
International Journal of Computer Applications (0975 – 8887)

Volume 98 – No.20, July 2014

33

Generating the Best Fit Key in Cryptography

using Genetic Algorithm

Sania Jawaid

Department of Computer Science,

Jamia Hamdard, New Delhi, India

Adeeba Jamal
Department of Computer Science,

Jamia Hamdard, New Delhi, India

ABSTRACT

The goal of network security is to provide a secure, effective

and private communication between the sender and the

receiver. In order to achieve a high level of security, data is

sent in the encrypted form to its intended recipient. But,

tampering with the text and eavesdropping have assumed

colossal proportions. This is generally done by decoding the

key. Therefore, to make the key strong and almost

unpredictable, a method based on the theory of natural

selection has been proposed in the paper. This method finds

the best fit element in the environment. as the paper uses

Genetic Algorithm to accomplish the above task. The paper

not only illustrates this innovative method of key generation

but also demonstrates its implementation. To achieve even

more high standards of security Data Encryption Standard

cipher program has been used for verification and validation.

Keywords

Genetic Algorithm, Data Encryption Standard, Cryptography,

Key Generation

1. INTRODUCTION
Network security embraces some policies, adopted by the

network administrator. Network security precludes the misuse

and modification of the network resources. Authentication is

also an important part of network security [1]. To

authenticate, the username and the password is used.

‘Cryptography’ is a Greek word which means the style of

secret writing [2] [13]. It is used for altering the messages to

make them more secure. Cryptography is for the receiver, so

that no intruder is ingenious enough to decode the text.

Network Security norms are necessary to protect the data

during transmission. Network needs security from the hackers

and the attackers spread everywhere [3]. Whenever data is

transferred via the networks; it can be accessed by unguarded

computers. To avoid data to be lost or get corrupted, network

security is very essential and at the same time pivotal [2] [14].

The major role of network security lies in avoiding the

tampering of data transmitted across the network.

The plain text is reformed into cipher text when the

encryption algorithm is applied [1] [7]. At the receiver’s site

cipher text is transformed into the plain text. Ciphering of the

text is done so that Eve does not interrupt in between to hack

the message.

The paper has been divided into the following section. Section

2 of the paper discusses cryptography, section 3 introduces

genetic algorithms, section 4 discusses the proposed work,

section 5 illustrates observations, section 6 discusses inference

and the last section concludes.

2. TYPES OF CRYPTOGRAPHY
The systems based on cryptography are majorly divided into

three independent categories [7] [2]:

a) The operations which are adequate for transformation of

plain text to cipher text.

b) The number of keys which are used by the algorithm.

c) And lastly, how the plain text is processed [15].

Broadly there are two types of Cryptography:

2.1 Symmetric Key Cryptography
In this type, the sender and the receiver employ the equivalent

key for encryption and decryption and hence the key is shared

[1]. The sender uses this key and encryption algorithm to

transform the plain text into cipher text [3]. The receiver uses

the same key and decryption algorithm to convert the cipher

text back into the plain text.

Some of the examples of symmetric cryptography are the

block ciphers like AES and DES.

DES stands for Data Encryption Standard. This algorithm

takes 64 bit key as the plain text and gives the output of 64 bit

ciphered text [2] [14]. There are two P boxes which are used

as initial and final permutations. Also there are 16 rounds and

for each round a key is generated.

AES stands for Advanced Encryption Standard. This

algorithm was introduced because length of the key in DES

was small [1]. So, to increase the length of the key AES is
implemented. It has three types of rounds with corresponding

bits of text. The functioning is same but the difference lies in

the order keys are used.

2.2 Asymmetric Key Cryptography
This type of cryptography is also called public key

cryptography. In this, both the parties (sender and receiver) do

not use the same key. The key is not shared. The sender uses

the public key and encryption algorithm to encrypt the

message [10]. The receiver uses the private key and

decryption algorithm to convert the message back to plain

text.

Some of the examples of asymmetric key cryptography are

RSA and Diffie-Hellman Key Exchange [7] [12].

RSA stands for Ron Rivest, Adi Shamir and Leonard

Adleman [1]. It is a public key cryptography technique. There

are two large prime numbers which are chosen. After the final

calculation of numbers they are used for encryption and

decryption.

http://en.wikipedia.org/wiki/Ron_Rivest
http://en.wikipedia.org/wiki/Adi_Shamir
http://en.wikipedia.org/wiki/Leonard_Adleman
http://en.wikipedia.org/wiki/Leonard_Adleman

International Journal of Computer Applications (0975 – 8887)

Volume 98 – No.20, July 2014

34

Diffie- Hellman Key Exchange is also a public key

cryptography technique [3] [14]. Two numbers ‘x’ and ‘y’ are

chosen. Then R1 and R2 are calculated for exchange between

Alice and Bob. After the exchange has been done the session

key (K) is generated. The session key is shared.

3. GENETIC ALGORITHM
Genetic Algorithm (GA) is a function that imitates the process

of natural selection in the field of Artificial Intelligence (AI)

[11] [14]. GA involves some of the operators like crossover,

mutation and selection.

3.1 Population Generation
The process of Genetic Algorithms (GA), usually, starts with

a population which is randomly generated and is composed of

several chromosomes [9]. The chromosomes are either binary

or hex. A chromosome has cells which are 0/1 or a hex

number, depending on the type of population. GA’s are

iterative in nature and transform the population of

chromosomes, generated into a new generation. Various

operators are applied when the population is generated for

selection of individuals. The individuals are selected based on

their probability, various genetic operations and their fitness

value [8] [15].

3.2 Crossover
After the population is generated the most important

parameter of the GA is applied to the generated population.

Crossover operator is applied on an individual and the

resulting generation is much more fit, than the previous

generation. Crossover is the process of taking more than one

parent solutions. These parent solutions are chosen from the

generation [4]. The offspring results from those solutions. A

crossover operator takes more than one parent solutions and

produces a child solution. Also there can be different types of

crossover such as one point crossover or two point crossover.

3.3 Mutation
Mutation is another important genetic operator. It is used for

maintaining genetic diversity among the different generations

[4] [8]. Mutation alters each gene independently depending on

the probability. This probability is called the mutation rate

[10]. After the mutation operator is applied, the population

remains same. But the less fit chromosomes are replaced by

the more fit chromosomes. The main motive of the mutation

process is to beget such chromosomes which have least

similarities among themselves [6] [15].

3.4 Selection
Selection stage comes after the population has been generated,

the crossover and mutation operators have been applied and

the individual fitness of each chromosome is calculated.

Selection procedure is used for selecting the better

individuals. More fit chromosomes are selected out of the

existing population. These individuals have a higher chance

over the other individuals based on the proportion to fitness

[9] [13]. To implement the selection technique, Dominance

Testing is used.

4. PROPOSED WORK
In this paper, the use of GA is described in order to find the

best fit key for the cryptographic algorithm. In the research

paper an approach of a pseudo random number generator

which is used to produce unique keys further used in the

various ciphers has been proposed. Since in Genetic algorithm

only the fittest one survives, hence there was a need to define

a fitness function which helped us identify the best keys

among the rest. The key produced is shown to be non-

repeating which makes the cipher text difficult to decode. The

basic processes in Genetic Algorithm, such as Initial

Population Generation, Crossover, Mutation, Fitness Function

Calculation and Final Key Selection are used. In this paper a

48-bit key Data Encryption Standard (DES) Cipher is used in

the end to show the implementation of the research.

The proposed solution involves the following steps as

illustrated in Figure 1:

Figure 1. Steps involved in Generating the Best Fit Key in

Cryptography using Genetic Algorithm.

4.1 Population Generation
GA typically starts with a population of computer generated

random keys which are known as chromosomes. The number

of genes will be equal to the length of the key used. Here 48-

bit key size has been used. The population size depends on a

large number of possible solutions. After the initial population

has been generated, the population matrix undergoes various

Genetic operations which increase the total number of

chromosomes. These operations are applied to individual(s)

selected from the population. The individuals are

probabilistically selected to participate in the genetic

operations based on their fitness.

http://en.wikipedia.org/wiki/Genetic_operator
http://en.wikipedia.org/wiki/Genetic_diversity

International Journal of Computer Applications (0975 – 8887)

Volume 98 – No.20, July 2014

35

4.2 Crossover
Crossover primarily simulates sexual genetic recombination.

There are various ways by which it can be implemented in

GAs. Sometimes crossover is applied with moderation so

usually the crossover probability is defined to indicate a ratio

of the number of couples selected for mating. Crossover is

applied on two randomly chosen individuals.

A crossover rate is chosen and then number of crossovers is

calculated with the formula:

noco = cor * m * n / 100,

Where noco = number of crossovers,

 cor = crossover rate,

 m = key length,

 n = number of keys.

A random crossover point is then generated and the bits of the

first individual from the starting till the crossover point and

the bits of the second individual starting from the crossover

point till the end are copied. The successor thus generated

from crossover is very different from their initial parents.

4.3 Mutation
Mutation is a genetic operator used to maintain diversity from

one generation of a population of chromosomes to the next. It

is analogous to biological mutation. Mutation alters one or

more gene values in a chromosome from its initial state. In

mutation, the solution may change entirely from the previous

solution. Mutation occurs during evolution according to a

user-defined mutation probability. This probability should be

set low. If it is set too high, the search will turn into a

primitive random search. For example, if the mutation

probability is set to 1, it means 1 out of every 100 bits will be

manipulated. In the proposed solution, the bit inversion

mutation operator is used. Here also number of mutations is

calculated via the formula,

nom = mr * m * n / 100,

Where nom = number of mutations,

 mr = mutation rate,

 m = key length,

 n = number of keys.

Mutation should allow the algorithm to avoid local minima by

preventing the population of chromosomes from becoming

too similar to each other, so that it cannot slow or stop

evolution.

4.4 Calculating Fitness Function
Fitness evaluation involves defining an objective or fitness

function which tests for suitability of the chromosome. As the

algorithm proceeds, the individual fitness of the "best"

chromosome is increased. Also the total fitness of the

population is increased as a whole. In the proposed solution,

all the keys which are in binary form are first converted into

their respective decimal forms.

Gap test and Frequency Test are performed on them. The

proposed fitness function is calculated by the formula,

F = 1 / (1 + e (- λ))
Where λ = C1 λ1 + C2 λ2

λ1 = Frequency Test

λ2= Gap Test

C1 = C2 = 1

4.4.1 Frequency Test
The frequency of each number is then calculated. This test is

performed to check the number of times a chromosome is

repeated [10]. The frequency test is used for testing

randomization of the key.

4.4.2 Gap Test
This test is performed to calculate the gap between the two

repeating numbers [11]. The gap test is used to determine the

implication of the interval between recurrences of the same

digit.
4.5 Ordering
The numbers are arranged in a sorted order according to their

fitness values. The key with the highest fitness value is at the

top of the list and the key with the lowest fitness value is at

the bottom.

4.6 Dominance Testing
After ordering has been done, there will be set of random keys

to choose from. On those keys dominance testing is

performed. The key with highest fitness value will be paired

with the rest of the keys and hamming distance between them

will be calculated. Hamming distance is calculated by

performing XOR of the two binary keys, then calculating the

number of 1’s. Out of those keys, one key will be chosen

randomly which will dominate over others. This key will be

the Final key resulting from Dominance Testing.

4.7 Final Key Selection from Repository
The whole process is then repeated n times and all the keys

generated from n iterations are stored in the repository. The

final key is then selected on the basis of Dominance Testing.

4.8 Result
The final key selected is then used for the encryption and

decryption process in the DES cipher.

5. OBSERVATION
The technique proposed in section 4 was implemented using

Java Technology and observations were analyzed. These

observations led to the conclusions presented in the next

section. Figure 2 is shown as a screenshot from the working

program of the proposed solution:

Figure 2. Screenshot of the Fitness Function Calculation

http://en.wikipedia.org/wiki/Genetic_operator
http://en.wikipedia.org/wiki/Genetic_diversity
http://en.wikipedia.org/wiki/Chromosome_(genetic_algorithm)
http://en.wikipedia.org/wiki/Mutation
http://en.wikipedia.org/wiki/Local_minimum

International Journal of Computer Applications (0975 – 8887)

Volume 98 – No.20, July 2014

36

The observations from the implementation of the proposed

algorithm are as follows:

5.1 Population Generation
In the implementation of the proposed algorithm, a random

initial population of 100 chromosomes each having 48 genes

is generated.

5.2 Crossover
The second step is to create a new child out of two randomly

selected parents. Crossover Rate is taken as 2.5 which gives

the number of crossovers as 120. For each iteration, a

different crossover point is selected to perform single point

crossover. Now the total population size becomes 220. The

diagram shown in Figure 3 illustrates the single point

crossover operation:

 COP = 3

 PARENT 1

 PARENT 2

 NEW CHILD

Figure 3. Single Point Crossover Operation

Table 1 shows 10% of the results generated from the

crossover operation:

Table 1. Crossover Operation

S.

NO.
CHROMOSOME

1.

PARENT 1
0101100100010110001111100000

01001001000011110111

PARENT 2
1001111001101010001111010001

10110110110100110000
CROSSOVER

POINT
27

NEW CHILD
0101100100010110001111100001

10110110110100110000

2.

PARENT 1
0101010011111010000101100010

00011000110000000110

PARENT 2
1100101110101011111011001011

01001011001101000110
CROSSOVER

POINT
15

NEW CHILD
0101010011111011111011001011

01001011001101000110

3.

PARENT 1
0101011110010100101000001000

11111101001111011110

PARENT 2
1000100101000011100111100100

01110111010011110010
CROSSOVER

POINT
22

NEW CHILD
0101011110010100101000100100

01110111010011110010

4. PARENT 1
1111101000100010110010001100

01010101111101011001

PARENT 2
1000100101000011100111100100

01110111010011110010
CROSSOVER

POINT
28

NEW CHILD
1111101000100010110010001100

01110111010011110010

5.

PARENT 1
1111100010100110111110000000

11000101001000000011

PARENT 2
1010110000100111010010100011

11011000101110001110
CROSSOVER

POINT
9

NEW CHILD
1111100010100111010010100011

11011000101110001110

6.

PARENT 1
1100011110111110001111011100

10001110010000001111

PARENT 2
0000000110101011110000101111

01010100011110101111
CROSSOVER

POINT
33

NEW CHILD
1100011110111110001111011100

10001100011110101111

7.

PARENT 1
0011010111111000000000100101

01010000111100000110

PARENT 2
0111101101000000101111000101

00010011111010010011
CROSSOVER

POINT
8

NEW CHILD
0011010101000000101111000101

00010011111010010011

8.

PARENT 1
0000010010010000100000001010

00001000011100111001

PARENT 2
0010010110101001000011001100

00001010100101111001
CROSSOVER

POINT
8

NEW CHILD
0000010010101001000011001100

00001010100101111001

9.

PARENT 1
0001111001000110111100110010

10110001011100101101

PARENT 2
0111110001101001110110011101

11110011111100100110
CROSSOVER

POINT
20

NEW CHILD
0001111001000110111110011101

11110011111100100110

10.

PARENT 1
0110010110000110111001101001

10101110111101111010

PARENT 2
0001111001000110111100110010

10110001011100101101
CROSSOVER

POINT
16

NEW CHILD
0110010110000110111100110010

10110001011100101101

5.3 Mutation
The next step is to perform mutation where a random

chromosome is chosen from the existing population and a

mutation point is selected to invert that particular bit.

Mutation Rate is selected as 0.5 which gives the number of

mutations to be performed as 52. Table 2 below shows first 10

chromosomes generated after the mutation operation:

International Journal of Computer Applications (0975 – 8887)

Volume 98 – No.20, July 2014

37

Table 2. Mutation Operation

S.

NO.
CHROMOSOME

1.

ORIGINAL

CHROMOSOME

1111100010100110111110000000

11000101001000000011

MUTATION POINT 33

MUTATED

CHROMOSOME

1111100010100110111110000000

11001101001000000011

2.

ORIGINAL

CHROMOSOME

0000010101000111111101101110

00000111100001001111

MUTATION POINT 14

MUTATED

CHROMOSOME

0000010101000011111101101110

00000111100001001111

3.

ORIGINAL

CHROMOSOME

1111010010011101011001011110

00101001101011010101

MUTATION POINT 17

MUTATED

CHROMOSOME

1111010010011101111001011110

00101001101011010101

4.

ORIGINAL

CHROMOSOME

1100010011000011100010011000

11010110010011111011

MUTATION POINT 25

MUTATED

CHROMOSOME

1100010011000011100010010000

11010110010011111011

5.

ORIGINAL

CHROMOSOME

0010010110010100100111110110

01101101000001101010

MUTATION POINT 48

MUTATED

CHROMOSOME

0010010110010100100111110110

01101101000001101011

6.

ORIGINAL

CHROMOSOME
1111100010100110111110000000

11001101001000000011

MUTATION POINT 43

MUTATED

CHROMOSOME

1111100010100110111110000000

11001101001000100011

7.

ORIGINAL

CHROMOSOME
0000110001001110010111011110

00101110011000101101

MUTATION POINT 21

MUTATED

CHROMOSOME

0000110001001110010101011110

00101110011000101101

8.

ORIGINAL

CHROMOSOME
0111100001101000101100001000

01011110101100100001

MUTATION POINT 2

MUTATED

CHROMOSOME

0011100001101000101100001000

01011110101100100001

9.

ORIGINAL

CHROMOSOME
1001001111000111110111011110

10000010111111001101

MUTATION POINT 30

MUTATED

CHROMOSOME

1001001111000111110111011110

11000010111111001101

10.

ORIGINAL

CHROMOSOME
1010000111001100010100110010

01100010010011100011

MUTATION POINT 30

MUTATED

CHROMOSOME

1010000111001100010100110010

00100010010011100011

5.4 Fitness Function Calculation
5.4.1 Conversion
The binary valued chromosomes from the population of size

220 were converted into the decimal number format.

5.4.2 Fitness Value
The Fitness values of the above chromosomes are shown in

Table 3.

Table 3. Fitness Function

S.

NO.

Frequency

Test (λ1)

Gap Test

(λ2)
λ=λ1+λ2

Fitness

Value F =

1/(1+e
(- λ)

)

1. 1 0.0 1.0
0.66666666

66666666

2. 1 0.0 1.0
0.66666666

66666666

3. 1 0.0 1.0
0.66666666

66666666

4. 1 0.0 1.0
0.66666666

66666666

5. 2
0.91818181

81818182

2.9181818

18181818

0.29942712

908773716

6. 1 0.0 1.0
0.66666666

66666666

7. 1 0.0 1.0
0.66666666

66666666

8. 1 0.0 1.0
0.66666666

66666666

9. 1 0.0 1.0
0.66666666

66666666

10. 2
0.92272727

27272727

2.9227272

72727273

0.29864652

653727375

5.5 Ordering
The chromosomes are then sorted in the decreasing order

according to their fitness values as shown in Table 4:

Table 4. Ordering

S.NO. ORDERED POPULATION

1.
00010110010010101011011010110101111101010

0101111

2.
11110100111011000100101111110100100110010

0111101

3.
01011001000101100011111100000100100100001

1110111

4.
11000001011100001000110110001010101000001

0101011

5.
10001011110011010010110110110110110011001

0001101

6.
10101101011111101110101000110101001111100

0110100

7.
01111111010000001011110001010001001111101

0010011

8.
00101000010100010010001010101011111101011

1010100

9.
11011001100001110100100111110110001100000

1111011

10.
00011011110010100001000011100001001101000

1111000

International Journal of Computer Applications (0975 – 8887)

Volume 98 – No.20, July 2014

38

5.6 Dominance Testing
The topmost key from the sorted population, i.e. the fittest

value is selected and paired with the rest of the chromosomes

one at a time. XOR function is applied to all these pairs and

each pair's hamming distance is calculated. The pair with the

maximum hamming distance is then chosen and through

random selection one of the chromosomes is selected from

that final pair. In the implementation, the most dominating

key came out to be as:

011011101011010001100000010100100101100011100000

This key is then stored in the repository and the entire process

starting from the first step is repeated 100 times.

5.7 Final Key Selection from Repository
 The following Table 5 shows the first 10 dominant keys

generated which get stored in the repository:

Table 5. Repository

S.NO. REPOSITARY

1.
00100000010101110101000000001010011100111

0000100

2.
10111011100011000001001111111010101100000

1110111

3.
00010110100111110011100010100000111100011

0000000

4.
11111000110110010111101110010010001111000

0111101

5.
01101001100011001101011011000001000111110

1010110

6.
11111101001010000001010000011001101110101

1011010

7.
11100111000010001011100110101001101100001

1100011

8.
01011010110011011111011111011011001010111

1100111

9.
00100111101110101110100110111101011010000

1101001

10.
11010001000100010001111000000001101011101

1110101

The Dominance Testing is again applied to all the 100 keys

generated and then the final key is selected for the DES

Cipher for further data encryption and decryption. This final

key came out to be the 73rd key from repository which is as

follows:

001001111101110110010010000000011010110001011101

6. RESULTS
The work has been implemented and analyzed. The

implementation was done using Java Technology. Random

samples were created by generating an initial random

population of 100 chromosomes. Various tests were applied

on the samples and the results were also satisfactory.

After generating 100 chromosomes, crossover function was

applied taking the total population size to 220 chromosomes

using the crossover rate as 2.5. Mutation rate was selected as

0.5. The fitness values of the keys were calculated and

analyzed using the Frequency and Gap Tests. The maximum

frequency which was observed in the sample was 2. This

means the chromosomes were found to be repeated at most

two times. This proves the randomness of the sample used.

Therefore, the final result generated came out to be as random

and unique as possible.

7. CONCLUSION
It can be observed from the above tables that the generated

key is very random and almost difficult to decode. The

Genetic Processes involved are very complex and when used

together, they generate the most random and non-repeating

key as possible. The implementation further involves the use

of DES cipher for data encryption which is very complicated

itself and it makes almost impossible for the cryptanalysts to

attack the data. The proposed solution has a total of seven

rounds and the whole process is again repeated 100 times.

Despite this, the key gets generated in a very short duration of

time. This proves to be a great advantage as the computational

time of generating the key is lesser than encrypting the data

using DES.

8. FUTURE SCOPE
This propounded idea can not only overcome the existing

network security but also has an edge over the computational

time. However, in this paper only a need for data encryption is

created and its implementation is shown. Messages can be in

the form of images or audio as well which are equally

important to be protected against eavesdroppers and

cryptanalysts [11] [15]. But implementing the same algorithm

for image encryption could not be shown due to time

constraints. Moreover, the proposed approach can be

expanded further by using Neural Networks in Artificial

Intelligence to calculate the mathematical coefficient for the

Gap Test and the Frequency Test used in the fitness function.
Both Neural Network and Genetic Algorithm provide with

non-linear problem solving iteration [5]. So using both of the

techniques together can solve a great deal of problems.

9. REFERENCES
[1] Behrouz A Forouzan, “Data Communication and

Networking” Tata McGraw- Hill Publishing Company

Limited, Special Indian Edition 2006.

[2] William Stallings, “Network Security Essentials,” Fourth

edition.

[3] William Stallings, “Cryptography and Network security”,

Fifth Edition.

[4] Harsh Bhasin and Nakul Arora, “Key Generation for

Cryptography using Genetic Algorithm”.

[5] Sindhuja K and Pramela Devi S, "A Symmetric Key

Encryption Technique Using Genetic Algorithm",

Sindhuja K et al, / (IJCSIT) International Journal of

Computer Science and Information Technologies, ISSN:

0975-9646 Vol. 5 (1), 2014, pg 414-416.

[6] Y.V. Srinivasa Murthy, Dr. S. C. Satapathy, P. Srinivasu

and A.A.S. Saranya, "Key Generation for Text

Encryption in Cellular Networks using Multi-point

Crossover Function", International Journal of Computer

Applications (0975-8887) Volume 32-No.9, October

2001.

[7] Bethany Delman, Genetic Algorithms in Cryptography,

MS Thesis 2004.

International Journal of Computer Applications (0975 – 8887)

Volume 98 – No.20, July 2014

39

[8] A. Tragha, F. Omary, A. Kriouile, “Genetic Algorithms

Inspired Cryptography”, A.M.S.E Association for the

Advancement of Modeling & Simulation Techniques in

Enterprises, Series D: Computer Science and Statistics,

November 2007.

[9] A Kumar, N Rajpal, Application of Genetic Algorithm in

the Field of Steganography, in Journal of Information

Technology, Vol. 2, No.1, Jul-Dec.2004, pg 12-15.

[10] Oded Goldreich, Foundations of Cryptography, Volume

1: Basic Tools, Cambridge University Press, 2001, ISBN

0-521-79172-3.

[11] A. J. Bagnall, “The Applications of Genetic Algorithms

in Cryptanalysis”, School of Information Systems,

University Of East Anglia, 1996.

[12] N. Koblitz, “A Course in Number Theory and

Cryptography”, Springer-Verlag, New York, Inc., 1994.

[13] Harsh Bhasin, “Test Data Generation Using Artificial

Life and Cellular Automata”, ACM SIGsoft Software

Engineering Notes, January 2014.

[14] Harsh Bhasin, Neha Singla, “Cellular Genetic Test data

Generation”: ACM Sigsoft Software Engineering Notes,

September Edition, 2013.

[15] Harsh Bhasin et. al., “Cellular Automata based Test Data

Generation”, ACM Sigsoft Software Engineering Notes,

July, 2013.

IJCATM : www.ijcaonline.org

http://en.wikipedia.org/wiki/Oded_Goldreich
http://en.wikipedia.org/wiki/Special:BookSources/0521791723
http://en.wikipedia.org/wiki/Special:BookSources/0521791723

