
International Journal of Computer Applications (0975 – 8887)

Volume 98– No.19, July 2014

27

Comparison of Cache Page Replacement Techniques to

Enhance Cache Memory Performance

Pancham
M.Tech, Student

IET Alwar, Rajsthan, India

Deepak Chaudhary
Assistant Professor

IET Alwar, Rajsthan, India

Ruchin Gupta
Assistant Professor

AKGEC, Ghaziabad, India

ABSTRACT
Caching is a very important technique for improving the

computer system performance, it employed to hide the latency

gap between memory and the CPU by exploiting locality in

memory accesses. In modern computer architectures a page

miss cause the several hundred CPU cycles [1, 15]. In a

memory hierarchy, a cache performs faster than auxiliary

storage, but is more expensive. Some important page

replacement policies such as FIFO, LRU, RANDOM and

SECOND CHANCE are used in cache memory to replace the

page whenever it is needed. So page replacement policy

severely affects the performance of cache memory. So here our

purpose is to simulate FIFO, LRU, RANDOM and SECOND

CHANCE policies and to compare the results for various

applications such as bzip, swim and gcc traces (taken from

SPEC2000 benchmark for simulation) etc. using MS-Excel [3,

10, 12] .

General terms
Computer Architecture, Operating system, cache memory, main

memory and Performance evaluation of system

Keywords

Cache performance, page replacement policies, page faults,

MS-Excel, C-language

1. INTRODUCTION

In modern computer Architecture Page replacement is an

important part of an operating system. When we needed a page,

it is searched in translation look aside buffers (TLB) or page

tables and if found missing from main memory a page fault will

be occur. The size of the cache memory smaller than auxiliary

memory [4, 5]. The role of the page replacement is to identify

the page to evict from main memory when page fault occur and

replace it by new page from disk than contains requested datum

or instruction. The problem is very common to the block

replacement in cache memories but the page replacement is

more critical as page transfers from disk to memory with

respect magnitudes slower than block transfers from main

memory to cache memory. Many page replacement policies are

derived and tested. Some of them include Fist-in-First-out

(FIFO), least recently used (LRU), RANDOM and SECOND

CHANCE. Good page placement policies reduced the page

faults cost resulting in higher performance. Since the more page

faults the operating system encounters the more resources are

wasted in paging in/out instead of doing useful work. And

resulting it causes the serious thrashing problems. In this paper,

we present the relative competitive analysis of the following

page replacement policies including FIFO, LRU, RANDOM

and SECOND CHANCE. The relative competitive

performances of the page replacement policy are relative to the

performance of another policy [14, 19].

2. REPLACEMENT ALGORITHMS
Let us briefly explain the basic definition of the replacement

policies for the preparation of this paper [12, 19]:

2.1 First in, First out (FIFO)
In first-in-first out page replacement policy, when a page is

needed,

the page that has been in memory for the longest period of time

is chosen to replace. The rationale is that a page that has only

recently been swapped in will have a higher probability of

being used again soon. However a frequently used page still

gets swapped out when it gets to be old enough, even though it

will have to be brought in again immediately [8, 19].

2.2 Least Recently Used (LRU)
Least recently used page replacement policy is based on past

aspect is a mirror of the pattern in the near future. Pages that

have been accessed recently are likely to continue to be

accessed and ought to be kept in physical memory. An allocated

memory page of a program will become a replacement

candidate if the page has not been accessed for a certain period

of time under two conditions: (1) the program does not need to

access the page; and (2) the program is conducting page faults

(a sleeping process) so that it is not able to access the page

although it might have done so without the page faults.

However, LRU page re- placement implementations do not

discriminate between two types of LRU pages and treat them

equally. So it means that LRU can be made closer to optimal

policy by making improvement into that [9, 19].

2.3 Random Replacement (RR)
It randomly selects the particular page and discards it to make

space when necessary. This algorithm does not require any

information to access history. For its simplicity it is used for

ARM processors. Random replacement policy randomly

replaces the page in memory when it needed. This eliminates

the overhead cost to tracking the page references. Usually it is

better than FIFO policy and for looking memory reference it is

better than LRU but generally LRU perform better result in

practice. Generally OS/390 uses LRU replacement but when

LRU performance degenerate it fall back to Random

replacement. Intel i860 processor used a random replacement

policy [11, 19].

2.4 Second Chance Replacement (SR)
In Second Chance page replacement policy, the pages for

removal are consider in a round robin manner, and a page that

has been accessed between consecutive considerations will not

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.19, July 2014

28

be replaced. The page replaced is the one that considered in a

round robin matter has not been accessed since its last

consideration[16, 17].

Second Chance Implementation algorithm:

1. Add a "second chance" bit to each memory frame.

2. Each time a memory frame is referenced, set the "second

chance" bit to ONE (1) - this will give the frame a second

chance.

3. A new page read into a memory frame has the second

chance bit set to ZERO (0)

4. When you need to find a page for removal, look in a round

robin manner in the memory frames:

 If the second chance bit is ONE, reset its second

chance bit (to ZERO) and continue.

 If the second chance bit is ZERO, replace the page in

that memory frame.

3. SIMULATOR
The proper choice of a page replacement algorithm is actually quite

a complex matter. To make the proper choice, we must know

something about real applications. How do they really access

memory? Do they generate many page accesses in order? To answer

these questions, we must see what real applications do. In this, paper

evaluates how real applications respond to a variety of page

replacement algorithms. Modifying a real operating system to use

different page replacement algorithms is quite a technical mess, so it

will make this by simulation. We write a program that simulates the

behaviour of a memory system using a variety of page replacement

algorithms. We obtain memory traces from real applications so

that we can evaluate algorithm properly. Here the purpose is to build

a simulator that reads a memory trace and simulates the action of a

cache memory with a single level page table in single

programming model. The simulator keeps track of what pages are

loaded into memory [6]. As it processes each memory event from the

trace, it should check to see if the corresponding page is loaded.

If not, it should choose a page to remove from memory. Assume

that all pages and page frames are 4 KB etc. It implements

different page replacement algorithms such as FIFO, LRU

RANDOM and SECOND CHANCE. The simulator is written

in plain C in MS-DOS environment It assumes that reference

string is containing six thousands references stored in an array.

Numbers of frames are varied and no of page faults are

calculated. Reference strings of different applications are taken

as input and numbers of page faults are calculated and graphs

are plotted in MS-EXCEL between no. of frames vs. no. of page

faults [2, 3, 18].

3.1 Memory Traces
Each trace obtained from Internet is a real recording of a

running program, taken from the SPEC2000 benchmarks. Real

traces are enormously big having billions and billions of

memory accesses. However, a relatively small trace will be

more than enough. Each trace only consists of one million

memory accesses taken from the beginning of each program.

Traces are gcc.trace.gz, swim.trace.gz , bzip.trace.gz Each trace

is a series of lines, each listing hexadecimal memory addresses

followed by R or W to indicate a read or a write.

For example, gcc.trace trace starts like this:

0041f7a0R 13f5e2c0R 05e78900R 004758a0R

4. SIMULATION RESULTS
We executed several programs for 9 different no. of frame size

and compared it with DIRECT, FIFO, LRU, RANDOM and

SECOND CHANCE page replacement policies. As we

compared the page faults for above policies in table 10, table 11,

and table12 for standard traces bzip, swim and gcc the

performance of the policies are varied. We assume that all

pages, frames size are 3KB and 1KB etc. and reference string of

size 3 thousand [7,13].

Table 1 (for Direct mapping)

Figure 1 (for Direct mapping)

Table 2 (for FIFO associative mapping)

No. of

frames

Page faults for

bzip.txt

Page faults for

swim.txt

Page faults for

gcc.txt

3 719 1397 1826

7 579 1131 1415

15 472 832 1121

31 378 319 928

63 329 125 858

127 278 82 828

255 244 82 803

511 244 82 575

1023 244 82 571

 Figure 2 (for FIFO associative mapping)

No. of

frames

Page faults for

bzip.txt

Page faults for

swim.txt

Page faults for

gcc.txt

3 811 1404 1931

7 696 1113 1519

15 580 849 1302

31 465 480 1141

63 393 367 993

127 331 340 878

255 300 219 787

511 282 218 716

1023 265 179 672

http://www.cse.nd.edu/~dthain/courses/cse341/spring2005/projects/memory/gcc.trace.gz

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.19, July 2014

29

Table 3 (for FIFO Set-associative mapping)

No. of

frames

Page faults

for bzip.txt

Page faults for

swim.txt

Page faults for

gcc.txt

3 719 1397 1826

7 600 1142 1428

15 483 765 1145

31 402 355 977

63 352 221 905

127 292 132 838

255 259 98 756

511 248 86 636

1023 244 82 585

Figure 3 (for FIFO Set-associative mapping)

Table 4 (for LRU associative mapping)

No. of

frames

Page faults for

bzip.txt

Page faults

for swim.txt

Page faults

for gcc.txt

3 682 1143 1737

7 549 1009 1272

15 447 687 1007

31 368 173 886

63 313 95 849

127 275 82 819

255 244 82 796

511 244 82 573

1023 244 82 571

Figure 4 (for LRU associative mapping)

No. of

frames

Page faults

for bzip.txt

Page faults for

swim.txt

Page faults for

gcc.txt

3 682 1143 1737

7 571 995 1310

15 457 660 1054

31 378 263 938

63 335 179 888

127 287 117 830

255 257 91 752

511 247 84 630

1023 244 82 583

Table 5 (for LRU Set-associative mapping)

Figure 5 (for LRU Set-associative mapping)

Table 6 (for RANDOM associative mapping)

No. of

frames

Page faults for

bzip.txt

Page faults for

swim.txt

Page faults for

gcc.txt

3 760 1425 1846

7 620 1127 1475

15 545 713 1278

31 449 304 1140

63 347 118 961

127 274 82 836

255 244 82 731

511 244 82 574

1023 244 82 571

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.19, July 2014

30

Figure 6 (for RANDOM associative mapping)

Table 7 (for RANDOM Set-associative mapping)

No. of frames

Page faults for

bzip.txt

Page faults for

swim.txt

Page faults

for gcc.txt

3 760 1425 1846

7 645 1116 1478

15 497 703 1216

31 438 338 1041

63 353 189 977

127 302 153 870

255 257 93 747

511 246 86 631

1023 244 82 578

Figure 7 (for RANDOM Set-associative mapping)

Table 8 (for SECOND CHANCE associative mapping)

No. of frames

Page faults for

bzip.txt

Page faults

for swim.txt

Page faults

for gcc.txt

3 688 1155 1699

7 558 979 1253

15 446 617 995

31 367 168 893

63 317 91 849

127 281 82 820

255 244 82 693

511 244 82 574

1023 244 82 571

Figure 8 (for SECOND CHANCE associative mapping)

Table 9 (for SECOND CHANCE Set- associative mapping)

No. of frames

Page faults for

bzip.txt

Page faults

for swim.txt

Page faults

for gcc.txt

3 688 1155 1699

7 568 979 1324

15 473 586 1095

31 399 277 968

63 357 206 903

127 312 121 852

255 278 101 761

511 259 100 686

1023 256 93 629

Figure 9 (for SECOND CHANCE Set-associative mapping)

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.19, July 2014

31

Figure 10 (for bzip application)

Table11 (Using swim application)

No. of

frames

DIRECT

No. of Page

faults using

FIFO

Associative

No. of Page

faults using

FIFO Set

Associative

No. of Page

faults using

LRU

Associative

No. of Page

faults using

LRU Set

Associative

No. of Page

faults using

Random

Associative

No. of Page

faults using

Random

Set

Associative

No. of Page

faults using

Second

Chance

Associative

No. of Page

faults using

Second

Chance Set

Associative

3 1404 1397 1397 1143 1143 1425 1425 1155 1155

7 1113 1131 1142 1009 995 1127 1116 979 979

15 849 832 765 687 660 713 703 617 586

31 480 319 355 173 263 304 338 168 277

63 367 125 221 95 179 118 189 91 206

127 340 82 132 82 117 82 153 82 121

255 219 82 98 82 91 82 93 82 101

511 218 82 86 82 84 82 86 82 100

1023 179 82 82 82 82 82 82 82 93

Table10 (Using bzip application)

No. of

frames
DIRECT

No. of Page

faults using

FIFO

Associative

No. of

Page faults

using

FIFO Set

Associative

No. of Page

faults using

LRU

Associative

No. of Page

faults using

LRU Set

Associative

No. of

Page faults

using

Random

Associative

No. of Page

faults using

Random

Set

Associative

No. of Page

faults using

Second

Chance

Associative

No. of Page

faults using

Second

Chance Set

Associative

3 811 719 719 682 682 760 760 688 688

7 696 579 600 549 571 620 645 558 568

15 580 472 483 447 457 545 497 446 473

31 465 378 402 368 378 449 438 367 399

63 393 329 352 313 335 347 353 317 357

127 331 278 292 275 287 274 302 281 312

255 300 244 259 244 257 244 257 244 278

511 282 244 248 244 247 244 246 244 259

1023 265 244 244 244 244 244 244 244 256

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.19, July 2014

32

Figure 11 (for swim application)

Table 12 (Using gcc application)

No. of

frames
DIRECT

No. of Page

faults

using

FIFO

Associative

No. of

Page faults

using

FIFO Set

Associativ

e

No. of Page

faults using

LRU

Associative

No. of Page

faults

using LRU

Set

Associative

No. of Page

faults

using

Random

Associative

No. of Page

faults using

Random Set

Associative

No. of

Page

faults

using

Second

Chance

Associativ

e

No. of

Page

faults

using

Second

Chance

Set

Associativ

e

3 1931 1826 1826 1737 1737 1846 1846 1699 1699

7 1519 1415 1428 1272 1310 1475 1478 1253 1324

15 1302 1121 1145 1007 1054 1278 1216 995 1095

31 1141 928 977 886 938 1140 1041 893 968

63 993 858 905 849 888 961 977 849 903

127 878 828 838 819 830 836 870 820 852

255 787 803 756 796 752 731 747 693 761

511 716 575 636 573 630 574 631 574 668

1023 672 571 585 571 583 571 578 571 629

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.19, July 2014

33

5. FUTURE SCOPE
 Simulation can be used for multiprogramming model

of operating system.

 Simulation study can be developed to consider

complete traces to produce more realistic results.

 Large size of main memory and cache memory can

be considered in simulation study.

 This kind of simulation study can be used to compare

latest page replacement techniques in cache memory

in future.

 Further simulation study can be used to include

multiple cache memory levels and execution

environment.

 Simulation study proposed in the report provides

useful conclusions for the design of future

replacement algorithm

6. CONCLUSION
It is observed that traces bzip, swim and gcc exhibits different

memory access pattern that’s why producing different number

of page replacement. In all the cache architectures the gcc

produces the largest number of page replacement perhaps due

to irregular memory access pattern while bzip produces

minimum number of page replacement, initially but swim

trace gives a rapid decrease in the number of page

replacement with increase in number of frames. It is observed

that LRU page replacement in associative and set associative

gives better performance than other policies in other cache

architectures for all the memory traces that’s why it can be

concluded that SECOND CHANCE associative and LRU

associative performance is better than FIFO and RANDOM

policies. It is also observed that the performance of SECOND

CHANCE associative in cache model is slightly better than

LRU in associative cache model.

7. ACKNOWLEDGEMENTS
I am thankful to Mr. Ruchin Gupta and my guide Mr. Deepak

Chaudhary for their support and cooperation.

8. REFERENCES
[1]. Jan Reineke Daniel Grund “Relative Competitive

Analysis of Cache Replacement Policies” LCTES’08,

June 12–13, 2008, Tucson, Arizona, USA. Copyrightc

2008 ACM.

[2]. S. Jiang, and X. Zhang, “LIRS: An Efficient Policy to

improve Buffer Cache Performance”,IEEE Transcations

on Computers, pp. 939-952, 2005.

[3] S. Albers, S. Arora, and S. Khanna, “Page replacement for

general caching problems,” Proceedings of the 10th

Annual ACM–SIAM Symposium on Discrete Algorithms,

pp. 31–40, 1999.

[4]. Hameed, F., L. Bauer and J. Henkel, 2013. “Dynamic

cache management in multi-core architectures through

run-time adaptation. Proceedings of the Design,

Automation and Test” in Europe Conference and

Exhibition, Mar. 12-16, IEEE Xplore Press, Dresden,

pp: 485-490. DOI: 10.1109/DATE.2012.6176518

[5]. S.Irani, “Page Replacement with Multi-Size Pages and

Applications to Web Caching,” Proc.29th Ann, ACM

symp. Theory of Computing, pp. 701-710, 1997. [6] E. J.

O’Neil, P. E. O’Neil, and G. Weikum, “an Optimality

Proof of the LRU-K page Replacement Algorithm.”

J.ACM, vol. 46, no.1, pp. 92-112, 1999.

[6].Debabala Swain, Bijay K Paikray, Debabrata

Swain,“AWRP: Adaptive Weight Ranking Policy for

Improving Cache Performance”, Journal of Computing,

vol-3, Issue-2, February 2011.

[7]. Kaveh Samiee and GholamAli Rezai Rad, “WRP:

Weighting Replacement Policy to Improve Cache

Performance,” International Symposium on Computer

Science and its Application, IEEE, 2008.

[8].Yogesh Niranjan, Shailendra Tiwari “Design and

Implementation of Page Replacement Algorithm for

Web Proxy Caching”, Int.J.Computer Technology &

Applications,Vol 4 (2),221-225 IJCTA | Mar-Apr 2013.

[9].C. Aggarwal, J. L. Wolf, and P. S. Yu. “Caching on the

WorldWideWeb,” In IEEE Transactions on

Knowledge and Data Engineering, vol. 11, pp. 94-107,

1999.

[10].Nimrod Megiddo, Dharmendra, S. Modha IBM Almaden

Research Center Outperforming LRU with an Adaptive

Replacement Cache Algorithm, Published by the IEEE

Computer Society, 0018-9162/04/$20.00 © 2004 IEEE.

[11]. S.M. Shamsheer Daula, Dr. K.E Sreenivasa Murthy,

G Amjad Khan “A Throughput Analysis on Page

Replacement Algorithms in Cache Memory

Management”, International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622

Vol. 2, Issue 2, pp.126-130.

[12].John Dilley, Martine Arlitt and Stephane Perret

“Enhancement and Validation of Squid‘s Cache

Replacement Policy” Internet Systems and Applications

Laboratory HP Laboratories Palo Alto HPL- 1999-69,

May 2009.

[13].Michael Factor, Assaf Schuster, Gala Yadgar,

“Multilevel Cache Management Based on Application

Hints” Technion- Computer Science Department

Technical Report CS-2006.

[14]. Amit S. Chavan, Kartik R. Nayak, Keval D. Vora,

Manish D. Purohit and Pramila M. Chawan “A

Comparison of Page Replacement Algorithms” IACSIT

Vol.3, No.2, April 201.

[15]. A. S. Tanenbaum and A. S. Woodhull, Operating

Systems: Design and Implementation. Prentice-Hall,

1997.

[16] Vinit A. Kakde, Sanjay K. Mishra, “ Effective Web

Cache Algorithm,” International Journal of Electronics,

Communication & Soft Computing Science and

Engineering (IJECSCSE) Volume 1, Issue 1.

[17]http://infocenter.arm.com/help/index.jsp?topic=/com.arm.

doc.set.cortexr/index.html

[18] Development of a Virtual Memory Simulator to Analyze

the Goodness of Page Replacement Algorithms Fadi N. ,

Sibai, Maria Ma, David A. Lill

[19]. Debabrata Swain, Bancha Nidhi Dash “ Analysis and

Predictability of Page Replacement Techniques towards

Optimized Performance”IRCTITC 2011 Proceedings

published in International Journal of Computer

Applications® (IJCA).

IJCATM : www.ijcaonline.org

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.cortexr/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.cortexr/index.html

