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ABSTRACT 
Software cost estimation is one of the most challenging tasks 

in software engineering. Over the past years the estimators 

have used parametric cost estimation models to establish 

software cost, however the challenges to accurate cost 

estimation keep evolving with the advancing technology. A 

detailed review of various cost estimation methods developed 

so far is presented in this paper. Planned effort and actual 

effort has been comparison in detail through applying on 

NASA projects. This paper uses Back-Propagation neural 

networks for software cost estimation. A model based on 

Neural Network has been proposed that takes KLOC of the 

project as input, uses COCOMO model parameters and gives 

effort as output. Artificial Neural Network represents a 

complex set of relationship between the effort and the cost 

drivers and is a potential tool for estimation. The proposed 

model automates the software cost estimation task and helps 

project manager to provide fast and realistic estimate for the 

project effort and development time that in turn gives 

software cost.  

General Terms 
Software Engineering, Software Planning. 

Keywords  
Back Propagation Neural Network, COCOMO Model, 

Software Cost Estimation. 

1. INTRODUCTION 
Software Cost is basically consists of: 

 Manpower i.e. number of engineering and management 

personnel allocated to the project as a function of time. 

 Duration i.e. the amount of time required to complete the 

project. 

 Effort i.e. the engineering and management effort required 

to complete a project usually measured in person-months.  

Software cost estimation usually fails to accurately predict the 

actual costs or the time needed to develop the system. 

Software cost estimation models have two problems. 

Estimating software development costs with accuracy is very 

difficult. The most common approach for improving software 

cost estimates is to use empirical models. It becomes more 

challenging to predict the costs and schedule at the beginning 

of the project. Early prediction of completion time is 

necessary for proper advance planning and to avoid any type 

of risk of a project.  

Software cost estimation is the set of procedures and 

techniques with a set of inputs that an organization uses to 

achieve a software cost estimate in terms of effort, manpower, 

duration etc. Generally, inaccurate estimates are because of: 

 Problem with requirements 

 System Size 

 Maintenance Issues 

 Software Process and Process Maturity 

 Project Monitoring and Control 

 Lack of historical data 

 Lack of application domain expertization 

Here, we have considered the features of the cost estimation 

problem and have proposed a novel Neuro-COCOMO model. 

The major difference between our work and previous works is 

that we have combined the COCOMO model with neural 

network technique into one scheme and have validated our 

approach with NASA projects data. 

2. BACKGROUND 

2.1 COCOMO Model 
The COCOMO model can be categorized into basic, 

intermediate, and detailed model. The basic model represents 

quick, early, and rough estimates of effort. The intermediate 

and detailed model includes more information in the form of 

cost drivers. The inputs of COCOMO model are: (1) the 

estimated size of the software product in thousands of 

Delivered Source Instructions (KDSI) adjusted for code reuse; 

(2) the project development mode given as a constant value B 

(also called the scaling factor); and (3) 15 cost drivers. The 

project development mode depends on one of the three 

categories of software development modes: organic, semi-

detached, and embedded. Each rating has a corresponding real 

number (effort multiplier), based upon the factor and the 

degree to which the factor can influence productivity [23, 26, 

29]. The estimated effort in person-months (PM) for the 

intermediate COCOMO is given as: 

                     

  

   

 

Constant A is known as productivity coefficient. The effort 

multipliers corresponding to the cost drivers are incorporated 

into the effort estimation formula by multiplying them 

together.  

Intermediate COCOMO model is the most widely used 

version. According to the researchers, intermediate COCOMO 

model has estimation accuracy that is greater than the basic 

version, and at the same time comparable to the detailed 

version. Effort and Development Time can be calculated using 

following: 
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Where EAF is Effort Adjustment Factor. The product of all 

effort multipliers results in an effort adjustment factor (EAF). 

Typical values for EAF range from 0.9 to 1.4. Coefficients 

used are shown in table 1. Values of the multipliers for the 

calculation of EAF are shown in table 2. 

 

Table 1. Intermediate COCOMO coefficients 

Project ai bi ci di 

Organic 3.2 1.05 2.5 0.38 

Semidetached 3 1.12 2.5 0.35 

Embedded 2.8 1.2 2.5 0.32 

Table 2. Values of the multipliers for calculation of Effort 

Cost Drivers 
Ratings 

Very low Low Nominal High Very High Extra High 

Product Attributes 
 

Required S/w Reliability (RELY) 0.75 0.88 1 1.15 1.4 - 

Size of Application Database (DATA) - 0.94 1 1.08 1.16 - 

Complexity of the Product (CPLX) 0.7 0.85 1 1.15 1.3 1.65 

Computer Attributes 
 

Run Time Performance Constraints (TIME) - - 1 1.11 1.3 
 

Memory Constraints (STOR) - - 1 1.06 1.21 
 

Virtual Machine Volatility (VIRT) - 0.87 1 1.15 1.3 - 

Turnaround Time (TURN) - 0.87 1 1.07 1.15 - 

Personal Attributes 
 

Analyst Capability (ACAP) 1.46 1.19 1 0.86 0.71 - 

Application Experience (AEXP) 1.29 1.13 1 0.91 0.82 - 

Programmer Capability (PCAP) 1.42 1.17 1 0.86 0.7 - 

Virtual M/c Experience (VEXP) 1.21 1.1 1 0.9 - - 

Programming Language Experience (LEXP) 1.14 1.07 1 0.95 - - 

Project Attributes 
 

Modern Programming Practices (MODP) 1.24 1.1 1 0.91 0.82 - 

Use of Software Tools (TOOL) 1.24 1.1 1 0.91 0.83 - 

Required Development Schedule (SCED) 1.23 1.08 1 1.04 1.1 - 

 

 

2.2 Artificial Neural Network and MatLab 
An Artificial Neural Network is composed of a large simple 

processor ‘units’ where each unit is having a small amount of 

local memory. These units are connected by unidirectional 

communication channels called ‘connections’, which carries 

numeric data. The units operate only on their local data and on 

the inputs they receive via the connections. In Multiple-layer 

networks, the number of layers determines the superscript on 

the weight matrices [27]. Two-layer tansig/purelin neural 

network as shown in figure 1 can approximate any function 

with a finite number of discontinuities when sufficient 

neurons in the hidden layer are given. MATLAB (MATrix 

LABoratory) is a numerical computing environment and 

fourth-generation programming language, which is developed 

by MathWorks [13]. MATLAB is an interactive system 

whose basic data element is an array that does not require 

dimensioning. MATLAB has evolved over a period of years 

with input from many users. In university environments, it is 

the standard instructional tool for introductory and advanced 

courses in mathematics, engineering, and science. 

 

Fig 1. Multilayer feed forward neural network diagram 

 

 

MATLAB is used as a tool for high-productivity research, 

development, and analysis. MATLAB features a family of 

add-on application-specific solutions called toolboxes that 

allows learning and applying specialized technology. 

Toolboxes are broad collections of MATLAB functions (M-

files) that extend the MATLAB environment to solve 

particular classes of problems.  

3. LITERATURE REVIEW 
Many cost estimation methods are available. Still research is 

going on in this area in order to find more accurate cost 

estimation method. In this section, the work done in this field 

is presented. 

Neha Sharma et. al. (2013) proposed model to assess 

parameters for NASA software project dataset using a genetic 

algorithm (GA). The result shows that the three models 

(Organic model, Semi-detached model and Embedded model) 

takes much larger time and performs inferior than proposed 

model [1]. 

A. Idri and A. Zahi (2013) evaluate and compare the classical 

analogy and fuzzy analogy for software cost estimation on a 

web software dataset. They estimated accuracy, tolerance of 

imprecision and uncertainty of cost drivers showing the 

usefulness of Fuzzy Analogy for software cost estimation [2]. 

M. Azzeh (2013) analyzes the potential of Use Case Point 

estimation model for global projects and uses this as a basis to 

discuss three proposed factors (Global team trust, Global team 

composition and Culture value) that helps in managing the 

global software project development [3]. 
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A. Kaushik et. al. (2013) mapped the COCOMO model by 

using a Feed Forward Back Propagation neural network. The 

proposed model takes identity function at the input layer and 

sigmoid function at the hidden and output layer. The model 

uses COCOMO and COCOMO NASA 2 dataset to train and 

test the network [4].  

Anupama Kaushik et. al. (2012) made an analysis to use the 

fuzzy logic in the COCOMO model and provided in-depth 

review and comparison of software effort estimation models. 

They presented an overview of fuzzy approaches in 

COCOMO’s effort estimation [5, 6].  

Surendra Pal Singh et. al. (2012) analyzes neural network 

using Bayesian Regularization training algorithm and 

produces reduced condition numbers as compared to the fuzzy 

model having membership functions. It is concluded that the 

neural network model using Bayesian Regularization training 

algorithm is a more stable model than the fuzzy model having 

membership functions [7]. 

Abeer Hamdy (2012) developed an adaptive fuzzy model for 

software effort estimation. A fuzzy logic-based component 

with COCOMO81 intermediate model is used to improve its 

accuracy and sensitivity. The proposed model uses genetic 

algorithms (GA) to tune the fuzzy sets parameters [8]. 

Swarup Kumar et. al. (2011) proposed fuzzy software cost 

estimation model that handles ambiguousness, obscurity and a 

comparison is made with other popular software cost 

estimation models. Fuzzy logic method is used to address the 

problem of obscurity and vagueness exists in software effort 

drivers to estimate software effort [9].  

Gharehchopogh (2011) made a case study for software cost 

estimation using Neural Network (NN) architecture for 

predicting necessary effort of new software. The results 

indicate that the NN model offers the very best algorithmic 

method to predict and estimate software costs [10]. 

Vishal Sharma and Harsh Kumar Verma (2010) presented an 

optimized fuzzy logic based framework for software 

development effort prediction. Fuzziness is incorporated into 

the measurements of size, mode of development for projects 

and the cost drivers contributing to the overall development 

effort [11]. 

Iman Attarzadeh et. al. (2010) proposed a model for handling 

imprecision and uncertainty by using the fuzzy logic systems. 

The proposed fuzzy logic model shows better software effort 

estimate evaluation criteria as compared to the traditional 

COCOMO. The results demonstrate that applying fuzzy logic 

method to the software effort estimation is a feasible approach 

to addressing the problem of uncertainty and vagueness [12].  

Prasad Reddy (2010) presented a Particle Swarm 

Optimization Algorithm (PSOA) to fine tune the fuzzy 

estimate for the development of software projects. The 

efficiency of the developed models is tested on 10 NASA 

software projects, and COCOMO 81 database for assessing 

software cost estimation [14]. 

J. S. Pahariya et. al. (2009) presented computational 

intelligence techniques for software cost estimation using 

Genetic Programming (GP). Three linear ensembles based on 

(i) arithmetic mean (ii) geometric mean and (iii) harmonic 

mean was implemented. Proposed recurrent architecture for 

Genetic Programming provides best results as compared to 

other techniques considered [15]. 

A. S. Andreou et. al. (2008) addresses the issue of software 

cost estimation through fuzzy decision trees to acquire 

accurate and reliable effort estimation for project resource 

allocation and control. Approximately 1000 project data 

records are selected for analysis and experimentation, with 

fuzzy decision trees [16].  

Ch. Satyananda Reddy et. al. (2008) shows the accuracy of 

the effort prediction using Radial Basis Function Neural 

Network (RBFN) i.e. used for functional approximation. The 

proposed network found that the RBFN designed with the K-

means clustering algorithm performs better in terms of cost 

estimation accuracy [17]. 

Madhu S. Nair and Jaya vijayan (2008) proposed a simplified 

neural model to optimize a project team to attain maximum 

throughput as well as to obtain high quality software. 

Artificial Neural Networks is used to train the software 

professionals and make them perform at high level of 

standards [18]. 

Mitat Uysal (2008) shows that Simulated Annealing algorithm 

can be used to estimate the optimal parameters of the effort 

components of software projects. If a larger search space is 

built, it would take more time for computations; and 

convergence of search may become very slow. Conversely, if 

the search space is set too small, the optimal parameters 

probably could not been found [19].  

Harish Mittal and Pradeep Bhatia (2007) estimated size in 

person hours by using Fuzzy logic to find fuzzy functional 

points and then the result is defuzzified to get the functional 

points. Triangular fuzzy numbers was used to represent the 

linguistic terms in Function Point Analysis (FPA) complexity 

matrices. The developed models were tested on NASA 

software projects [20, 22].  

Xishi Huang et. al. (2003, 2007) proposed a novel Neuro-

Fuzzy Constructive Cost Model (COCOMO) for software 

estimation. It allows inputs to be continuous-rating values and 

linguistic values, therefore avoiding the problem of similar 

projects having different estimated costs. Using industry 

project data, validation shows that the model greatly improves 

the estimation accuracy as compared to COCOMO model [21, 

30].  

Alaa F. Sheta (2006) estimated the effort required for the 

development of software projects using Genetic Algorithms 

(GAs). The proposed model structure was tested on NASA 

software project dataset. A modified version of the COCOMO 

model is provided to explore the effort computation [24]. 

Moataz A. Ahmed et. al. (2005) predicted software effort 

using an adaptive fuzzy logic framework. In the framework, 

the training and adaptation algorithms tolerates imprecision, 

explains prediction rationale through rules, incorporates 

experts knowledge, offers transparency in the prediction 

system, and could adapt to new environments as data for the 

new environment becomes available [25]. 

A. Idri et. al. (2004) presented the cost estimation models 

based on artificial neural networks. The COCOMO'81 dataset 

was used to train and test the Radial Basis Function network 

(RBFN). The fuzzy rules express the information encoded in 

the architecture of the network [28]. 

S. Vijayakumar (1997) presented justification of the 

requirement for a database as an aid to resource estimations 

for Ministry of Defence Procurement Executive software 

intensive projects. The research was initiated to identify and 

analyse the variables which influence the activities that 
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constitute software development and determine the cost of 

software [31].  

Xiangzhu Gao  and B. Lo (1996) examines the special 

characteristics of Computer Assisted Learning (CAL) systems 

and analyzes the additional considerations needed if Function 

point analysis (FPA) is used to size CAL systems for effort 

estimation. Real world data was used to test the model [32]. 

J. E. Matson et. al. (1994) presented an assessment of several 

published statistical regression models that relate software 

development effort to software size measured in function 

points. The research describes appropriate statistical 

procedures in the context of a case study based on function 

point data for 104 software development projects and 

discusses limitations of the resulting model in estimating 

development effort [33].  

A. R. Venkatachalam (1993) used an artificial neural network 

approach to model the software cost estimation expertise and 

results was compared with the COCOMO model [34]. 

4. RESEARCH METHODOLOGY 
Through a detailed literature review, the parameters that affect 

the cost of a project, the methods developed earlier for 

estimation, their good practices and bad practices has been 

discussed in detail. COCOMO which is the most popular tool 

for estimating software cost and uses lines of code to assess 

software size has been discussed. A COCOMO intermediate 

model is implemented with multiple projects for the said 

problem. This model is rectified in the form of Neural 

Network model and then a detailed comparison between the 

planned effort and actual effort has been made.  

Data for analysing and implementing cost estimation model is 

derived from NASA projects. From where, input data is 

obtained in the form of various parameter values of 

COCOMO-Intermediate model with actual effort derived 

from multiple projects. A Neural Network is made to set the 

values of parameters with planned effort and actual effort. An 

artificial neural network is modelled as a massively parallel-

interconnected network of elementary processors or neurons. 

It has been shown that a three-layer feed forward network can 

generate arbitrary complex decision regions. The multi-

layered neural networks operate in two modes: Training and 

testing. In the training mode, a set of training data is used to 

adjust the weights of the network interconnections so that the 

network responds in a specified manner. In the testing mode, 

the trained network is evaluated by the test data which 

comprise of data from NASA projects. Evaluation criteria of 

software effort estimation include [4, 5, 6]: 

                             

    
         

     
      

                             
      

          
 

                                   
      

 
     

                                       

 
 

 
 

      

   
 

Where E,    is Estimated Effort and Actual Effort respectively. 

A model provides better estimation which is having higher 

VAF, lower BRE, lower MRE and lower MMRE. 

Input data (60 nos) is taken from the NASA projects having 

COCOMO attribute values with KLOC and actual Effort. It is 

in the form of: 

 Nominal,High,Very_High,Nominal,Nominal,Low,Nominal

,High,Nominal,Very_High,Low,Nominal,High,Nominal,Lo

w,70,278 

 Very_High,High,High,Very_High,Very_High,Nominal,No

minal,Very_High,Very_High,Very_High,Nominal,High,Hi

gh,High,Low,227,1181 

Back Propagation Neural Network is created using the 

following function: 

net=newff(input',out_data',16,{},'trainlm'); 

The input data is fed into Neural Network for training and is 

implemented using the values as shown in table 3. For testing 

Neural Network, test data is taken from the NASA projects. 

Table 3. Experimental values taken for implementation 

Parameter Values 

Convergence Objective 0.01 

Learning rate 0.005 

Training method used trainlm (Levenberg-Marquardt) 

No. of training data 60 

No. of testing data 27 

No. of epoch taken to 

converge 

2000 

Gradient 1.04 

 

5. RESULT ANALYSIS 
Proposed model provides the estimated effort, development 

time, balance relative error, magnitude of relative error w.r.t. 

KLOC and actual effort as shown in table 4. A graph showing 

planned effort, actual effort and development time is shown in 

figure 2 where x axis represents KLOC and y axis represents 

Effort with Time. 

 

Table 4. Estimated Effort, Development Time, evaluation parameters on NASA Projects 

S. No. KLOC Actual Effort Estimated Effort Dev. Time BRE MRE % 

1 70 278 278 17.9197 0.0002 0.0168 

2 227 1181 1236.7 30.2153 0.0471 4.5005 

3 177.9 1248 1202.7 29.9226 0.0376 3.7634 

4 115.8 480 539.8 22.6058 0.1246 11.0767 

5 29.5 120 98.2 14.2883 0.2217 22.1708 

6 19.7 60 64.3 12.1623 0.0714 6.6615 

7 66.6 300 290.5 18.199 0.0327 3.2662 
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8 5.5 18 16.8 7.3102 0.069 6.9033 

9 10.4 50 32.9 9.4258 0.5212 52.1193 

10 14 60 44.9 10.6127 0.336 33.6029 

11 16 114 75.1 12.9012 0.5185 51.8476 

12 6.5 42 30.2 9.1281 0.3904 39.0416 

13 13 60 54.4 11.4137 0.1032 10.3222 

14 8 42 32.7 9.4036 0.2858 28.5751 

15 90 450 360.5 19.6267 0.2484 24.8352 

16 15 90 54.9 11.4549 0.6392 63.9215 

17 38 210 151 16.8231 0.3911 39.1109 

18 10 48 28.1 8.8806 0.7082 70.825 

19 161.1 815 862.2 26.6315 0.0579 5.4699 

20 48.5 239 182.7 18.0878 0.3083 30.8277 

21 32.6 170 120.4 15.4365 0.4122 41.2216 

22 12.8 62 45.1 10.6304 0.3745 37.4523 

23 15.4 70 54.8 11.4445 0.278 27.8003 

24 16.3 82 58.1 11.7068 0.4104 41.0417 

25 35.5 192 131.6 15.9704 0.4585 45.8452 

26 25.9 117.6 85.7 13.5653 0.3726 37.2593 

27 24.6 117.6 81.2 13.2894 0.4489 44.8854 

28 7.7 31.2 24 8.3605 0.3015 30.1483 

29 9.7 25.2 30.5 9.1674 0.2123 17.5123 

30 2.2 8.4 6.4 5.0716 0.3057 30.5674 

31 3.5 10.8 10.5 6.1039 0.031 3.0983 

32 8.2 36 25.6 8.573 0.4057 40.5715 

33 66.6 352.8 290.5 18.199 0.2144 21.441 

34 150 324 491.4 21.8753 0.5168 34.0706 

35 100 360 418.2 20.6741 0.1617 13.9177 

36 100 215 475.9 21.6304 1.2134 54.8208 

37 100 360 200 15.971 0.7996 79.9629 

38 15 48 25.9 8.6109 0.8527 85.2665 

39 32.5 60 117.5 15.2931 0.9576 48.9176 

40 31.5 60 62.7 12.0448 0.0444 4.2477 

41 6 24 9.9 5.9741 1.4244 142.4398 

42 11.3 36 25.2 8.521 0.4284 42.8433 

43 20 72 28.5 8.9316 1.5241 152.4079 

44 20 48 35 9.6583 0.3697 36.9655 

45 7.5 72 42.1 10.3571 0.7095 70.9481 

46 302 2400 2419.3 30.2497 0.008 0.7978 

47 370 3240 4068.6 35.7241 0.2557 20.3648 

48 219 2120 1509.6 32.3997 0.4044 40.4357 

49 50 370 234.2 19.8771 0.5801 58.0133 

50 101 750 602.7 23.495 0.2444 24.4395 

51 190 420 436.9 20.9935 0.0403 3.8749 

52 47.5 252 158.1 17.1225 0.5936 59.3604 

53 21 107 146.6 16.6383 0.3704 27.0293 

54 423 2300 1731.7 27.18 0.3282 32.8189 

55 79 400 279.8 17.9618 0.4295 42.9463 

56 284.7 973 1353.8 31.1874 0.3913 28.126 

57 282.1 1368 1139.6 29.3628 0.2005 20.0467 

58 78 571.4 548.7 22.7349 0.0415 4.1463 

59 11.4 98.8 57.3 11.64 0.7252 72.5153 

60 19.3 155 99.5 14.361 0.5571 55.7103 

 

Value of VAF %=93.5542, MMRE=0.3642 
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Figure 2. Graph showing Planned Effort vs. Actual Effort 

with Development Time. 

6. CONCLUSION & FUTURE SCOPE 
In this paper, we have analyzed and studied the software cost 

estimation model using COCOMO model based on 

calculating Planned Effort and Development time. The output 

values are calculated through various attribute values lying 

between very low to very high. Hereby, in the research work 

we have done a detailed literature review of the cost 

estimation models developed earlier. A detailed comparison 

between planned effort and actual effort has been shown 

through a graph by applying input values obtained from 

NASA projects. The work done shows how much planned 

effort differs from the actual effort on the basis of realistic 

values obtained. We have proposed a model that uses a Neural 

Network which takes input values obtained through 

COCOMO model and gives estimated effort and development 

time. The proposed model may benefit the project manager to 

provide more realistic estimate for the project effort and 

development time that implies software cost. Hence, a 

software cost estimation model has been proposed to give cost 

using neural network technique. 

Although proposed model can be used for all type of 

COCOMO modes, still there is a scope of implementing the 

model for all type of modes. For this implementation, some 

valid data is required like the data used in our proposed 

model. In the future, we are going to extend the model for 

other type of modes and optimize the cost estimation using 

Genetic Algorithms and Fuzzy techniques.  
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