
International Journal of Computer Applications (0975 – 8887)

Volume 98 – No.20, July 2014

11

Automation of Software Cost Estimation using

Neural Network Technique

Gaurav Kumar
Department of Computer Science & Engineering

Guru Jambheshwar University of Science &
Technology

Hisar, Haryana, India

Pradeep Kumar Bhatia
Department of Computer Science & Engineering

Guru Jambheshwar University of Science &
Technology

Hisar, Haryana, India

ABSTRACT
Software cost estimation is one of the most challenging tasks

in software engineering. Over the past years the estimators

have used parametric cost estimation models to establish

software cost, however the challenges to accurate cost

estimation keep evolving with the advancing technology. A

detailed review of various cost estimation methods developed

so far is presented in this paper. Planned effort and actual

effort has been comparison in detail through applying on

NASA projects. This paper uses Back-Propagation neural

networks for software cost estimation. A model based on

Neural Network has been proposed that takes KLOC of the

project as input, uses COCOMO model parameters and gives

effort as output. Artificial Neural Network represents a

complex set of relationship between the effort and the cost

drivers and is a potential tool for estimation. The proposed

model automates the software cost estimation task and helps

project manager to provide fast and realistic estimate for the

project effort and development time that in turn gives

software cost.

General Terms
Software Engineering, Software Planning.

Keywords
Back Propagation Neural Network, COCOMO Model,

Software Cost Estimation.

1. INTRODUCTION
Software Cost is basically consists of:

 Manpower i.e. number of engineering and management

personnel allocated to the project as a function of time.

 Duration i.e. the amount of time required to complete the

project.

 Effort i.e. the engineering and management effort required

to complete a project usually measured in person-months.

Software cost estimation usually fails to accurately predict the

actual costs or the time needed to develop the system.

Software cost estimation models have two problems.

Estimating software development costs with accuracy is very

difficult. The most common approach for improving software

cost estimates is to use empirical models. It becomes more

challenging to predict the costs and schedule at the beginning

of the project. Early prediction of completion time is

necessary for proper advance planning and to avoid any type

of risk of a project.

Software cost estimation is the set of procedures and

techniques with a set of inputs that an organization uses to

achieve a software cost estimate in terms of effort, manpower,

duration etc. Generally, inaccurate estimates are because of:

 Problem with requirements

 System Size

 Maintenance Issues

 Software Process and Process Maturity

 Project Monitoring and Control

 Lack of historical data

 Lack of application domain expertization

Here, we have considered the features of the cost estimation

problem and have proposed a novel Neuro-COCOMO model.

The major difference between our work and previous works is

that we have combined the COCOMO model with neural

network technique into one scheme and have validated our

approach with NASA projects data.

2. BACKGROUND

2.1 COCOMO Model
The COCOMO model can be categorized into basic,

intermediate, and detailed model. The basic model represents

quick, early, and rough estimates of effort. The intermediate

and detailed model includes more information in the form of

cost drivers. The inputs of COCOMO model are: (1) the

estimated size of the software product in thousands of

Delivered Source Instructions (KDSI) adjusted for code reuse;

(2) the project development mode given as a constant value B

(also called the scaling factor); and (3) 15 cost drivers. The

project development mode depends on one of the three

categories of software development modes: organic, semi-

detached, and embedded. Each rating has a corresponding real

number (effort multiplier), based upon the factor and the

degree to which the factor can influence productivity [23, 26,

29]. The estimated effort in person-months (PM) for the

intermediate COCOMO is given as:

Constant A is known as productivity coefficient. The effort

multipliers corresponding to the cost drivers are incorporated

into the effort estimation formula by multiplying them

together.

Intermediate COCOMO model is the most widely used

version. According to the researchers, intermediate COCOMO

model has estimation accuracy that is greater than the basic

version, and at the same time comparable to the detailed

version. Effort and Development Time can be calculated using

following:

International Journal of Computer Applications (0975 – 8887)

Volume 98 – No.20, July 2014

12

Where EAF is Effort Adjustment Factor. The product of all

effort multipliers results in an effort adjustment factor (EAF).

Typical values for EAF range from 0.9 to 1.4. Coefficients

used are shown in table 1. Values of the multipliers for the

calculation of EAF are shown in table 2.

Table 1. Intermediate COCOMO coefficients

Project ai bi ci di

Organic 3.2 1.05 2.5 0.38

Semidetached 3 1.12 2.5 0.35

Embedded 2.8 1.2 2.5 0.32

Table 2. Values of the multipliers for calculation of Effort

Cost Drivers
Ratings

Very low Low Nominal High Very High Extra High

Product Attributes

Required S/w Reliability (RELY) 0.75 0.88 1 1.15 1.4 -

Size of Application Database (DATA) - 0.94 1 1.08 1.16 -

Complexity of the Product (CPLX) 0.7 0.85 1 1.15 1.3 1.65

Computer Attributes

Run Time Performance Constraints (TIME) - - 1 1.11 1.3

Memory Constraints (STOR) - - 1 1.06 1.21

Virtual Machine Volatility (VIRT) - 0.87 1 1.15 1.3 -

Turnaround Time (TURN) - 0.87 1 1.07 1.15 -

Personal Attributes

Analyst Capability (ACAP) 1.46 1.19 1 0.86 0.71 -

Application Experience (AEXP) 1.29 1.13 1 0.91 0.82 -

Programmer Capability (PCAP) 1.42 1.17 1 0.86 0.7 -

Virtual M/c Experience (VEXP) 1.21 1.1 1 0.9 - -

Programming Language Experience (LEXP) 1.14 1.07 1 0.95 - -

Project Attributes

Modern Programming Practices (MODP) 1.24 1.1 1 0.91 0.82 -

Use of Software Tools (TOOL) 1.24 1.1 1 0.91 0.83 -

Required Development Schedule (SCED) 1.23 1.08 1 1.04 1.1 -

2.2 Artificial Neural Network and MatLab
An Artificial Neural Network is composed of a large simple

processor ‘units’ where each unit is having a small amount of

local memory. These units are connected by unidirectional

communication channels called ‘connections’, which carries

numeric data. The units operate only on their local data and on

the inputs they receive via the connections. In Multiple-layer

networks, the number of layers determines the superscript on

the weight matrices [27]. Two-layer tansig/purelin neural

network as shown in figure 1 can approximate any function

with a finite number of discontinuities when sufficient

neurons in the hidden layer are given. MATLAB (MATrix

LABoratory) is a numerical computing environment and

fourth-generation programming language, which is developed

by MathWorks [13]. MATLAB is an interactive system

whose basic data element is an array that does not require

dimensioning. MATLAB has evolved over a period of years

with input from many users. In university environments, it is

the standard instructional tool for introductory and advanced

courses in mathematics, engineering, and science.

Fig 1. Multilayer feed forward neural network diagram

MATLAB is used as a tool for high-productivity research,

development, and analysis. MATLAB features a family of

add-on application-specific solutions called toolboxes that

allows learning and applying specialized technology.

Toolboxes are broad collections of MATLAB functions (M-

files) that extend the MATLAB environment to solve

particular classes of problems.

3. LITERATURE REVIEW
Many cost estimation methods are available. Still research is

going on in this area in order to find more accurate cost

estimation method. In this section, the work done in this field

is presented.

Neha Sharma et. al. (2013) proposed model to assess

parameters for NASA software project dataset using a genetic

algorithm (GA). The result shows that the three models

(Organic model, Semi-detached model and Embedded model)

takes much larger time and performs inferior than proposed

model [1].

A. Idri and A. Zahi (2013) evaluate and compare the classical

analogy and fuzzy analogy for software cost estimation on a

web software dataset. They estimated accuracy, tolerance of

imprecision and uncertainty of cost drivers showing the

usefulness of Fuzzy Analogy for software cost estimation [2].

M. Azzeh (2013) analyzes the potential of Use Case Point

estimation model for global projects and uses this as a basis to

discuss three proposed factors (Global team trust, Global team

composition and Culture value) that helps in managing the

global software project development [3].

International Journal of Computer Applications (0975 – 8887)

Volume 98 – No.20, July 2014

13

A. Kaushik et. al. (2013) mapped the COCOMO model by

using a Feed Forward Back Propagation neural network. The

proposed model takes identity function at the input layer and

sigmoid function at the hidden and output layer. The model

uses COCOMO and COCOMO NASA 2 dataset to train and

test the network [4].

Anupama Kaushik et. al. (2012) made an analysis to use the

fuzzy logic in the COCOMO model and provided in-depth

review and comparison of software effort estimation models.

They presented an overview of fuzzy approaches in

COCOMO’s effort estimation [5, 6].

Surendra Pal Singh et. al. (2012) analyzes neural network

using Bayesian Regularization training algorithm and

produces reduced condition numbers as compared to the fuzzy

model having membership functions. It is concluded that the

neural network model using Bayesian Regularization training

algorithm is a more stable model than the fuzzy model having

membership functions [7].

Abeer Hamdy (2012) developed an adaptive fuzzy model for

software effort estimation. A fuzzy logic-based component

with COCOMO81 intermediate model is used to improve its

accuracy and sensitivity. The proposed model uses genetic

algorithms (GA) to tune the fuzzy sets parameters [8].

Swarup Kumar et. al. (2011) proposed fuzzy software cost

estimation model that handles ambiguousness, obscurity and a

comparison is made with other popular software cost

estimation models. Fuzzy logic method is used to address the

problem of obscurity and vagueness exists in software effort

drivers to estimate software effort [9].

Gharehchopogh (2011) made a case study for software cost

estimation using Neural Network (NN) architecture for

predicting necessary effort of new software. The results

indicate that the NN model offers the very best algorithmic

method to predict and estimate software costs [10].

Vishal Sharma and Harsh Kumar Verma (2010) presented an

optimized fuzzy logic based framework for software

development effort prediction. Fuzziness is incorporated into

the measurements of size, mode of development for projects

and the cost drivers contributing to the overall development

effort [11].

Iman Attarzadeh et. al. (2010) proposed a model for handling

imprecision and uncertainty by using the fuzzy logic systems.

The proposed fuzzy logic model shows better software effort

estimate evaluation criteria as compared to the traditional

COCOMO. The results demonstrate that applying fuzzy logic

method to the software effort estimation is a feasible approach

to addressing the problem of uncertainty and vagueness [12].

Prasad Reddy (2010) presented a Particle Swarm

Optimization Algorithm (PSOA) to fine tune the fuzzy

estimate for the development of software projects. The

efficiency of the developed models is tested on 10 NASA

software projects, and COCOMO 81 database for assessing

software cost estimation [14].

J. S. Pahariya et. al. (2009) presented computational

intelligence techniques for software cost estimation using

Genetic Programming (GP). Three linear ensembles based on

(i) arithmetic mean (ii) geometric mean and (iii) harmonic

mean was implemented. Proposed recurrent architecture for

Genetic Programming provides best results as compared to

other techniques considered [15].

A. S. Andreou et. al. (2008) addresses the issue of software

cost estimation through fuzzy decision trees to acquire

accurate and reliable effort estimation for project resource

allocation and control. Approximately 1000 project data

records are selected for analysis and experimentation, with

fuzzy decision trees [16].

Ch. Satyananda Reddy et. al. (2008) shows the accuracy of

the effort prediction using Radial Basis Function Neural

Network (RBFN) i.e. used for functional approximation. The

proposed network found that the RBFN designed with the K-

means clustering algorithm performs better in terms of cost

estimation accuracy [17].

Madhu S. Nair and Jaya vijayan (2008) proposed a simplified

neural model to optimize a project team to attain maximum

throughput as well as to obtain high quality software.

Artificial Neural Networks is used to train the software

professionals and make them perform at high level of

standards [18].

Mitat Uysal (2008) shows that Simulated Annealing algorithm

can be used to estimate the optimal parameters of the effort

components of software projects. If a larger search space is

built, it would take more time for computations; and

convergence of search may become very slow. Conversely, if

the search space is set too small, the optimal parameters

probably could not been found [19].

Harish Mittal and Pradeep Bhatia (2007) estimated size in

person hours by using Fuzzy logic to find fuzzy functional

points and then the result is defuzzified to get the functional

points. Triangular fuzzy numbers was used to represent the

linguistic terms in Function Point Analysis (FPA) complexity

matrices. The developed models were tested on NASA

software projects [20, 22].

Xishi Huang et. al. (2003, 2007) proposed a novel Neuro-

Fuzzy Constructive Cost Model (COCOMO) for software

estimation. It allows inputs to be continuous-rating values and

linguistic values, therefore avoiding the problem of similar

projects having different estimated costs. Using industry

project data, validation shows that the model greatly improves

the estimation accuracy as compared to COCOMO model [21,

30].

Alaa F. Sheta (2006) estimated the effort required for the

development of software projects using Genetic Algorithms

(GAs). The proposed model structure was tested on NASA

software project dataset. A modified version of the COCOMO

model is provided to explore the effort computation [24].

Moataz A. Ahmed et. al. (2005) predicted software effort

using an adaptive fuzzy logic framework. In the framework,

the training and adaptation algorithms tolerates imprecision,

explains prediction rationale through rules, incorporates

experts knowledge, offers transparency in the prediction

system, and could adapt to new environments as data for the

new environment becomes available [25].

A. Idri et. al. (2004) presented the cost estimation models

based on artificial neural networks. The COCOMO'81 dataset

was used to train and test the Radial Basis Function network

(RBFN). The fuzzy rules express the information encoded in

the architecture of the network [28].

S. Vijayakumar (1997) presented justification of the

requirement for a database as an aid to resource estimations

for Ministry of Defence Procurement Executive software

intensive projects. The research was initiated to identify and

analyse the variables which influence the activities that

International Journal of Computer Applications (0975 – 8887)

Volume 98 – No.20, July 2014

14

constitute software development and determine the cost of

software [31].

Xiangzhu Gao and B. Lo (1996) examines the special

characteristics of Computer Assisted Learning (CAL) systems

and analyzes the additional considerations needed if Function

point analysis (FPA) is used to size CAL systems for effort

estimation. Real world data was used to test the model [32].

J. E. Matson et. al. (1994) presented an assessment of several

published statistical regression models that relate software

development effort to software size measured in function

points. The research describes appropriate statistical

procedures in the context of a case study based on function

point data for 104 software development projects and

discusses limitations of the resulting model in estimating

development effort [33].

A. R. Venkatachalam (1993) used an artificial neural network

approach to model the software cost estimation expertise and

results was compared with the COCOMO model [34].

4. RESEARCH METHODOLOGY
Through a detailed literature review, the parameters that affect

the cost of a project, the methods developed earlier for

estimation, their good practices and bad practices has been

discussed in detail. COCOMO which is the most popular tool

for estimating software cost and uses lines of code to assess

software size has been discussed. A COCOMO intermediate

model is implemented with multiple projects for the said

problem. This model is rectified in the form of Neural

Network model and then a detailed comparison between the

planned effort and actual effort has been made.

Data for analysing and implementing cost estimation model is

derived from NASA projects. From where, input data is

obtained in the form of various parameter values of

COCOMO-Intermediate model with actual effort derived

from multiple projects. A Neural Network is made to set the

values of parameters with planned effort and actual effort. An

artificial neural network is modelled as a massively parallel-

interconnected network of elementary processors or neurons.

It has been shown that a three-layer feed forward network can

generate arbitrary complex decision regions. The multi-

layered neural networks operate in two modes: Training and

testing. In the training mode, a set of training data is used to

adjust the weights of the network interconnections so that the

network responds in a specified manner. In the testing mode,

the trained network is evaluated by the test data which

comprise of data from NASA projects. Evaluation criteria of

software effort estimation include [4, 5, 6]:

Where E, is Estimated Effort and Actual Effort respectively.

A model provides better estimation which is having higher

VAF, lower BRE, lower MRE and lower MMRE.

Input data (60 nos) is taken from the NASA projects having

COCOMO attribute values with KLOC and actual Effort. It is

in the form of:

 Nominal,High,Very_High,Nominal,Nominal,Low,Nominal

,High,Nominal,Very_High,Low,Nominal,High,Nominal,Lo

w,70,278

 Very_High,High,High,Very_High,Very_High,Nominal,No

minal,Very_High,Very_High,Very_High,Nominal,High,Hi

gh,High,Low,227,1181

Back Propagation Neural Network is created using the

following function:

net=newff(input',out_data',16,{},'trainlm');

The input data is fed into Neural Network for training and is

implemented using the values as shown in table 3. For testing

Neural Network, test data is taken from the NASA projects.

Table 3. Experimental values taken for implementation

Parameter Values

Convergence Objective 0.01

Learning rate 0.005

Training method used trainlm (Levenberg-Marquardt)

No. of training data 60

No. of testing data 27

No. of epoch taken to

converge

2000

Gradient 1.04

5. RESULT ANALYSIS
Proposed model provides the estimated effort, development

time, balance relative error, magnitude of relative error w.r.t.

KLOC and actual effort as shown in table 4. A graph showing

planned effort, actual effort and development time is shown in

figure 2 where x axis represents KLOC and y axis represents

Effort with Time.

Table 4. Estimated Effort, Development Time, evaluation parameters on NASA Projects

S. No. KLOC Actual Effort Estimated Effort Dev. Time BRE MRE %

1 70 278 278 17.9197 0.0002 0.0168

2 227 1181 1236.7 30.2153 0.0471 4.5005

3 177.9 1248 1202.7 29.9226 0.0376 3.7634

4 115.8 480 539.8 22.6058 0.1246 11.0767

5 29.5 120 98.2 14.2883 0.2217 22.1708

6 19.7 60 64.3 12.1623 0.0714 6.6615

7 66.6 300 290.5 18.199 0.0327 3.2662

International Journal of Computer Applications (0975 – 8887)

Volume 98 – No.20, July 2014

15

8 5.5 18 16.8 7.3102 0.069 6.9033

9 10.4 50 32.9 9.4258 0.5212 52.1193

10 14 60 44.9 10.6127 0.336 33.6029

11 16 114 75.1 12.9012 0.5185 51.8476

12 6.5 42 30.2 9.1281 0.3904 39.0416

13 13 60 54.4 11.4137 0.1032 10.3222

14 8 42 32.7 9.4036 0.2858 28.5751

15 90 450 360.5 19.6267 0.2484 24.8352

16 15 90 54.9 11.4549 0.6392 63.9215

17 38 210 151 16.8231 0.3911 39.1109

18 10 48 28.1 8.8806 0.7082 70.825

19 161.1 815 862.2 26.6315 0.0579 5.4699

20 48.5 239 182.7 18.0878 0.3083 30.8277

21 32.6 170 120.4 15.4365 0.4122 41.2216

22 12.8 62 45.1 10.6304 0.3745 37.4523

23 15.4 70 54.8 11.4445 0.278 27.8003

24 16.3 82 58.1 11.7068 0.4104 41.0417

25 35.5 192 131.6 15.9704 0.4585 45.8452

26 25.9 117.6 85.7 13.5653 0.3726 37.2593

27 24.6 117.6 81.2 13.2894 0.4489 44.8854

28 7.7 31.2 24 8.3605 0.3015 30.1483

29 9.7 25.2 30.5 9.1674 0.2123 17.5123

30 2.2 8.4 6.4 5.0716 0.3057 30.5674

31 3.5 10.8 10.5 6.1039 0.031 3.0983

32 8.2 36 25.6 8.573 0.4057 40.5715

33 66.6 352.8 290.5 18.199 0.2144 21.441

34 150 324 491.4 21.8753 0.5168 34.0706

35 100 360 418.2 20.6741 0.1617 13.9177

36 100 215 475.9 21.6304 1.2134 54.8208

37 100 360 200 15.971 0.7996 79.9629

38 15 48 25.9 8.6109 0.8527 85.2665

39 32.5 60 117.5 15.2931 0.9576 48.9176

40 31.5 60 62.7 12.0448 0.0444 4.2477

41 6 24 9.9 5.9741 1.4244 142.4398

42 11.3 36 25.2 8.521 0.4284 42.8433

43 20 72 28.5 8.9316 1.5241 152.4079

44 20 48 35 9.6583 0.3697 36.9655

45 7.5 72 42.1 10.3571 0.7095 70.9481

46 302 2400 2419.3 30.2497 0.008 0.7978

47 370 3240 4068.6 35.7241 0.2557 20.3648

48 219 2120 1509.6 32.3997 0.4044 40.4357

49 50 370 234.2 19.8771 0.5801 58.0133

50 101 750 602.7 23.495 0.2444 24.4395

51 190 420 436.9 20.9935 0.0403 3.8749

52 47.5 252 158.1 17.1225 0.5936 59.3604

53 21 107 146.6 16.6383 0.3704 27.0293

54 423 2300 1731.7 27.18 0.3282 32.8189

55 79 400 279.8 17.9618 0.4295 42.9463

56 284.7 973 1353.8 31.1874 0.3913 28.126

57 282.1 1368 1139.6 29.3628 0.2005 20.0467

58 78 571.4 548.7 22.7349 0.0415 4.1463

59 11.4 98.8 57.3 11.64 0.7252 72.5153

60 19.3 155 99.5 14.361 0.5571 55.7103

Value of VAF %=93.5542, MMRE=0.3642

International Journal of Computer Applications (0975 – 8887)

Volume 98 – No.20, July 2014

16

Figure 2. Graph showing Planned Effort vs. Actual Effort

with Development Time.

6. CONCLUSION & FUTURE SCOPE
In this paper, we have analyzed and studied the software cost

estimation model using COCOMO model based on

calculating Planned Effort and Development time. The output

values are calculated through various attribute values lying

between very low to very high. Hereby, in the research work

we have done a detailed literature review of the cost

estimation models developed earlier. A detailed comparison

between planned effort and actual effort has been shown

through a graph by applying input values obtained from

NASA projects. The work done shows how much planned

effort differs from the actual effort on the basis of realistic

values obtained. We have proposed a model that uses a Neural

Network which takes input values obtained through

COCOMO model and gives estimated effort and development

time. The proposed model may benefit the project manager to

provide more realistic estimate for the project effort and

development time that implies software cost. Hence, a

software cost estimation model has been proposed to give cost

using neural network technique.

Although proposed model can be used for all type of

COCOMO modes, still there is a scope of implementing the

model for all type of modes. For this implementation, some

valid data is required like the data used in our proposed

model. In the future, we are going to extend the model for

other type of modes and optimize the cost estimation using

Genetic Algorithms and Fuzzy techniques.

7. REFERENCES
[1] Neha Sharma, Amit Sinhal, Bhupendra Verma,

“Software Assessment Parameter Optimization using

Genetic Algorithm”, International Journal of Computer

Applications, Vol. 72, No.7, pp. 8-13, May 2013.

[2] A. Idri, A. Zahi, “Software cost estimation by classical

and Fuzzy Analogy for Web Hypermedia Applications:

A replicated study”, IEEE Symposium on Computational

Intelligence and Data Mining (CIDM), pp. 207-213, 16-

19 April 2013.

[3] M. Azzeh, “Software cost estimation based on use case

points for global software development”, 5th IEEE

International Conference on Computer Science and

Information Technology (CSIT), pp. 214-218, 27-28

March 2013.

[4] A. Kaushik, A. K. Soni, Rachna Soni, “A Simple Neural

Network Approach to Software Cost Estimation”, Global

Journals of Computer Science & Technology, Vol. 13,

Issue 1, Version 1, pp. 23-30, 2013.

[5] Anupama Kaushik, A. K. Soni, Rachna Soni, “A

Comparative Study on Fuzzy Approaches for

COCOMO’s Effort Estimation”, International Journal of

Computer Theory and Engineering, Vol. 4, No. 6, pp.

990-993, Dec. 2012.

[6] A. Kaushik, A. K. Soni, R. Soni, "An adaptive learning

approach to software cost estimation", National

Conference on Computing and Communication Systems

(NCCCS), pp. 1-6, 21-22 Nov. 2012

[7] Surendra Pal Singh, Prashant Johri, “A Review of

Estimating Development Time and Efforts of Software

Projects by Using Neural Network and Fuzzy”,

International Journal of Advanced Research in Computer

Science and Software Engineering, Vol. 2, Issue 10, pp.

306-310, Oct. 2012.

[8] Abeer Hamdy, “Fuzzy Logic for Enhancing the

Sensitivity of COCOMO Cost Model”, Journal of

Emerging Trends in Computing and Information

Sciences, Vol. 3, No. 9, pp. 1292-1297, Sep. 2012.

[9] J. N. V. R Swarup Kumar, Aravind Mandala, M. Vishnu

Chaitanya, G. V. S. N. R.V Prasad, “Fuzzy logic for

Software Effort Estimation Using Polynomial Regression

as Firing Interval”, International Journal of Computer

Technology Applications, Vol. 2, No. 6, pp. 1843-1847,

Dec. 2011.

[10] F.S. Gharehchopogh, “Neural networks application in

software cost estimation: A case study”, IEEE

International Symposium on Innovations in Intelligent

Systems and Applications (INISTA), pp. 69-73, 15-18

June 2011.

[11] Vishal Sharma, Harsh Kumar Verma, “Optimized Fuzzy

Logic Based Framework for Effort Estimation in

Software Development”, IJCSI International Journal of

Computer Science Issues, Vol. 7, Issue 2, No 2, pp. 30-

38, March 2010.

[12] I. Attarzadeh, Siew Hock Ow, “A novel soft computing

model to increase the accuracy of software development

cost estimation”, IEEE 2nd International Conference on

Computer and Automation Engineering (ICCAE), Vol. 3,

pp. 603 - 607, 26-28 Feb. 2010.

[13] MatLab R2010 Neural Network Tool Box Product Help

[14] P. V. G. D Prasad Reddy, “Particle Swarm Optimization

in the fine-tuning of Fuzzy Software Cost Estimation

Models”, International Journal of Software Engineering

(IJSE), Vol. 1, Issue 2, pp. 12-23, 2010.

[15] J. S. Pahariya, V. Ravi, M. Carr, “Software Cost

Estimation using Computational Intelligence

Techniques”, IEEE World Congress on Nature &

Biologically Inspired Computing (NaBIC), pp. 849-854,

9-11 Dec, 2009.

[16] A. S. Andreou, E. Papatheocharous, “Software Cost

Estimation using Fuzzy Decision Trees”, 23rd

IEEE/ACM International Conference on Automated

Software Engineering (ASE), pp. 371-374, 15-19 Sept.

2008.

0 50 100 150 200 250 300 350 400 450
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Software Cost Estimation

Planned Effort

Actual Effort

Development Time

International Journal of Computer Applications (0975 – 8887)

Volume 98 – No.20, July 2014

17

[17] Ch. Satyananda Reddy, P. Sankara Rao, KVSVN Raju,

V. Valli Kumari, “A New Approach For Estimating

Software Effort Using RBFN Network”, International

Journal of Computer Science and Network Security, Vol.

8, No.7, pp. 237-241, July 2008.

[18] Madhu S. Nair, Jaya Vijayan, “Simplified Neural Model

for the Software Development Team Optimization”,

International Arab Journal of Information Technology,

Vol. 5, No. 2, April 2008.

[19] Mitat Uysal, “Estimation of the Effort Component of the

Software Projects Using Simulated Annealing

Algorithm”, World Academy of Science, Engineering

and Technology, Vol. 17, pp. 234-237, 2008.

[20] Harish Mittal, Pradeep Bhatia, “Optimization Criteria for

Effort Estimation using Fuzzy Technique”, CLEI

Electronic Journal , Vol. 10, No. 1, Paper 2, pp. 1-11,

June 2007.

[21] Xishi Huang, Danny Ho, Jing Ren, Luiz F. Capretz,

“Improving the COCOMO model using a neuro-fuzzy

approach”, Elsevier Journal Applied Soft Computing,

Vol. 7, pp. 29–40, 2007.

[22] Harish Mittal, Pradeep Bhatia, “A comparative study of

conventional effort estimation and fuzzy effort

estimation based on Triangular Fuzzy Numbers”,

International Journal of Computer Science and Security,

Volume 1, Issue 4, pp. 36-47, 2007.

[23] K. K. Aggarwal, Yogesh Singh, Software Engineering,

3rd edition, New Age International Publishers, 2007.

[24] Alaa F. Sheta, “Estimation of the COCOMO Model

Parameters Using Genetic Algorithms for NASA

Software Projects”, Journal of Computer Science, Vol. 2,

No. 2, pp. 118-123, 2006.

[25] Moataz A. Ahmed, Moshood Omolade Saliu, Jarallah

AlGhamdi, “Adaptive fuzzy logic-based framework for

software development effort prediction”, Elsevier Journal

of Information and Software Technology, Vol. 47, pp.

31–48, 2005.

[26] Roger S. Pressman, “Software Engineering, A

Practitioner’s Approach” Sixth Edition, McGraw-Hill,

2005.

[27] Simon Haykin, “Neural Networks: A Comprehensive

Foundation”, Book by Pearson Education, Inc., 2004.

[28] A. Idri, S. Mbarki, A. Abran, “Validating and

understanding software cost estimation models based on

neural networks”, Proc. of IEEE International

Conference on Information and Communication

Technologies: From Theory to Applications, pp. 433-

434, 19-23 April 2004.

[29] Ian Sommerville, "Software Engineering", Addison

Wesley, 7th edition, 2004.

[30] Xishi Huang, L.F. Capretz, Jing Ren, D. Ho, “A neuro-

fuzzy model for software cost estimation”, Proc. of IEEE

3rd International Conference on Quality Software, pp.

126 - 133, 6-7 Nov. 2003.

[31] S. Vijayakumar, “Use of historical data In software cost

estimation”, IEEE Computing & Control Engineering

Journal, Vol. 8, Issue 3, pp. 113-119, June 1997.

[32] Xiangzhu Gao, B. Lo, “A modified function point

method for CAL systems with respect to software cost

estimation”, Proc. of IEEE International Conference

Software Engineering: Education and Practice, pp. 212 -

219, 24-27 Jan 1996.

[33] J. E. Matson, B. E. Barrett, J. M. Mellichamp, “Software

development cost estimation using function points”,

IEEE Transactions on Software Engineering, Vol. 20,

Issue 4, pp. 275-287, Apr 1994.

[34] A.R. Venkatachalam, “Software cost estimation using

artificial neural networks”, Proc. of International Joint

Conference on Neural Networks (IJCNN), Vol. 1, pp.

987-990, 25-29 Oct. 1993.

IJCATM : www.ijcaonline.org

