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ABSTRACT 

The goal of network security is to provide a secure, effective 

and private communication between the sender and the 

receiver. In order to achieve a high level of security, data is 

sent in the encrypted form to its intended recipient. But, 

tampering with the text and eavesdropping have assumed 

colossal proportions. This is generally done by decoding the 

key. Therefore, to make the key strong and almost 

unpredictable, a method based on the theory of natural 

selection has been proposed in the paper. This method finds 

the best fit element in the environment. as the paper uses 

Genetic Algorithm  to accomplish the above task. The paper 

not only illustrates this innovative method of key generation 

but also demonstrates its implementation. To achieve even 

more high standards of security Data Encryption Standard 

cipher program has been used for verification and validation. 
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1. INTRODUCTION 
Network security embraces some policies, adopted by the 

network administrator. Network security precludes the misuse 

and modification of the network resources. Authentication is 

also an important part of network security [1]. To 

authenticate, the username and the password is used. 

‘Cryptography’ is a Greek word which means the style of 

secret writing [2] [13]. It is used for altering the messages to 

make them more secure. Cryptography is for the receiver, so 

that no intruder is ingenious enough to decode the text. 

Network Security norms are necessary to protect the data 

during transmission. Network needs security from the hackers 

and the attackers spread everywhere [3]. Whenever data is 

transferred via the networks; it can be accessed by unguarded 

computers. To avoid data to be lost or get corrupted, network 

security is very essential and at the same time pivotal [2] [14]. 

The major role of network security lies in avoiding the 

tampering of data transmitted across the network. 

The plain text is reformed into cipher text when the 

encryption algorithm is applied [1] [7]. At the receiver’s site 

cipher text is transformed into the plain text. Ciphering of the 

text is done so that Eve does not interrupt in between to hack 

the message. 

The paper has been divided into the following section. Section 

2 of the paper discusses cryptography, section 3 introduces 

genetic algorithms, section 4 discusses the proposed work, 

section 5 illustrates observations, section 6 discusses inference 

and the last section concludes. 

 

2. TYPES OF CRYPTOGRAPHY 
The systems based on cryptography are majorly divided into 

three independent categories [7] [2]: 

a) The operations which are adequate for transformation of 

plain text to cipher text. 

b) The number of keys which are used by the algorithm.  

c) And lastly, how the plain text is processed [15]. 

Broadly there are two types of Cryptography: 

2.1 Symmetric Key Cryptography 
In this type, the sender and the receiver employ the equivalent 

key for encryption and decryption and hence the key is shared 

[1]. The sender uses this key and encryption algorithm to 

transform the plain text into cipher text [3]. The receiver uses 

the same key and decryption algorithm to convert the cipher 

text back into the plain text. 

Some of the examples of symmetric cryptography are the 

block ciphers like AES and DES. 

DES stands for Data Encryption Standard. This algorithm 

takes 64 bit key as the plain text and gives the output of 64 bit 

ciphered text [2] [14]. There are two P boxes which are used 

as initial and final permutations. Also there are 16 rounds and 

for each round a key is generated. 

AES stands for Advanced Encryption Standard. This 

algorithm was introduced because length of the key in DES 

was small [1]. So, to increase the length of the key AES is 
implemented. It has three types of rounds with corresponding 

bits of text. The functioning is same but the difference lies in 

the order keys are used. 

2.2 Asymmetric Key Cryptography 
This type of cryptography is also called public key 

cryptography. In this, both the parties (sender and receiver) do 

not use the same key. The key is not shared. The sender uses 

the public key and encryption algorithm to encrypt the 

message [10]. The receiver uses the private key and 

decryption algorithm to convert the message back to plain 

text. 

Some of the examples of asymmetric key cryptography are 

RSA and Diffie-Hellman Key Exchange [7] [12]. 

RSA stands for Ron Rivest, Adi Shamir and Leonard 

Adleman [1]. It is a public key cryptography technique. There 

are two large prime numbers which are chosen. After the final 

calculation of numbers they are used for encryption and 

decryption. 

http://en.wikipedia.org/wiki/Ron_Rivest
http://en.wikipedia.org/wiki/Adi_Shamir
http://en.wikipedia.org/wiki/Leonard_Adleman
http://en.wikipedia.org/wiki/Leonard_Adleman
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Diffie- Hellman Key Exchange is also a public key 

cryptography technique [3] [14]. Two numbers ‘x’ and ‘y’ are 

chosen. Then R1 and R2 are calculated for exchange between 

Alice and Bob. After the exchange has been done the session 

key (K) is generated. The session key is shared. 

3. GENETIC ALGORITHM  
Genetic Algorithm (GA) is a function that imitates the process 

of natural selection in the field of Artificial Intelligence (AI) 

[11] [14]. GA involves some of the operators like crossover, 

mutation and selection. 

3.1 Population Generation 
The process of Genetic Algorithms (GA), usually, starts with 

a population which is randomly generated and is composed of 

several chromosomes [9]. The chromosomes are either binary 

or hex. A chromosome has cells which are 0/1 or a hex 

number, depending on the type of population. GA’s are 

iterative in nature and transform the population of 

chromosomes, generated into a new generation. Various 

operators are applied when the population is generated for 

selection of individuals. The individuals are selected based on 

their probability, various genetic operations and their fitness 

value [8] [15]. 

3.2 Crossover 
After the population is generated the most important 

parameter of the GA is applied to the generated population. 

Crossover operator is applied on an individual and the 

resulting generation is much more fit, than the previous 

generation. Crossover is the process of taking more than one 

parent solutions. These parent solutions are chosen from the 

generation [4]. The offspring results from those solutions. A 

crossover operator takes more than one parent solutions and 

produces a child solution. Also there can be different types of 

crossover such as one point crossover or two point crossover. 

 

3.3 Mutation 
Mutation is another important genetic operator. It is used for 

maintaining genetic diversity among the different generations 

[4] [8]. Mutation alters each gene independently depending on 

the probability. This probability is called the mutation rate 

[10]. After the mutation operator is applied, the population 

remains same. But the less fit chromosomes are replaced by 

the more fit chromosomes. The main motive of the mutation 

process is to beget such chromosomes which have least 

similarities among themselves [6] [15]. 

3.4 Selection 
Selection stage comes after the population has been generated, 

the crossover and mutation operators have been applied and 

the individual fitness of each chromosome is calculated. 

Selection procedure is used for selecting the better 

individuals. More fit chromosomes are selected out of the 

existing population. These individuals have a higher chance 

over the other individuals based on the proportion to fitness 

[9] [13]. To implement the selection technique, Dominance 

Testing is used. 

4. PROPOSED WORK 
In this paper, the use of GA is described in order to find the 

best fit key for the cryptographic algorithm. In the research 

paper an approach of a pseudo random number generator 

which is used to produce unique keys further used in the 

various ciphers has been proposed. Since in Genetic algorithm 

only the fittest one survives, hence there was a need to define 

a fitness function which helped us identify the best keys 

among the rest. The key produced is shown to be non-

repeating which makes the cipher text difficult to decode. The 

basic processes in Genetic Algorithm, such as Initial 

Population Generation, Crossover, Mutation, Fitness Function 

Calculation and Final Key Selection are used. In this paper a 

48-bit key Data Encryption Standard (DES) Cipher is used in 

the end to show the implementation of the research. 

The proposed solution involves the following steps as 

illustrated in Figure 1: 

 

 
 

Figure 1. Steps involved in Generating the Best Fit Key in 

Cryptography using Genetic Algorithm. 

 

4.1 Population Generation 
GA typically starts with a population of computer generated 

random keys which are known as chromosomes. The number 

of genes will be equal to the length of the key used. Here 48-

bit key size has been used. The population size depends on a 

large number of possible solutions. After the initial population 

has been generated, the population matrix undergoes various 

Genetic operations which increase the total number of 

chromosomes. These operations are applied to individual(s) 

selected from the population. The individuals are 

probabilistically selected to participate in the genetic 

operations based on their fitness. 

 

http://en.wikipedia.org/wiki/Genetic_operator
http://en.wikipedia.org/wiki/Genetic_diversity
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4.2 Crossover 
Crossover primarily simulates sexual genetic recombination. 

There are various ways by which it can be implemented in 

GAs. Sometimes crossover is applied with moderation so 

usually the crossover probability is defined to indicate a ratio 

of the number of couples selected for mating. Crossover is 

applied on two randomly chosen individuals.  

A crossover rate is chosen and then number of crossovers is 

calculated with the formula:   

noco = cor * m * n / 100,   

Where     noco = number of crossovers,  

            cor = crossover rate,  

         m = key length,  

     n = number of keys. 

A random crossover point is then generated and the bits of the 

first individual from the starting till the crossover point and 

the bits of the second individual starting from the crossover 

point till the end are copied. The successor thus generated 

from crossover is very different from their initial parents. 

 

4.3 Mutation 
Mutation is a genetic operator used to maintain diversity from 

one generation of a population of chromosomes to the next. It 

is analogous to biological mutation. Mutation alters one or 

more gene values in a chromosome from its initial state. In 

mutation, the solution may change entirely from the previous 

solution. Mutation occurs during evolution according to a 

user-defined mutation probability. This probability should be 

set low. If it is set too high, the search will turn into a 

primitive random search. For example, if the mutation 

probability is set to 1, it means 1 out of every 100 bits will be 

manipulated. In the proposed solution, the bit inversion 

mutation operator is used. Here also number of mutations is 

calculated via the formula, 

nom = mr * m * n / 100,   

Where       nom = number of mutations, 

  mr = mutation rate, 

               m = key length,  

            n = number of keys. 

Mutation should allow the algorithm to avoid local minima by 

preventing the population of chromosomes from becoming 

too similar to each other, so that it cannot slow or stop 

evolution. 

 

4.4 Calculating Fitness Function 
Fitness evaluation involves defining an objective or fitness 

function which tests for suitability of the chromosome. As the 

algorithm proceeds, the individual fitness of the "best" 

chromosome is increased. Also the total fitness of the 

population is increased as a whole. In the proposed solution, 

all the keys which are in binary form are first converted into 

their respective decimal forms.  

Gap test and Frequency Test are performed on them. The 

proposed fitness function is calculated by the formula, 

F = 1 / (1 + e (- λ) )  
Where  λ = C1 λ1 + C2 λ2 

λ1 = Frequency Test 

λ2= Gap Test 

C1 = C2 = 1 

4.4.1 Frequency Test 
The frequency of each number is then calculated. This test is 

performed to check the number of times a chromosome is 

repeated [10]. The frequency test is used for testing 

randomization of the key. 

4.4.2 Gap Test 
This test is performed to calculate the gap between the two 

repeating numbers [11]. The gap test is used to determine the 

implication of the interval between recurrences of the same 

digit. 
4.5 Ordering 
The numbers are arranged in a sorted order according to their 

fitness values. The key with the highest fitness value is at the 

top of the list and the key with the lowest fitness value is at 

the bottom. 

 

4.6 Dominance Testing 
After ordering has been done, there will be set of random keys 

to choose from. On those keys dominance testing is 

performed. The key with highest fitness value will be paired 

with the rest of the keys and hamming distance between them 

will be calculated. Hamming distance is calculated by 

performing XOR of the two binary keys, then calculating the 

number of 1’s. Out of those keys, one key will be chosen 

randomly which will dominate over others. This key will be 

the Final key resulting from Dominance Testing. 

 

4.7 Final Key Selection from Repository 
The whole process is then repeated n times and all the keys 

generated from n iterations are stored in the repository. The 

final key is then selected on the basis of Dominance Testing. 

 

4.8 Result 
The final key selected is then used for the encryption and 

decryption process in the DES cipher. 

 

5. OBSERVATION 
The technique proposed in section 4 was implemented using 

Java Technology and observations were analyzed. These 

observations led to the conclusions presented in the next 

section. Figure 2 is shown as a screenshot from the working 

program of the proposed solution: 

 

 
Figure 2. Screenshot of the Fitness Function Calculation 

 

http://en.wikipedia.org/wiki/Genetic_operator
http://en.wikipedia.org/wiki/Genetic_diversity
http://en.wikipedia.org/wiki/Chromosome_(genetic_algorithm)
http://en.wikipedia.org/wiki/Mutation
http://en.wikipedia.org/wiki/Local_minimum
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The observations from the implementation of the proposed 

algorithm are as follows: 

5.1 Population Generation 
In the implementation of the proposed algorithm, a random 

initial population of 100 chromosomes each having 48 genes 

is generated. 

 

5.2 Crossover 
The second step is to create a new child out of two randomly 

selected parents. Crossover Rate is taken as 2.5 which gives 

the number of crossovers as 120. For each iteration, a 

different crossover point is selected to perform single point 

crossover. Now the total population size becomes 220. The 

diagram shown in Figure 3 illustrates the single point 

crossover operation: 

 

  COP = 3 

     PARENT 1 

 

     PARENT 2 

     

      NEW CHILD 

 

 

Figure 3. Single Point Crossover Operation 

Table 1 shows 10% of the results generated from the 

crossover operation: 

 

Table 1. Crossover Operation 

S. 

NO. 
CHROMOSOME 

1. 

PARENT 1 
0101100100010110001111100000

01001001000011110111 

PARENT 2 
1001111001101010001111010001

10110110110100110000 
CROSSOVER 

POINT 
27 

NEW CHILD 
0101100100010110001111100001

10110110110100110000 

2. 

PARENT 1 
0101010011111010000101100010

00011000110000000110 

PARENT 2 
1100101110101011111011001011

01001011001101000110 
CROSSOVER 

POINT 
15 

NEW CHILD 
0101010011111011111011001011

01001011001101000110 

3. 

PARENT 1 
0101011110010100101000001000

11111101001111011110 

PARENT 2 
1000100101000011100111100100

01110111010011110010 
CROSSOVER 

POINT 
22 

NEW CHILD 
0101011110010100101000100100

01110111010011110010 

4. PARENT 1 
1111101000100010110010001100

01010101111101011001 

PARENT 2 
1000100101000011100111100100

01110111010011110010 
CROSSOVER 

POINT 
28 

NEW CHILD 
1111101000100010110010001100

01110111010011110010 

5. 

PARENT 1 
1111100010100110111110000000

11000101001000000011 

PARENT 2 
1010110000100111010010100011

11011000101110001110 
CROSSOVER 

POINT 
9 

NEW CHILD 
1111100010100111010010100011

11011000101110001110 

6. 

PARENT 1 
1100011110111110001111011100

10001110010000001111 

PARENT 2 
0000000110101011110000101111

01010100011110101111 
CROSSOVER 

POINT 
33 

NEW CHILD 
1100011110111110001111011100

10001100011110101111 

7. 

PARENT 1 
0011010111111000000000100101

01010000111100000110 

PARENT 2 
0111101101000000101111000101

00010011111010010011 
CROSSOVER 

POINT 
8 

NEW CHILD 
0011010101000000101111000101

00010011111010010011 

8. 

PARENT 1 
0000010010010000100000001010

00001000011100111001 

PARENT 2 
0010010110101001000011001100

00001010100101111001 
CROSSOVER 

POINT 
8 

NEW CHILD 
0000010010101001000011001100

00001010100101111001 

9. 

PARENT 1 
0001111001000110111100110010

10110001011100101101 

PARENT 2 
0111110001101001110110011101

11110011111100100110 
CROSSOVER 

POINT 
20 

NEW CHILD 
0001111001000110111110011101

11110011111100100110 

10. 

PARENT 1 
0110010110000110111001101001

10101110111101111010 

PARENT 2 
0001111001000110111100110010

10110001011100101101 
CROSSOVER 

POINT 
16 

NEW CHILD 
0110010110000110111100110010

10110001011100101101 

 

 

5.3 Mutation 
The next step is to perform mutation where a random 

chromosome is chosen from the existing population and a 

mutation point is selected to invert that particular bit. 

Mutation Rate is selected as 0.5 which gives the number of 

mutations to be performed as 52. Table 2 below shows first 10 

chromosomes generated after the mutation operation: 
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Table 2. Mutation Operation 

S. 

NO. 
CHROMOSOME 

1. 

ORIGINAL 

CHROMOSOME 

1111100010100110111110000000

11000101001000000011 

MUTATION POINT 33 

MUTATED 

CHROMOSOME 

1111100010100110111110000000

11001101001000000011 

2. 

ORIGINAL 

CHROMOSOME 

0000010101000111111101101110

00000111100001001111 

MUTATION POINT 14 

MUTATED 

CHROMOSOME 

0000010101000011111101101110

00000111100001001111 

3. 

ORIGINAL 

CHROMOSOME 

1111010010011101011001011110

00101001101011010101 

MUTATION POINT 17 

MUTATED 

CHROMOSOME 

1111010010011101111001011110

00101001101011010101 

4. 

ORIGINAL 

CHROMOSOME 

1100010011000011100010011000

11010110010011111011 

MUTATION POINT 25 

MUTATED 

CHROMOSOME 

1100010011000011100010010000

11010110010011111011 

5. 

ORIGINAL 

CHROMOSOME 

0010010110010100100111110110

01101101000001101010 

MUTATION POINT 48 

MUTATED 

CHROMOSOME 

0010010110010100100111110110

01101101000001101011 

6. 

ORIGINAL 

CHROMOSOME 
1111100010100110111110000000

11001101001000000011 

MUTATION POINT 43 

MUTATED 

CHROMOSOME 

1111100010100110111110000000

11001101001000100011 

7. 

ORIGINAL 

CHROMOSOME 
0000110001001110010111011110

00101110011000101101 

MUTATION POINT 21 

MUTATED 

CHROMOSOME 

0000110001001110010101011110

00101110011000101101 

8. 

ORIGINAL 

CHROMOSOME 
0111100001101000101100001000

01011110101100100001 

MUTATION POINT 2 

MUTATED 

CHROMOSOME 

0011100001101000101100001000

01011110101100100001 

9. 

ORIGINAL 

CHROMOSOME 
1001001111000111110111011110

10000010111111001101 

MUTATION POINT 30 

MUTATED 

CHROMOSOME 

1001001111000111110111011110

11000010111111001101 

10. 

ORIGINAL 

CHROMOSOME 
1010000111001100010100110010

01100010010011100011 

MUTATION POINT 30 

MUTATED 

CHROMOSOME 

1010000111001100010100110010

00100010010011100011 

 

 

5.4 Fitness Function Calculation 
5.4.1 Conversion 
The binary valued chromosomes from the population of size 

220 were converted into the decimal number format. 

 

 

 

 

5.4.2 Fitness Value 
The Fitness values of the above chromosomes are shown in 

Table 3. 

Table 3. Fitness Function 

S. 

NO. 

Frequency 

Test (λ1) 

Gap Test 

(λ2) 
λ=λ1+λ2 

Fitness 

Value F = 

1/(1+e
(- λ)

)
  

1. 1 0.0 1.0 
0.66666666

66666666 

2. 1 0.0 1.0 
0.66666666

66666666 

3. 1 0.0 1.0 
0.66666666

66666666 

4. 1 0.0 1.0 
0.66666666

66666666 

5. 2 
0.91818181

81818182 

2.9181818

18181818 

0.29942712

908773716 

6. 1 0.0 1.0 
0.66666666

66666666 

7. 1 0.0 1.0 
0.66666666

66666666 

8. 1 0.0 1.0 
0.66666666

66666666 

9. 1 0.0 1.0 
0.66666666

66666666 

10. 2 
0.92272727

27272727 

2.9227272

72727273 

0.29864652

653727375 

 

5.5 Ordering 
The chromosomes are then sorted in the decreasing order 

according to their fitness values as shown in Table 4: 
 

Table 4. Ordering 

S.NO. ORDERED POPULATION 

1. 
00010110010010101011011010110101111101010

0101111 

2. 
11110100111011000100101111110100100110010

0111101 

3. 
01011001000101100011111100000100100100001

1110111 

4. 
11000001011100001000110110001010101000001

0101011 

5. 
10001011110011010010110110110110110011001

0001101 

6. 
10101101011111101110101000110101001111100

0110100 

7. 
01111111010000001011110001010001001111101

0010011 

8. 
00101000010100010010001010101011111101011

1010100 

9. 
11011001100001110100100111110110001100000

1111011 

10. 
00011011110010100001000011100001001101000

1111000 
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5.6 Dominance Testing 
The topmost key from the sorted population, i.e. the fittest 

value is selected and paired with the rest of the chromosomes 

one at a time. XOR function is applied to all these pairs and 

each pair's hamming distance is calculated. The pair with the 

maximum hamming distance is then chosen and through 

random selection one of the chromosomes is selected from 

that final pair. In the implementation, the most dominating 

key came out to be as: 

011011101011010001100000010100100101100011100000 

This key is then stored in the repository and the entire process 

starting from the first step is repeated 100 times. 

5.7 Final Key Selection from Repository 
 The following Table 5 shows the first 10 dominant keys 

generated which get stored in the repository: 
 

Table 5. Repository 

S.NO. REPOSITARY 

1. 
00100000010101110101000000001010011100111

0000100 

2. 
10111011100011000001001111111010101100000

1110111 

3. 
00010110100111110011100010100000111100011

0000000 

4. 
11111000110110010111101110010010001111000

0111101 

5. 
01101001100011001101011011000001000111110

1010110 

6. 
11111101001010000001010000011001101110101

1011010 

7. 
11100111000010001011100110101001101100001

1100011 

8. 
01011010110011011111011111011011001010111

1100111 

9. 
00100111101110101110100110111101011010000

1101001 

10. 
11010001000100010001111000000001101011101

1110101 

 
The Dominance Testing is again applied to all the 100 keys 

generated and then the final key is selected for the DES 

Cipher for further data encryption and decryption. This final 

key came out to be the 73rd key from repository which is as 

follows: 

001001111101110110010010000000011010110001011101 

6. RESULTS 
The work has been implemented and analyzed. The 

implementation was done using Java Technology. Random 

samples were created by generating an initial random 

population of 100 chromosomes. Various tests were applied 

on the samples and the results were also satisfactory. 

After generating 100 chromosomes, crossover function was 

applied taking the total population size to 220 chromosomes 

using the crossover rate as 2.5. Mutation rate was selected as 

0.5. The fitness values of the keys were calculated and 

analyzed using the Frequency and Gap Tests. The maximum 

frequency which was observed in the sample was 2. This 

means the chromosomes were found to be repeated at most 

two times. This proves the randomness of the sample used. 

Therefore, the final result generated came out to be as random 

and unique as possible. 

7. CONCLUSION 
It can be observed from the above tables that the generated 

key is very random and almost difficult to decode. The 

Genetic Processes involved are very complex and when used 

together, they generate the most random and non-repeating 

key as possible. The implementation further involves the use 

of DES cipher for data encryption which is very complicated 

itself and it makes almost impossible for the cryptanalysts to 

attack the data. The proposed solution has a total of seven 

rounds and the whole process is again repeated 100 times. 

Despite this, the key gets generated in a very short duration of 

time. This proves to be a great advantage as the computational 

time of generating the key is lesser than encrypting the data 

using DES. 

 

8. FUTURE SCOPE 
This propounded idea can not only overcome the existing 

network security but also has an edge over the computational 

time. However, in this paper only a need for data encryption is 

created and its implementation is shown. Messages can be in 

the form of images or audio as well which are equally 

important to be protected against eavesdroppers and 

cryptanalysts [11] [15]. But implementing the same algorithm 

for image encryption could not be shown due to time 

constraints. Moreover, the proposed approach can be 

expanded further by using Neural Networks in Artificial 

Intelligence to calculate the mathematical coefficient for the 

Gap Test and the Frequency Test used in the fitness function. 
Both Neural Network and Genetic Algorithm provide with 

non-linear problem solving iteration [5]. So using both of the 

techniques together can solve a great deal of problems. 
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