
International Journal of Computer Applications (0975 – 8887)

Volume 98 – No.21, July 2014

1

Enhancing Data Dynamics and Storage Security for

Cloud Computing using Merkle Hash Tree and AES

Algorithms
Poonam M. Pardeshi

Department of Computer Engineering
Pune University, Maharashtra,

India

Deepali R. Borade
Professor, Department of Computer Engineering

Pune University, Maharashtra
India.

ABSTRACT
With increase in the number of cloud users and the amount of

sensitive data on cloud, security of cloud has become more

important. Massively scalable data centers are provided by the

cloud which can be accessed from anywhere and at anytime.

Cloud computing allows users to store data and access it on

demand thereby utilizing fewer resources in client system.

However many malicious activities in cloud have

accompanied the growth of cloud users. One of the greatest

security challenges is storage security in cloud. It must make

possible for users to store data without worrying about the

need to verify its integrity. Thus, enabling public auditing for

cloud storage is of critical importance so that users can restore

to a third-party auditor (TPA) to check the integrity of

outsourced data and be worry free. In this paper we make use

of Public-Auditing. We propose a way in which the Merkle

Hash Tree (MHT) used in a method called RSASS, is made

dynamic by using the concept of relative index to compute the

index of leaf node quickly and a dynamic operation scheme

based on this tree structure for cloud storage. Also, instead of

using RSA algorithm, we have made use of AES algorithm

because AES requires less encryption-decryption time as well

as less buffer space as compared to RSA algorithm. We thus

propose a simple data protection model where data is

encrypted using Advanced Encryption Standard (AES) before

it is launched in the cloud, thus ensuring data-confidentiality

and security.

Keywords
Advanced Encryption Standard, Cloud Computing, Data

Integrity, Dynamics Data Operations, Merkle Hash Tree,

Public Auditability, Storage Security.

1. INTRODUCTION
Cloud storage is an important service provided by cloud

computing which makes it possible for data owners to move

their data from local computers to the cloud. Moving the data

on the cloud provides users with the facility of remotely

storing data thereby freeing up local disc space and enjoy on

demand availability of data. Both Amazon Simple Storage

Service (S3) and Amazon Elastic Cloud (EC2) are well

known examples of this.

It has made possible for the users to subscribe high quality

services of data and software which reside solely on the

remote servers and enjoy the on demand provision of the

services. As a huge amount of storage space and customizable

computing resources are provided by internet based online

services, the shift to online storage has greatly contributed in

eliminating the responsibility of local machines in

maintenance of data.

Though cloud computing brings many benefits, it also puts

forth many great challenges privacy protection and data

security fields [11, 12].The remote data at untrusted stores

lack data integrity. Owners would worry that the data stored at

the cloud could be lost. Although the cloud infrastructures are

more powerful than the personal computing devices, there still

lie some external threats to the cloud storage. For example,

the Cloud Service Provider (CSP) may discard some of the

less frequently used data to save the storage space and hence

increase profit margins. Some of the CSPs may also attempt

to hide the data loss to maintain the reputation. Therefore,

although outsourcing data into the cloud seems to be attractive

economically, the data integrity and availability factor may
impede its adoption by users. The data owners therefore need

to be convinced that the data are correctly stored in the cloud.

In order to achieve data integrity and availability and enforce

the quality of cloud storage service, efficient methods that

provide on-demand data correctness verification on behalf of

the users are used. The data integrity problem is solved by

many systems. All of them fall under public auditability and

private auditability. In public auditing, the client delegates the

authority of verifying the integrity of data at the server to the

Third-Party Auditor (TPA) [3]. The TPA is an entity that

monitors the integrity of data stored at the untrusted server on

behalf of the client. Various algorithms can be used by the

TPA in order to check the integrity. The Storage Security

method is used for auditing the data stored at remote server

[14].

Along with storing the data on the cloud server, the users may

need to perform dynamic operations such as insert, delete,

update and modify. In order to provide support for data

dynamics, this paper constructs a Dynamic Merkle Hash Tree

(DMHT) [10] structure with relative index of leaf node.

 According to a performance evaluation, if we go from AES-

128 to 192 bits key, the power and time consumption

increases by 8% and 256 bits key causes an increase of 16 %

[15]. So we propose use of industry-standard high grade

Advanced Encryption Standard (AES) symmetric encryption

algorithm with key length of 128-bits for this purpose.

The paper is organized as follows, section 2 describes

background details, section 3 explains literature survey,

International Journal of Computer Applications (0975 – 8887)

Volume 97, July 2014

2

section 4 describes proposed system, section 5 describes

conclusion of the paper.

2. BACKGROUND THEORY
The data integrity problem is solved by many systems. Some

make use of two-party auditing process [3] while some use

third-party auditing. In two-party auditing, the client itself

sends the challenge to the server and the server is supposed to

respond to it with a proof to prove that it contains the data in

integrated manner. In third-party auditing, however, the client

delegates the right of auditing the data at the server to a third-

party called as the Third-Party Auditor.

2.1 Third Party Auditor (TPA):
The TPA performs auditing on behalf of the Client. The

introduction of the TPA reduces the overhead of the client.

The client no longer needs to verify the integrity of the data at

the server on its own.

Fig.1: Cloud Data Storage Architecture [1]

Fig.1 shows three entities viz. the client system, the cloud

service provider and the Third Party Auditor. The client

generates the data and sends the file data to the remote cloud

server. The TPA analyses the integrity of the stored file in the

server and report it to the client about the status of the file

data. If the file is affected, any intrusion or attack is notified to

the client.

2.2 Merkle Hash Tree (MHT):
A Merkle Hash Tree is a well-studied structure used for

authentication purpose [7], which is intended to prove

efficiently that a set of elements are unaltered and undamaged.

It is used for decreasing the server computation time [9]. It is

used by cryptographic methods to authenticate the file blocks.

The tree is constructed as a binary tree where the leaf nodes

are the hashes of the authentic data values i.e. the original file

blocks. The idea used in this is to break the file up into a

number of small pieces, apply hash to these pieces and the

combine iteratively and rehash the resulting hashes in a tree-

like fashion until we get a tree with a single ‘root hash’. The

MHT is generated by the client and is stored at both the client

and the server side. An example of the MHT structure is as

shown Fig 2. Among it, ha=h(h(m1)||h(m2)) and

hb=h(h(m3)||h(m4)), where h is a secure one-way hash

function.

Fig.2. Merkle Hash Tree (MHT)

The authentication of the file blocks is done by the client by

requesting the server to send block related information for

generating the tree. This information is called as the Auxiliary

Authentication Information (AAI). For example, consider the

MHT in Fig.3. The verifier with the authentic root hr requests

for {m2,m7} and requires the authentication of the received

blocks. The AAI Ω2=<h (m1), hd> and is Ω7=<h (m8), he> are

provided by the prover to the verifier. The verifier can now

verify m2 and m7 by computing h(m2), h(m7),

hd=h((h(m3)||h(m4)), he=h(h(m5)||h(m6)), ha=h(hc||hd),

hb=h(he||hf) and hr=h(ha||hb).

2.3 Cryptography:
Cryptography is basically used for the protection of data.

Using cryptographic methods, the data is converted into secret

form so that it cannot be read and understood by anyone who

has no authority to do so. It can be applied using various

following methods.

1.3.1 Symmetric Key Cryptography:
In Symmetric Key Cryptography, both the sender and the

receiver make use of the same key. In this, same key is used

for encryption as well as decryption. The AES algorithm used

in this paper falls under this category.

Fig.3.Authentication of data elements using MHT

1.3.2 Public Key Cryptography:
In Public Key Cryptography, two different keys are used for

encryption and decryption. The public key is used for

encrypting the data and it can be distributed freely. However,

the private key, used for decrypting the data, remains only

with the receiver. Well known algorithms such as Rivest,

Shamir and Adleman (RSA) and Diffie Hellman fall under

this cryptographic method.

1.3.3 Hash Functions:
These are different from SKC and PKC. They have no key at

all and are also called one-way encryption. Hash functions are

mainly used to ensure that a file has remained unchanged. In

this paper, we make use of Secure Hash Algorithm-1 (SHA1)

for applying hash to the leaf nodes of the MHT.

2.4 Cryptography Goals:
There are five main goals of cryptography. Every security

system must provide a bundle of security functions that can

assure the secrecy of the system. These functions are usually

referred to as the goals of the security system. These goals can

be listed under the following five main categories (Earle,

2005):

 Authentication:
The process of proving one's identity. This means that before

sending and receiving data using the system, the receiver and

sender identity should be verified.

 Privacy/confidentiality:

International Journal of Computer Applications (0975 – 8887)

Volume 97, July 2014

3

This goal is meant for ensuring that no one can read the

message except the intended receiver. Usually this function is

how most people identify a secure system. It means that only

the authenticated people are able to interpret the message

content and no one else.

 Integrity:
Assuring that the data of the client is not modified or changed

i.e. the data is in its original.

 Non-repudiation:
A mechanism to prove that the sender really sent this

message. Means that neither the sender nor the receiver can

falsely deny that they have sent a certain message.

 Service Reliability and Availability:
Since secure systems usually get attacked by intruders, which

may affect their availability and type of service to their users.

Such systems provide a way to grant their users the quality of

service they expect.

From the above mentioned goals, we try to achieve first three

goals. We provide a mechanism that tries to achieve

maximum security for cloud data by leveraging the

capabilities of cryptography.

2. LITERATURE REVIEW

Most of the work in storage security in cloud computing is

concerned with the integrity of the data at the remote server.

Deswarte et al. in [1] makes use of RSA based hash function

to verify the file stored at the remote server. Using their

scheme, the client can perform multiple challenges using the

same metadata.

Disadvantage: The limitation of this scheme lies in the

computational complexity at the server which must

exponentiate all the blocks in the file.

Miller and Schwarz in [2] proposed a technique for ensuring

the data stored remotely across multiple sites. Algebraic

signature was used for this purpose. This scheme makes use

of a function to fingerprint the file block and verifies if the

signature of the parity block is same as the signature of block.

Disadvantages: 1) The computation complexity at the server

and the client side takes place at the cost of linear

combination of file blocks. 2) Also, the security of this

scheme remains unclear.

Public Auditing was first considered by Ateniese et al. [3] for

ensuring possession of files on untrusted storages. The

scheme utilizes RSA based homomorphic tags for auditing

outsourced data thus achieving public auditing. In this

protocol, it is considered that clients need to verify that the

server has retained file data without retrieving the data from

the server and without having the server access the entire file.

The model generates probabilistic proofs of possession by

sampling random sets of blocks from the server, which

drastically reduces I/O costs. The Provable Data Possession

[PDP] model for remote data checking supports large data sets

in widely-distributed storage systems. It is provably-secure

scheme for remote data checking.

Disadvantages: 1) This method imposes, on client, an

overhead of generating metadata. 2) Does not support

Dynamic Auditing. 3) Requires more than 1kilo-byte of data

for a single verification. 4) It makes use of only two-party

auditing Protocol, which is not efficient because neither the

client nor the cloud service provider can give assurance to

provide balance auditing.

Juels and Kalisiki [4] propose a scheme called “Proofs of

Retrievability” (POR) which focuses on static archival of

large data files. It makes use of spot checking and error

correcting codes to ensure data possession and retrievability.

Some special blocks called as “sentinels” are randomly

embedded into the file F for detection and then the encryption

of the file is carried out in order to protect the position of

these sentinel blocks. Unlike PDP scheme the POR scheme

cannot be used for public databases. In other words, POR

scheme can only be used for confidential data.

Disadvantages are: 1) Number of queries clients used is fixed

priori. 2) Introduction of sentinel nodes prevents dynamic

updation. 3) Each file need to be pre-processed prior to

storage at the server. 4) The scheme can only be used for

confidential data and not for public databases. 5) Public

Auditability is not supported.

Scalable and Efficient Provable Data Possession (S-PDP and

E-PDP) protocols contribute to the work of Ateniese et al. [5].

In this paper, a dynamic version of prior PDP scheme relies

only on efficient symmetric-key operations in both setup and

verification phases. It provides better performance on client

side, requires much less storage space and uses less bandwidth
(size of challenges and responses is very small, less than a

single data block). This scheme is more efficient than POR as

it requires no bulk encryption of outsourced data.

Disadvantages: 1) The system imposes a priori bound on the

number of queries which can be answered. 2) This concept is

applicable only for static data blocks and not dynamic data

operations, i.e., it only allow basic block operations with

limited functionality. 3) Block insertions cannot be supported

and so it is a partially dynamic scheme not fully dynamic. 4)

Since the scheme is based on symmetric key cryptography, it

is unsuitable for public verification.

The scheme proposed by C.Erway el at [6] is a dynamic

auditing protocol that can support the dynamic operations of

the data on the cloud servers. This scheme requires the server

to send the linear combination of data blocks to the auditor to

auditor for verification. This method makes use of Third Party

Auditor (TPA), on behalf of the cloud client, to verify the

integrity of the dynamic data stored in cloud. It also supports

data dynamics via the most general forms of data operation,

such as block modification, insertion and deletion.

Disadvantages: 1) The main disadvantage of this scheme is

that this scheme may leak the data content to the auditor

because it requires the server to send linear combinations of

data blocks to the auditor for verification. 2) The efficiency of

this scheme is not clear.

Table 1 describes the comparison of existing literature

reviewed system with proposed system.

International Journal of Computer Applications (0975 – 8887)

Volume 97, July 2014

4

Table 1: Comparison of different systems

3. PROPOSED SYSTEM

Problem Statement: Auditing the data at the cloud server

is necessary to prevent data integrity and assure the client

safety of his data. The data stored is altered by the client as

per his wish. However, most of the systems concentrate on

provide support auditing only the static data [4, 6, 7]. So

dynamic data operation is another problem of which clients

are concerned about. Also it is not feasible to download entire

data file from server for integrity checking.

The Merkle Hash Tree is used for authentication. In this

paper, Dynamic Merkle Hash Tree is used to support dynamic

data operations and provide integrity verification.

In this paper, SHA1 algorithm is used for hashing purpose and

AES for is used for encryption.

Design

 Delegate Auditing Public Auditing

Stores file data

Fig.4: General Data Flow Architecture

Fig.4 Represents general data flow architecture. The three

network entities used it are as follows:

 Client (users): an entity that stores data files on

the cloud server and relies on it for storage and

maintenance of the data.

 Cloud Server (CS): an entity that provides

significant storage space and computation resources

to store and maintain the client’s data. It is managed

by Cloud Service Provider (CSP).

 Third Party Auditor (TPA): a trusted entity

which has expertise and capabilities that client does

not possess. It analyses the integrity of the stored

file in the server using the RSA based signature

generation algorithm

1) Algorithms

keyGen (key generation):

For the generation of the key, a random string generation

algorithm is used to create a unique key. The key so generated

is then encrypted by using Blowfish Algorithm [16] for

security purpose. It can be used as a replacement for the DES

Algorithm. It takes variable key length ranging from 32 bits to

448 bits and the default size is 128 bits. Blowfish has variants

of 14 rounds or less.

In this paper, this algorithm is used to encrypt the key which

has to be passed in the AES algorithm. This is done to provide

extra security.

Advanced Encryption Standard (AES):
AES is a block cipher. The algorithm supports a variety of key

sizes as 128,192 or 256. The default size is 256 bits. The

encryption of data blocks is done in 10, 12 and 14 rounds

depending on the size of the key used. It provides fast and

flexible encryption and can be easily implemented on various

platforms.

In this paper, AES-128 is used and so encryption is done in 10

rounds. This algorithm is used for both encryption and

decryption. For encryption, it takes data blocks and the secret

key as the input and outputs the encrypted data blocks. For

decryption, encrypted data blocks and key are given as inputs

and original file blocks are the output.

Why AES?

 AES has speedy key setup time and a good key

agility.

 It is suitable for restricted-space environments as

the memory requirement for its implementation is

less.

 It makes efficient use of resources due to its

inherent parallelism which results in a very good

software performance.

 It does not have any serious weak keys.

 Any block size and key sizes are supported by

AES that are multiples of 32 (greater than 128-

bits)

 No linear and differential cryptanalysis attacks

have yet been proven on AES.

ProofGen:
The proof generation algorithm (proofGen) generates proof

for the challenge sent by the verifier. This algorithm takes the

metadata and AAI as input and generates a proof P in output.

The server (prover) generates the tag block T, data block M

and Auxiliary Authenticate Information AAI which are

necessary for the client to generate the MHT. The algorithm

outputs proof as
P = {T, M, {H(mi), Ωi} s1 ≤ i ≤ sc , sigsk(H(R))}

verProof:

Verify proof (verProof) algorithm is used by the client to

verify the proof sent by the server. A block diagram of this

process is shown in Fig.5. The proof generated by the client is

given as input to this algorithm. The proof is verified in two

steps. In the first step, the TPA

Ref.No.

[3] [4] [5] [7] Proposed

System

Privacy

Preserving

N Y N N Y

Unbound no.

of queries

Y N N Y Y

Data

Dynamics

N N Y Y Y

Public

Verifiability

N N N Y Y

Blockless

Verification

Y Y Y Y Y

Use of TPA N N N Y Y

Third Party

Auditor

(TPA)

Client

System

Cloud

Service

Provider

International Journal of Computer Applications (0975 – 8887)

Volume 97, July 2014

5

Fig.5: Block diagram of proof verification process.

or client validates the proof by generating tree with the help of

AAI. If the step one is TRUE, the verifier further validates the

blocks, otherwise it FALSE is emitted. This algorithm, thus

outputs the Boolean value TRUE/FALSE and indicates

whether the proof is valid or not.

After the proof is generated, if the output is false, i.e. the data

is not in the integrated state, we check the file further to

determine exactly which block of the file is corrupted or

modified. This is done by comparing each block of the MHT

generated by using AAI (which was generated by server at the

time of proof generation) to the one which was generated

during data storage.

2) Construction of DMHT:
Each node of a MHT contains a hash value; on the other hand,

each node of DMHT carries two auxiliary information viz.

hash and relative index. Relative index is an extra data field

carried by the DMHT. It indicates the total number of leaf

nodes in the subtree of a node. Therefore, if there is a node w

with left child a and right child b, the auxiliary information

carried by a will be (ha,na) and that carried by b will be (hb,nb).

The internal node w will have the index as nw=na+nb and the

hash of it is updated as hw=h(ha||na||hb||nb).

The Fig.6 shows an example of the DMHT with relative

index. The AAI Ω5 =<(h(m6),1,r),(h(m7),1,r),(hf,2,r),(ha,4,l)>

where l indicates the left sibling of the node and r indicates

the right sibling.

Fig.6: The DMHT with relative index

3) The Storage Security Model:

The Storage Security Model is used to monitor the security of

the stored file. It is based upon the concept of Provable Data

Possession model (PDP). PDP model is a simple challenge-

response model. In this, the client challenges the server and

the server provides proof in return for the respective

challenge. The client checks the proof and ensures correctness

of stored data. In our security system, there are two phases

viz. setup phase and the integrity phase.

 Setup Phase:
In this phase, a file F= {m1, m2...mn} is generated by the

client, which is a finite collection on n blocks. Using the key

generation algorithm, the keys are generated. Here we make

use of a key generation algorithm to generate a unique key

(secret key) for each user.Fig.7 depicts the overall flow of this

process.

This phase consists of five steps. Firstly, using the secret key

and the hash algorithm, the client generates the signature (tag)

for each file block as Ti= (H (mi).gmi)
sk. Secondly, it

generates a collection of signatures of file blocks ᶲ= {Ti}

called as a signature set. In the third step, a Dynamic Merkle

Hash Tree (DMHT) is constructed for the file. In the fourth

step, it signs the root R of the DMHT using the secret key as

sigsk(H(R)) =H(R). In the last step, the client advertises {F, ᶲ,

sigsk(H(R))} to the server and deletes F and sigsk(H(R)) from

its local storage.

Fig.7: Pre-processing File Blocks

 Integrity Phase:
The integrity verification process is shown in Fig.8. After the

challenge {i,ai} is generated, the client sends it to the server

and the server generates proof for the corresponding

challenge. The TPA verifies the proof. Proof contains the

signature of the root of the respective file, set of tags and the

file name F. TPA compares all these details from the

previously stored information. Any changes made to a file are

reflected in the proof. If the proof matches to the metadata,

then the file is considered to be in integrated state otherwise

an alert message is sent to the user.

4) Implementation Details

 Method for searching (i-th leaf node)
First compare i with index (n) of the root node. If i is greater

than n, then FALSE is emitted as output. Otherwise, let k=i

and (ha,na) be the left subtree and (hb,nb) be the right subtree

of the current root. Now compare k with the relative index of

left child, if k ≤ na, then k lies in the left subtree and this

algorithm is then used to find the node in left subtree,

otherwise it is in the right subtree. If it lies in the right subtree,

let k=k-na and use this algorithm to find the node in the right

subtree. Repeat this process until k=1 i.e. a leaf node is

reached. During the process of searching i-th leaf node, the

sibling of current node can be recorded for AAI (Ωi) by the

server.

 File Tags
 Generates

 Metadata

 Metadata

File

Blocks

File

Tags

DMHT

Client
Client’

s store

Server’s

store

Proof (P)

Verify Proof

Boolean value (True/False)

International Journal of Computer Applications (0975 – 8887)

Volume 97, July 2014

6

Fig.8: Integrity checking process flow [14]

 Dynamic Data Operations:

(1) Data Insertion:
Suppose the client wants to insert a data block say m* after a

block mi –the i-th block. To do this, the client generates a

signature for m* using the secret key sk and generator g as T

= (H(m*).gm*)sk. Then it constructs an update request as

update= (I, i, m*, T*) and sends it to the server. When server

receives this request, it executes the update operation. (i) The

server stores the block m* and leaf node h(H(m*)). (ii) In

DMHT, it finds h(H(mi)), reserves Ωi and then inserts the

leaf node h(H(m*)) after the i-th node. An internal node

h=h(h(H(mi)||1) || h(H(m*))||1) is added to the original tree

and the index of this node is 2. Then, the information of all

the nodes which lie in the path from this internal node to the

root are modified i.e. their hashes are recalculated and the

index is leaf node+1. (iii) Based on the updated DMHT, a new

root R` is generated. After the update operation is successfully

completed, the server sends a proof of this operation to the

client. Pupdate = (Ωi, H(mi), sigsk(H(R)),R`), where Ωi is AAI

for authentication of block mi in the old tree. When client

receives this proof, it generates root R using {Ωi, H (mi)} and

then authenticates AAI or R. If the result for this

authentication is TRUE, then the client is free to check if the

server has performed the insertion by computing the value of

new root using { Ωi, H(mi), H(m*)} and then comparing it

with R`. If the values of new root and R` does not match, the

output is given as FALSE otherwise TRUE. If it is true, the

client signs the new root by sk as sigsk(H(R`)) and sends it to

the server for updation.

The Fig.9 describes an example of insertion of a data block

m* after the block m5. The bold and underlined numbers in

the figure indicates that the value was modified.

(2) Data Deletion:
Data deletion operation is just the opposite of data insertion

operation and has similar process. An example is shown in

fig. 10 based on fig. 6.

Fig.10 shows the resulting DMHT after the deletion of data

h(m5) from the DMHT in Fig.6. Then, the information of all

the nodes which lie in the path from the node to be deleted to

the root are modified i.e. their hashes are recalculated and the

index is leaf node-1.

(3) Data Modification:
The data modification operation does the work of replacing

the data and so the structure of the tree does not change. The

details of the protocol procedures are same as those of the

data insertion.

Fig.9: Example of block insertion operation in DMHT

Fig.10: Example of Data Deletion operation in DMHT

4. CONCLUSION & FUTURE SCOPE:

Ensuring cloud data storage security is a necessary action to

safeguard client’s data and elevate the service quality. In this

paper, we perform a survey on various ways used to ensure

data integrity. Along with this, we propose a system based on

AES using which DMHT is constructed. We hereby present a

way of generating such a DMHT which provides integrity

verification, data dynamics and also allow the server (prover)

to search the specified data blocks efficiently.

This system can be enhanced in a lot of ways. A backup and

recovery system can be added in order to recover the lost or

corrupted files from the backup section. During recovery

process, instead of fetching entire file from the backup data

base, recovery can be done by fetching only the infected

block. This will greatly reduce the communication cost.

Secondly, a dynamic auditing method can be implemented so

that the auditor can periodically check for the files without

waiting for the request from the client. This method will

completely remove the client’s overhead. The client will

simply get a notification if any of his files are lost or

corrupted and asked for the recovery option. Also instead, the

auditor can simply correct the content and maintain the

client’s data safely. Thirdly, the system can be designed to

support multiple auditors so that if an auditor temporarily

goes down, the other one can provide his service to the client

without delay.

5. REFERENCES

[1] Y. Deswarte, J. Quisquater, and A. Saidane, “Remote

integrity checking”, In Proc. of Conference on Integrity

and Internal Control in Information Systems (IICIS’03),

November \2003.

[2] T. Schwarz and E.L. Miller, “Store, forget, and check:

Using algebraic signatures to check remotely

 Generates advertises

 Verifies outsources

Client
Client’

s store

Server’s

store

Server Chall

enge

Proof

International Journal of Computer Applications (0975 – 8887)

Volume 97, July 2014

7

administered storage”, In Proceedings of ICDCS ’06.

IEEE Computer Society, 2006.

[3] G.Ateniese, “Provable Data Possession at Untrusted

Stores”, Proc. 14th ACM Conf. Computer and Comm.

Security (CCS’ 07), 2007.

[4] A. Juels, “Pors: Proofs of Retrievability for Large Files,”

Proc. 14th ACM Conf. Computer and Comm. Security

(CCS ’07), pp. 584-597, 2007.

[5] G.Ateniese, “Scalable and Efficient Provable Data

Possession”, Proc. Fourth Int’l Conf. Security and

Privacy in Comm. Networks (SecureComm ’08), 2008.

[6] C,Erway, A.Kuocu, C. Pamanthou, R.Tamassia,

“Dynamic Provable Data Possession”, Proc. 16th ACM

Conf. Computer and Comm. Security (CCS’09),2009.

[7] Cong Wang, “Enabling Public Auditability and Data

Dynamics for Storage Security in Cloud Computing”,

IEEE Transactions on Parallel and Distributed Systems,

May 2011.

[8] C.Wang, Q.Wang, Kui Ren, Wenjing Lou, “Ensuring

Dynamic Data Storage Security in Cloud Computing”,

Proc. 17th Int’1 Workshop Quality of Service

(IWQos’09),2009.

[9] P. Golle, S. Jarecki, and I. Mironov “Cryptographic

primitives enforcing communication and storage

complexity”. In Financial Cryptography, pages 120-135,

2002.

[10] L. Chen and H. Chen,”Ensuring Dyanmic Data Integrity

with Public Auditing for Cloud Storage”, In Proc. Of

International Conference on Computer Science and

Service System (ICSSS’ 2012), 2012.

[11] D.G.Feng, M. Zang, Y. Zang and Z. Xu,”Study on cloud

computing security”, Journal of Software, vol.22 (1), pp.

71-83, 2011.

[12] L.M. Kunfam, “Data Security in the world of cloud

computing”, IEEE Security and Privacy, vol.7 (4),pp.61-

64,2009.

[13] B. Waters and H.Shacham, “Compact proofs of

Retrievability”, Proc.14th Int’l Conf. Theory and

Application of Cryptology and Information Security:

Advances in Cryptology (ASIACRYPT’ 08), pp.90-107,

2008.

[14] M. Venkatesh, “Improving Public Auditability, Data

Possession in Data Storage Security for Cloud

Computing”, ICRTIT-IEEE 2012

[15] Elminaam, Diaa Salama Abdul, Hatem Mohamed Abdul

Kader, and Mohie Mohamed Hadhoud. "Performance

Evaluation of Symmetric Encryption Algorithms."

IJCSNS International Journal of Computer Science and

Network Security 8.12 (2008): 280-286.

[16] Simar Preet Singh, and Raman Maini, “COMPARISON

OF DATA ENCRYPTION ALGORITHMS”,

International Journal of Computer Science and

Communication (IJCSC), Vol. 2, No. 1, January-June

2011, pp. 125-127

IJCATM : www.ijcaonline.org

