

agreement/sublicense for data access. The data can be

accessed through a web-based form for executing SQL

queries against the relational database [21, 22].

5. THE SAMPLING PROCESS MODEL
A Four-phase model is proposed for the sampling process as

depicted in Fig. 3 and is explained below:

5.1 Phase 1 - Data Collection Framework

Design
It is important to design a framework to collect data in

accordance with the criteria set in the research setting. The

availability of appropriate data and in turn the data sources for

F/OSS study influence the sampling process. The Fig. 2

shows the framework derived from Gupta and Singla [18]

used for this study.

5.2 Phase 2 - Candidate Projects

Identification
The goal of this phase is to find all possible candidate projects

which meet the major criterion in accordance with the

research setting for the data collection for the study. Only the

high-level requirements are applied to initiate the selection

process.

The Identification Phase started with searching for candidate

projects on SourceForge.net, the hosting site selected for

studying the impact of CC Tools on Open Source Projects.

The search interface provided by the site was used to filter

projects. The projects were sorted based upon “Popularity”.

The filters used were: Category and Development Status. The

decision to use the “Status” filter in addition to the “Category”

filter was based on two points: to explore the role of CC Tools

and the requirement of longitudinal data for the study.

SourceForge.net categorizes projects according to

development status from 1-7 i.e. Planning, Pre-Alpha, Alpha,

Beta, Production/Stable, Mature and Inactive. The decision

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.8, July 2014

32

Fig 2: Framework for Data Collection

for a cut-off of 5 i.e. production/stable development status

was based on the fact that projects are at similar stage of

development so that comparable archived longitudinal data

for projects’ progress would be available. Moreover, the

selected projects are expected to remain active during the

study period with scope for their movement to a higher

development status giving opportunity to study the entire

development process. On the day of fixing the finite

population/universe from which the sample would be chosen,

the projects on the hosting site were organized in seven

categories – Software Development, System, Internet,

Communications, Scientific/Engineering, Multimedia and

Games/Entertainment. Out of the seven categories, the

Software development and System category projects fall

under the broad category of System Software projects and the

remaining five categories fall under Allied Applications. The

research decision taken with regards to category was to

choose projects from all available N (i.e. 7) sub-categories to

remove any selection bias and form two data sets as per

research setting. It was further decided to fix an equal upper

limit (M) for choosing an initial number of projects from each

sub-category to form the Source List out of which the final

sample would be drawn.

 A query, using project names from SourceForge.net, was

formulated to retrieve project details comprising of its unique

identification number, date of registration with

SourceForge.net and its SVN usage status from SRDA [23].

To formulate the query, the Schema and Tables details along

with ER diagrams provided by SRDA were studied in detail

[21, 22]. The query was executed, against the monthly dump

of latest schema available, for all N (i.e. 7) lists comprising of

M projects each. SRDA uses a binary parameter to depict

usage of SVN where 1 implies that the project uses SVN and

0 otherwise. From the query output text files, the details were

manually ported to a spreadsheet package. The projects

which were not using SVN were struck off the list.

The identification phase provided N (i.e. 7) lists of projects

corresponding to N categories as on SourceForge.net sorted

according to “popularity”, comprising of projects at

production/stable status and using SVN at the time of

selection process. The lists comprise of projects fulfilling the

high level requirements fixed in the research setting of the

data collection.

5.3 Phase 3 - Candidate Projects Screening
In this step, refined criteria are applied to find the best

candidate projects which satisfy the longitudinal aspect of the

study in respect of coordination and communication in F/OSS

development process.

Though Phase 2 identifies candidate projects according to the

criteria fixed in the research setting, yet further screening was

required to fulfil the requirements of the study under

consideration. The criteria for refinement include following

parameters:

 Number of Developers - A cut-off of 5 developers was

taken. SRDA query was formulated and executed to find

the number of developers from the monthly dump of the

schema used for queries in Phase 2 to ensure data

consistency. The projects with number of developers less

than 5 were rejected because very few developers would

result in lesser use of a variety of CC Tools resulting in

insufficient data for proper study of Communication and

Coordination aspect.

 Date of Registration - A cut-off on date of registration on

SourceForge.net had to be implemented to ensure that

projects falling outside the scope of longitudinal span

chosen for the study are not included in the sample data

sets.

 Multiple Category Resolution - For projects listed

simultaneously in multiple categories, the category was

resolved after studying the usage, application and intended

audience as listed at SourceForge.net page of the project as

well as project’s own website.

 Current Code Repository - For each project in the output

list of identification phase, SourceForge.net page of the

project was checked manually to find out its current SVN

usage. Of the selected projects, a few had moved from SVN

to other code repositories. Such projects were rejected due

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.8, July 2014

33

to partial or zero availability of data for the time span

chosen for study. Moreover, a few projects were using

more than one code repository apart from SVN. The dates

and count of SVN commits of such projects were observed

during the time span chosen for the study and the decision

regarding keeping or discarding a project were taken in

accordingly. The Screening phase results in selection of

projects which best fit the parameters of the study i.e. the

Source List for the study. From this the actual sample data

sets have to be formulated.

5.4 Phase 4 - Data Sets Sampling
Finally, in Phase 4, the projects are sampled into two data sets

based on categories as per the criterion fixed in the research

setting. Since popularity measure or downloads has been

chosen to sort the candidate projects, both the sets of equal

size comprise of the most downloaded projects in each

category.

The decision to choose equal sized data sets was based on the

following reason: As described in [17], in stratified sampling

“if the purpose happens to compare differences among strata,

then equal sample selection from each stratum would be more

efficient even if strata differ in size”. In this study, the sample

comprising of two data sets have to be formulated from a

heterogeneous population comprising of N individually

homogeneous categories. These N categories represent N

strata which are individually more homogeneous than the total

population due to their classification by the hosting site based

on parameters of usage and intended audience.

The proposed Four Phase Sampling Process Model depicted

in Fig. 3 shows the step-by-step procedure followed for the

Sample selection process.

6. THE CHALLENGES OF PROJECT

SELECTION
The selection process has been a tedious process due to

certain constraints which arose during the course of the

selection process.

 Dynamic Nature of the Hosting Site - The sorting order

of the projects keep changing according to the number of

downloads i.e. popularity on the hosting site. It was

observed from manual inspection of the site that some

projects occurred in multiple categories. If the lists

corresponding to each of the N categories on the hosting

site were fixed at a larger time differential then this could

have led to sampling error. Consider the following

scenario: Category wise lists have been fixed on separate

days and a project which occurs in more than one category

gets fixed in one list on the first day. Before the fixing of

the next category in which it occurs, it gets downloaded

thus changing its ordering in ‘sort by popularity’. If both

the categories had been selected with a larger time

differential between them, then there is a possibility of the

project being low in priority in first category with chances

of rejection being high. The same project may occur on

higher order in the next list with a chance of being selected

in final list. The problem would arise if the project had

more relevance in the first category than the other thus

leading to sampling error. Thus, the projects to form the

Source Lists from which the final sample had to be drawn

needed to be fixed within the shortest possible time frame.

To ensure minimum sampling error on this account, the

initial list of N×M projects had to be prepared within the

smallest time frame possible within the same day.

 Retrieving Unique Project Identification Number- From

the detailed study of SRDA database tables, schemas and

ER Diagrams, it was found that a project’s identification

number is the most important parameter to be used in

queries to be executed against the relational database.

Manual inspection of SourceForge.net showed that this

number was not listed at the site for all projects. This meant

that project identification number had to be retrieved from

SRDA. For this, care had to be taken to put the exact names

of projects as listed on SourceForge.net site in the first

query to retrieve the corresponding unique project

identification number, date of registration and SVN usage

for the entire lists of N×M projects in the initial list.

 Manual Porting of SRDA Query Results - The results of

the query executed against the SRDA were in the form of a

text file with entries for each project on a separate line. The

result of query is not sorted according to “popularity” of a

project. Moreover, only entries of projects which used SVN

had to be retained. This partial set of entries could not be

directly ported in order of popularity to the spreadsheet

package. So, this had to be done manually at this stage.

 Multiple Code Repositories on SourceForge.net - In

projects where other code repositories are being used in

addition to SVN, the code commit activity was checked

from code repository statistics and history through

SourceForge.net. Comparisons were made amongst commit

activity in all repositories of a project through manual

observation. Projects which were maintaining simultaneous

partial data on more than one repository had to be rejected.

Moreover, in certain cases statistics from other repositories

were not available for comparison.

 Multiple Category Resolution - Some projects were found

to be listed under more than one of the seven categories on

SourceForge.net. This verification was done manually as

well as filter option of spreadsheet package was used.

Category wise coding was done in order of popularity in

each list. For projects having multiple codes, category had

to be resolved by manually studying the project page on

SourceForge.net, its website and other related sites for

checking its application usage and intended audience. The

coding process was tedious manual work and verification

process took considerable time.

 Identifying Criteria to be used in Candidate Screening

Phase - Proper care had to be taken to identify the criteria

to be used for screening phase keeping in view the focus of

the study and to minimise the sampling bias.

 Manual Inspection of the Hosting Site - Traditional way

of data collection through spidering using Perl scripts has

been reported as time and resource consuming process with

significant challenges in cleaning, screening and

interpreting the data. Moreover, SourceForge.net has

introduced defence mechanism against spidering [24].

Therefore, the gaps in the data accessed from research

collaboratory SRDA at different stages had to be filled

through manual inspection. The constraints of the study did

not allow automated application to be developed at this

stage.

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.8, July 2014

34

Fig 3: Framework for Proposed Four Phase Sampling Process Model

Table 1. Sampling Process Model - Formulation of Data Sets

Phase Description

Data Set 1

(System Software

Projects)

Data Set 2

(Allied Applications)

Phase 2 :

Step 1

Categoriesa

(N)

SD

1

S

2

I

3

C

4

SE

5

GE

6

M

7

Total

Projects
6852 5174 6296 3602 3548 2845 3271

Initial Set

(M)
200 200 200 200 200 200 200

Phase 2 :

Step 2

Projects

using SVN

105

(52.5%)

96

(48.0%)

111

(55.5%)

109

(54.5%)

108

(54.0%)

118

(59.0%)

107

(53.5%)

Phase 3 Source List
41

(39.0%)

30

(31.3%)

31

(27.9%)

30

(27.5%)

49

(45.4%)

49

(41.5%)

30

(28%)

Phase 4
Stratified

Sampling
25 25 10 10 10 10 10

Sample Size = 100 50 50
a.Categories: SD - Software Development, S - Systems,

I - Internet, C - Communications, SE - Scientific/Engineering, GE - Games/Entertainment, M - Multimedia

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.8, July 2014

35

7. MODEL APPLICATION
Table 1 summarizes the data sets formulation using the

proposed Four Phase Sampling Process Model for research

problem to study the longitudinal impact of CC Tools on

F/OSS projects. The framework described in Phase 1 has been

utilized for preparing the Source List from which final sample

has been formulated. As per the research setting, sample

comprises of topmost projects sorted as per “popularity”

measure on the hosting site on the day of selection, which

satisfy the criteria of Phase 2 and Phase 3 respectively. Of the

topmost 200 most popular projects in each available category,

overall 53.86% projects used SVN. Of these 53.86%, 34.5%

formed the Source List. The N=7 categories, divided into two

broad categories as described in Phase 2, form the two data

sets as listed in Table 1. Applying stratified sampling with

equal sized sample selection from each stratum (category),

two data sets of 50 projects each have been formulated in

Phase 4. The topmost popular projects in each category in the

Source List were taken to formulate the final data sets

depending upon the broad category area.

The above data sets have been formulated for research

problem to study the longitudinal impact of CC Tools on

F/OSS projects. Depending upon the type of research

problem, the proposed Sampling Process Model may be

applied to related or similar longitudinal studies after requisite

modifications in the criteria in each of the Phases. The

number and size of data sets may vary depending upon the

research questions to be addressed.

8. CONCLUSION
F/OSS developers rely on the coordination and

communication infrastructure since they work in a

decentralized and distributed development environment. Thus

communication and the appropriate communication

infrastructure, which provides flexibility to the volunteers to

contribute as per their own convenience, is the key to progress

of any F/OSS project over a period of time. Studying the

effect of CC Tools on the development process is an

important aspect of research to gain insight into this form of

incremental collaborative development. The Four Phase

Sampling Process Model proposed in this paper may find

application in related or similar studies. It would find

application for all researches which utilize multiple case-

studies to gain insight into various aspects of F/OSS and

software development in general.

9. ACKNOWLEDGMENTS
We are thankful to University of Notre Dame for providing

access to SourceForge Research Data Archive (SRDA) for

retrieving data on F/OSS projects.

10. REFERENCES
[1] The Free Software Definition.

URL: http://www.gnu.org/philosophy/free-sw.html last

accessed on March 06, 2012.

[2] Open Source Software Definition. URL:

http://www.opensource.org/docs/osd last accessed on

March 06, 2012.

[3] Crowston, K., Annabi, H., Howison, J. and Masango, C.

2005. Effective Work Practices for FLOSS development:

A model and propositions. In Proceedings of the 38th

Hawaii International Conference on System Sciences –

2005.URL:

http://www.computer.org/portal/web/csdl/doi/10.1109/HI

CSS.2005.222 last accessed on August 27, 2011.

[4] Raymond, E.S. 1999. The Cathedral and the Bazaar.

Cambridge, Massachusetts: O’Reilly & Associates,

1999.J. Clerk Maxwell, A Treatise on Electricity and

Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.

68-73.

[5] Crowston, K., Howison, J., and Annabi, H. 2006.

Information Systems Success in Free and Open Source

Software Development: Theory and Measures. Software

Process: Improvement and Practice, 11(2), pp. 123–148.

[6] Preet Kanwal, Gupta, A. and Singla, R.K. 2013. Open

Source Software Development: Exploring Research

Perspectives. Emerging Trends in Computing,

Informatics, Systems Sciences, and Engineering, Lecture

Notes in Electrical Engineering 151, Springer

Science+Business Media New York 2013. Pp. 607-617.

[7] Kraut, R.E. and Streeter, L.A. 1995. Coordination in

Software Development. Communications of the ACM,

38(3), 1995, pp. 69-81.

[8] Gardler, R. 2011. Essential tools for running a

community-led project. OSS Watch open source software

advisory service website http://www.oss-watch.ac.uk/

URL: www.oss-

watch.ac.uk/resources/communitytools.xml last accessed

on January 4, 2012.

[9] Fernandes, S. 2011. Quality, success, communication

and contribution in Open Source Software. In

Proceedings of 5th International Workshop on

Foundations and Techniques for Open Source Software

Certification (OpenCert 2011), pp. 33-42.URL:

http://opencert.iist.unu.edu/Papers/2011-paper-S2-A.pdf

last accessed on January 4, 2012.

[10] Koch, S. and Gonzalez-Barahona, J. M. 2005. Open

Source Software Engineering – The State of Research.

First Monday, 10(SI-2), 2005.URL:

http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/f

m/article/view/1466/1381 last accessed on August 09,

2010.

[11] Lundell, B., Lings, B., Ågerfalk, P. J., and Fitzgerald, B.

2006. The Distributed Open Source Software

Development Model: Observations on Communication,

Coordination and Control.URL:

http://is2.lse.ac.uk/asp/aspecis/20060058.pdf last

accessed on 27 August 2011.

[12] Canfora, G., Lanubile, F. and Mallardo, T. 2003. Can

Collaborative Software Development Benefit from

Synchronous Groupware Functions? URL:

http://cdg.di.uniba.it/cdg/mallardo/papers/FA2003.pdf

last accessed on January 16, 2012.

[13] Michlmayr, M. 2005. Software Process Maturity and the

Success of Free Software Projects. In: Zieliński, K.,

Szmuc, T. (Eds.), Software Engineering: Evolution and

Emerging Technologies. pp. 3–14.

URL:http://www.cyrius.com/publications/michlmayr-

process_maturity_success.pdf last accessed on January

31, 2012.

[14] Koch, S. 2009. Exploring the effects of Sourceforge.net

coordination and communication tools on the efficiency

of open source projects using data envelopment analysis.

Empirical Software Engineering, 14, 2009, pp. 397-417.

http://www.fsf.org/about/licensing/essays/free-sw.html

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.8, July 2014

36

[15] Sharma, S., Sugumaran, V. and Rajagopalan, B. 2002.

A framework for creating hybrid-open source software

communities. Information Systems Journal, 12, 2002, pp.

7–25.URL:

http://in953.kelon.org/archives/in953/2004/papers/ISJAF

rameworkForCreatingHybrid-

OpenSourceSoftwareCommunities.pdf last accessed on

January 12, 2012.

[16] Tiwari, V. 2010. Some Observations on Open Source

Software Development on Software engineering

Perspectives. International Journal of Computer Science

& Information Technology (IJCSIT), 2(6), December

2010.M. Young, The Technical Writer’s Handbook. Mill

Valley, CA: University Science, 1989.

[17] Kothari, C.R. 2010. Research Methodology Methods and

Techniques. New Age International Publishers. Second

Revised Edition, pp. 62-63.

[18] Gupta, A. and Singla, R.K. 2009. Evaluating User

Participation in Defect Reporting among Free/Open

Source Software Projects. Journal of Computer Science,

4(1), 2009, pp. 1387-1403.

[19] SourceForge.net; URL: http://sourceforge.net.

[20] Preet Kanwal, Gupta, A. and Singla, R.K. 2011. Open

Source Software – Spectrum of Applications. In

Proceedings of 5th Chandigarh Science Congress

(CHASCON 2011), Panjab University, Chandigarh,

2011.

[21] SRDA; http://zerlot.cse.nd.edu/

[22] Antwerp, M. V. and Madey, G. 2008. Advances in the

SourceForge Research Data Archive. In proc. of 4th

International Conference on Open Source Systems -

(WOPDASD 2008), Milan, Italy, September 2008. pp.

21-27.URL:

http://zerlot.cse.nd.edu/mediawiki/images/f/fd/Srda_final

.pdf last accessed on December 26, 2011.

[23] Gao, Y., Antwerp, M.V., Christley, S. and Madey, G.

2007. A Research Collaboratory for the Open Source

Software Research. In Proceedings of First International

Workshop on Emerging Trends in FLOSS Research and

Development (FLOSS 2007) Minneapolis, MN, May

2007. URL:

http://www.nd.edu/~oss/Papers/FLOSS07.pdf last

accessed on January 24, 2012.

[24] Howison, J. and Crowston, K. 2004. The Perils and

Pitfalls of Mining SourceForge. International Workshop

on Mining Software Repositories (MSR 2004), Scotland,

United Kingdom, May 23-28 2004.

IJCATM : www.ijcaonline.org

