
International Journal of Computer Applications (0975 – 8887)

Volume 98– No.6, July 2014

38

 Empirical Analysis of Context Free Grammars and

Parse Trees

J.Sreedhar

Research Scholar
Department of CSE

JNTUK

Kakinada, India-533003

S.Viswanadha Raju, Ph.D
Professor -CSE & HOD

JNTUHCEJ
JNTUH,Hyderabad

India-500072

A.Vinaya Babu, Ph.D
Professor-CSE&Principal

JNTUH,
Hyderabad

India-500072

ABSTRACT

This research explores the impact of Context Free Grammars

(CFG) and Parse Trees for construction of a Telugu Language

Sentences. Based on the CFG here we derived the derivations

for the respective strings. Later we constructed the Parser

Trees for the above said strings. Finally we analysed whether

the string is ambiguous or unambiguous. Here for analysis we

considered the Large Scale Open Source Telugu carpus.

Keywords

 CFG, Parse Trees, Derivations

1. INTRODUCTION
The syntax of a language may be specified using a notation

called context free grammar (CFG),. A context free grammar

consists of terminals, non-terminals, a start symbol and

production rules. The set of tokens are called the terminal

symbols. These are the basic symbols from which strings are

formed. Non terminals are the symbols which represent

syntactic variables that denote sets of strings. They do not

exist in the source program they only help in defining the

language generated by the grammar. One of the non-terminals

designated as the start symbol. We shall follow the convention

of listing the production for the start symbol. The set of

strings denoted by the start symbol is the language defined by

the grammar. A production rule has a non-terminal symbol on

the left hand side followed by an arrow and a sequence of

symbols on the right side. This sequence of symbols may

contain a combination of terminals and non-

terminals[9,11,13].

The organization of this paper is as follows: Section II

describes the CFG and its notations, Section III deals with

derivations of CFG Grammar, Section IV explores the Parser

Trees , Section V shows the acknowledgements and Section

VI deals with conclusion followed by the references.

2. CONTEXT FREE GRAMMARS
 It may have more than one production rule for the same non

terminal. In that case, we can group their right hand side by

using symbol | to separate the alternate right hand side.

CFG, sometimes called a phrase structure grammar[2] plays a

central role in the description of natural languages. In general

a CFG [10,12,17] is a set of recursive rewriting rules called

productions that are used to generate patterns of strings and it

consists of the following components:

 A finite set of terminal symbols (Σ).

 A finite set of non-terminal symbols (NT).

 A finite set of productions (P).

 A start symbol (S).

Let G be a Context Free Grammar for which the production

rules are:

Fig. 1: Context Free Grammar

3. DERIVATIONS
Here Derivation provides a means for generating the

sentences of a language. If one chooses the leftmost non-

terminal in a given sentential form then it is called leftmost

derivation. If one chooses the rightmost non-terminal in a

given sentential form then it is called rightmost derivation.

Derivation from S means generation of string w from S. Any

language construct can be defined by the CFG [3,15,16]. The

above grammar generates different strings by providing many

sentential forms as shown below.

Fig 2: Derivation of “n v n pn”

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.6, July 2014

39

The start symbol of the above grammar is S. Any grammar

contains terminals and non-terminals. The non-terminal

symbol occurs at the left hand side. These are the symbols

which need to be expanded.The non-terminals are replaced by

the terminals which it derives.

The above string is derived from S step by step as follows:

 First the nonterminal NP present at the left side is

replaced by its substring noun.

 Then it is substituted by its substring n.

 Then VP is substituted by its substring VP PP.

 Then again VP is substituted by its substring Verb.

 Then that Verb is substituted by its substring v.

 Then PP is substituted by its substring NP PP.

 Then again NP is substituted by its substring Noun,

and then Noun is substituted by its substring n.

 Then again PP is substituted by its substring NP PP.

 Then again NP is substituted by its substring

Pronoun.

 Finally, PP is substitued by its substring €.

 So that, finally we obtain the string.

Fig 3: Derivation of “n pn n v”

The above string is derived from S step by step as follows:

 The non-terminal NP present at the left side is

replaced by its substring noun.

 Then it is substituted by its substring n.

 Then VP is substituted by its substring VP PP.

 Then again VP is substituted by its substring €.

 € means null value, so we can just eliminate it.

 Then PP is substituted by its substring NP PP.

 Then NP is substituted by its substring pronoun

(pn).

 Then again PP is substituted by its substring NP PP.

 Then again NP is substituted by its substring Noun,

and then Noun is substituted by its substring n.

 Then again PP is substituted by its substring VP PP.

 Then again VP is substituted by its substring Verb

,and then Verb is substituted by one of the substring

v.

 Finally, PP is substituted by its substring €.

 € means null value, so we can just eliminate it.

 So that, finally we obtain the string

4. PARSE TREES
A parse tree[1,4,5] is an equivalent form of showing a

derivation which represents a derivation graphically or

pictorially. A parse-tree is an internal structure, created by the

compiler or interpreter while parsing some language

construction. Parsing is also known as 'syntax analysis'.

A parse tree for a grammar G is a tree where

 the root is the start symbol for G

 the interior nodes are the non-terminals of G

 the leaf nodes are the terminal symbols of G.

 the children of a node T (from left to right) correspond to

the symbols on the right hand side of some production

for T in G.

Every terminal string generated by a grammar has a

corresponding parse tree; every valid parse tree represents a

string generated by the grammar (called the yield of the parse

tree).

Example Parse Trees for NLP:

Consider the below grammar, implementing the parse tree for

the strings generated by this grammar.

Fig. 4: Context Free Grammar

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.6, July 2014

40

1) This grammar generates the string n v n pn. The parse tree

for this string using CFG is as following steps.

2) Create a root labeled with S.

3) For each sentential form αi in the derivation, i ≥ 2, construct

a parse tree whose yield is αi , We can use induction for

constructing the for αi , given the tree for αi-1 as given below:

a. The tree for α1 = S is a single node labeled S.

b .Let αi-1 = X1 X2 …. Xr and αi is derived from αi-1 by

replacing Xj by β = Y1 Y2 ….. Yk.

Fig 5: Parse Tree for “nvnpn”

S is a start symbol which derives NP VP, NP is a non-terminal

which is substituted by noun and it is in turn substituted by the

terminal n.

Now VP derives VP PP, PP with NP PP. NP is substituted by

noun and with n.

Similarly PP derives NP PP and NP with the terminal pn.

Finally, we obtain the string n v n pn.

Fig 6: Parse Tree for “npnnv”

S is the start symbol for the above grammar which derives NP

PP. NP is reduced to noun and inturn by n.

VP derives VP PP and PP to NP PP. Now NP is reduced to

pronoun and to the terminal pn. Next PP is substituted by NP

PP where NP to noun and PP to VP. Finally, we obtain the

string n pn n v.

5. ACKNOWLEDGMENTS
We are very thankful to all the esteemed authors in a reference

list, to make this research article in a better shape and in right

direction.

6. CONCLUSION
Here we described about the Context Free Grammars,

Derivations and Parse Trees. We observed the ambiguity

between the Telugu Language Sentences.

7. REFERENCES
[1] Aho, A.V., and Johnson, S. C. [1974]. “LR parsing,”

Computing Surveys 6:2, 99-124.

[2] Aho, A.V., and Johnson, S. C. , and Ullman, J. D.

[1975]. “Deterministic parsing of ambiguous

grammars,” Comm. ACM 18:8, 441-452.

[3] Aho, A.V., and Peterson, T.G, [1972]. “A minimum

distance error correcting parser for context-free

languages,” SIAM J. Computing 1:4, 305-312.

[4] Aho, A.V., and Ullman, J. D. [1972b]. The Theory of

Parsing Translation and Compiling, Vol. I:Parsing,

Prentice-Hall, Englewood Cliffs, N. J.

[5] Aho, A.V., and Ullman, J. D. [1972c]. “Optimization

of LR(k) parsers,” J. Computer and systems Sciences

6:6, 573-602.

[6] Aho, A.V., and Ullman, J. D. [1972a]. The Theory of

Parsing, Translation and Compiling, Vol. II: Compiling,

Prentice- Hall, Englewood Cliffs, N. J.

[7] Aho, A.V., and Ullman, J. D. [1972b]. “ A technique

for speeding up LR(k) parsers.” SIAM J. Computing 2:2,

106-127.

[8] Anderson, J. P. [1964]. “A note on some compiling

algorithms,” comn. ACM 7:3, 149-153.

[9] Anderson, T., Eve, J., and Horning, J. J.[1973]. “

Efficient LR(1) paresers,” Acta Informatica 2:1, 12-39.

[10] Backhouse, R.C. [1976]. “An alternative approach to the

improvement of LR parsers,” Acta Informatica 6:3, 277-

296.

[11] Bar Hillel, Y., Perles, M., and Shamir, E. [1961]. “On

formal properties of simple phrase structure grammers,”

Z. Phonetik, Sprachwissenschaft und

Kommunikationsforschung 14, pp. 143-172.

[12] Barnard, D. T. [1975]. “A survey of syntax error

handling techniques,” Computer Science Reaserch

Group, Univ. of Toronto, Toronto, Ont., Canada.

[13] Birman, A., and Ullman, J.D. [1973]. “Parsing

algorithms with backtrack,” Information and Control

23:1, 1-34.

[14] Bochmann, G. V. [1976]. “Semantic evaluation from left

to right,” Comm. ACM 19:2, 55-62.

[15] Brzozowiski, J. A. [1964]. “Derivatives of regular

expressions,” J. ACM 11:4, 481-488.

[16] Cheatham, T. E. Jr., and Sattley, K. [1964]. “Syntax

directed compiling,” Proc. AFIPS 1964 Spring Joint

Computer Conf. Spartan Books, Baltimore Md., 31-57.

[17] Chomsky, N. [1959]. “On Certain formal properties of

grammers,” Information and Control 2:2, 137-167.

IJCATM : www.ijcaonline.org

