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ABSTRACT 
Caching is a very important technique for improving the 

computer system performance, it employed to hide the latency 

gap between memory and the CPU by exploiting locality in 

memory accesses. In modern computer architectures a page 

miss cause the several hundred CPU cycles [1, 15]. In a 

memory hierarchy, a cache performs faster than auxiliary 

storage, but is more expensive. Some important page 

replacement policies such as FIFO, LRU, RANDOM and 

SECOND CHANCE are used in cache memory to replace the 

page whenever it is needed. So page replacement policy 

severely affects the performance of cache memory. So here our 

purpose is to simulate FIFO, LRU, RANDOM and SECOND 

CHANCE policies and to compare the results for various 

applications such as bzip, swim and gcc traces (taken from 

SPEC2000 benchmark for simulation) etc. using MS-Excel [3, 

10, 12] .  
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1. INTRODUCTION 

In modern computer Architecture Page replacement is an 

important part of an operating system. When we needed a page, 

it is searched in translation look aside buffers (TLB) or page 

tables and if found missing from main memory a page fault will 

be occur. The size of the cache memory smaller than auxiliary 

memory [4, 5]. The role of the page replacement is to identify 

the page to evict from main memory when page fault occur and 

replace it by new page from disk than contains requested datum 

or instruction. The problem is very common to the block 

replacement in cache memories but the page replacement is 

more critical as page transfers from disk to memory with 

respect magnitudes slower than block transfers from main 

memory to cache memory. Many page replacement policies are 

derived and tested. Some of them include Fist-in-First-out 

(FIFO), least recently used (LRU), RANDOM and SECOND 

CHANCE. Good page placement policies reduced the page 

faults cost resulting in higher performance. Since the more page 

faults the operating system encounters the more resources are 

wasted in paging in/out instead of doing useful work. And 

resulting it causes the serious thrashing problems. In this paper, 

we present the relative competitive analysis of the following 

page replacement policies including FIFO, LRU, RANDOM 

and SECOND CHANCE. The relative competitive 

performances of the page replacement policy are relative to the 

performance of another policy [14, 19].  

 

2. REPLACEMENT ALGORITHMS  
Let us briefly explain the basic definition of the replacement 

policies for the preparation of this paper [12, 19]: 

2.1 First in, First out (FIFO) 
In first-in-first out page replacement policy, when a page is 

needed,  

the page that has been in memory for the longest period of time 

is chosen to replace. The rationale is that a page that has only 

recently been swapped in will have a higher probability of 

being used again soon. However a frequently used page still 

gets swapped out when it gets to be old enough, even though it 

will have to be brought in again immediately [8, 19]. 

 

2.2 Least Recently Used (LRU)  
Least recently used page replacement policy is based on past 

aspect is a mirror of the pattern in the near future. Pages that 

have been accessed recently are likely to continue to be 

accessed and ought to be kept in physical memory. An allocated 

memory page of a program will become a replacement 

candidate if the page has not been accessed for a certain period 

of time under two conditions: (1) the program does not need to 

access the page; and (2) the program is conducting page faults 

(a sleeping process) so that it is not able to access the page 

although it might have done so without the page faults. 

However, LRU page re- placement implementations do not 

discriminate between two types of LRU pages and treat them 

equally. So it means that LRU can be made closer to optimal 

policy by making improvement into that [9, 19].  

 

2.3 Random Replacement (RR) 
It randomly selects the particular page and discards it to make 

space when necessary. This algorithm does not require any 

information to access history. For its simplicity it is used for 

ARM processors. Random replacement policy randomly 

replaces the page in memory when it needed. This eliminates 

the overhead cost to tracking the page references. Usually it is 

better than FIFO policy and for looking memory reference it is 

better than LRU but generally LRU perform better result in 

practice. Generally OS/390 uses LRU replacement but when 

LRU performance degenerate it fall back to Random 

replacement. Intel i860 processor used a random replacement 

policy [ 11, 19]. 

 

2.4 Second Chance Replacement (SR) 
In Second Chance page replacement policy, the pages for 

removal are consider in a round robin manner, and a page that 

has been accessed between consecutive considerations will not 
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be replaced. The page replaced is the one that considered in a 

round robin matter has not been accessed since its last 

consideration[16, 17]. 

Second Chance Implementation algorithm: 

1. Add a "second chance" bit to each memory frame. 

2. Each time a memory frame is referenced, set the "second 

chance" bit to ONE (1) - this will give the frame a second 

chance. 

 

3. A new page read  into a memory frame has the second 

chance bit set to ZERO (0) 

4. When you need to find a page for removal, look in a  round 

robin manner in the memory frames: 

 If the second chance bit is ONE, reset its second 

chance bit (to ZERO) and continue. 

 If the second chance bit is ZERO, replace the page in 

that memory frame. 

 

3. SIMULATOR  
The proper choice of a page replacement algorithm is actually quite 

a complex matter. To make the proper choice, we must know 

something about real applications. How do they really access 

memory? Do they generate many page accesses in order? To answer 

these questions, we must see what real applications do.  In this, paper 

evaluates how real applications respond to a variety of page 

replacement algorithms. Modifying a real operating system to use 

different page replacement algorithms is quite a technical mess, so it 

will make this by simulation. We write a program that simulates the 

behaviour of a memory system using a variety of page replacement 

algorithms. We obtain memory traces from real applications so 

that we can evaluate algorithm properly. Here the purpose is to build 

a simulator that reads a memory trace and simulates the action of a 

cache memory with a single level page table in single 

programming model. The simulator keeps track of what pages are 

loaded into memory [6]. As it processes each memory event from the 

trace, it should check to see if the corresponding page is loaded. 

If not, it should choose a page to remove from memory. Assume 

that all pages and page frames are 4 KB etc. It implements 

different page replacement algorithms such as FIFO, LRU 

RANDOM and SECOND CHANCE. The simulator is written 

in plain C in MS-DOS environment It assumes that reference 

string is containing six thousands references stored in an array. 

Numbers of frames are varied and no of page faults are 

calculated. Reference strings of different applications are taken 

as input and numbers of page faults are calculated and graphs 

are plotted in MS-EXCEL between no. of frames vs. no. of page 

faults [2, 3, 18].  

 

3.1 Memory Traces  
Each trace obtained from Internet is a real recording of a 

running program, taken from the SPEC2000 benchmarks. Real 

traces are enormously big having billions and billions of 

memory accesses. However, a relatively small trace will be 

more than enough. Each trace only consists of one million 

memory accesses taken from the beginning of each program. 

Traces are gcc.trace.gz, swim.trace.gz , bzip.trace.gz Each trace 

is a series of lines, each listing hexadecimal memory addresses 

followed by R or W to indicate a read or a write.  

For example, gcc.trace trace starts like this:  

0041f7a0R 13f5e2c0R 05e78900R 004758a0R  

 

4. SIMULATION RESULTS  
We executed several programs for 9 different no. of frame size 

and compared it with DIRECT, FIFO, LRU, RANDOM and 

SECOND CHANCE page replacement policies. As we 

compared the page faults for above policies in table 10, table 11, 

and table12 for standard traces bzip, swim and gcc the 

performance of the policies are varied. We assume that all 

pages, frames size are 3KB and 1KB etc. and reference string of 

size 3 thousand [7,13]. 

Table 1 (for Direct mapping) 

 

 

 
Figure 1 (for Direct mapping) 

 

Table 2 (for FIFO associative mapping) 

 

No. of 

frames 

Page faults  for 

bzip.txt 

Page faults for 

swim.txt 

Page faults for 

gcc.txt 

3 719 1397 1826 

7 579 1131 1415 

15 472 832 1121 

31 378 319 928 

63 329 125 858 

127 278 82 828 

255 244 82 803 

511 244 82 575 

1023 244 82 571 

 

 

 
                            Figure 2 (for FIFO associative mapping) 

No. of 

frames 

Page faults  for 

bzip.txt 

Page faults for 

swim.txt 

Page faults  for 

gcc.txt 

3 811 1404 1931 

7 696 1113 1519 

15 580 849 1302 

31 465 480 1141 

63 393 367 993 

127 331 340 878 

255 300 219 787 

511 282 218 716 

1023 265 179 672 

http://www.cse.nd.edu/~dthain/courses/cse341/spring2005/projects/memory/gcc.trace.gz
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Table 3 (for FIFO  Set-associative mapping) 

 

No. of 

frames 

Page faults  

for bzip.txt 

Page faults for 

swim.txt 

Page faults for 

gcc.txt 

3 719 1397 1826 

7 600 1142 1428 

15 483 765 1145 

31 402 355 977 

63 352 221 905 

127 292 132 838 

255 259 98 756 

511 248 86 636 

1023 244 82 585 

 

 
Figure 3 (for FIFO  Set-associative mapping) 

 

Table 4 (for LRU associative mapping) 

 

No. of 

frames 

Page faults  for 

bzip.txt 

Page faults 

for swim.txt 

Page faults 

for gcc.txt 

3 682 1143 1737 

7 549 1009 1272 

15 447 687 1007 

31 368 173 886 

63 313 95 849 

127 275 82 819 

255 244 82 796 

511 244 82 573 

1023 244 82 571 

 

 

Figure 4 (for LRU associative mapping) 

No. of 

frames 

Page faults 

for bzip.txt 

Page faults for 

swim.txt 

Page faults for 

gcc.txt 

3 682 1143 1737 

7 571 995 1310 

15 457 660 1054 

31 378 263 938 

63 335 179 888 

127 287 117 830 

255 257 91 752 

511 247 84 630 

1023 244 82 583 

Table 5 (for LRU Set-associative mapping) 

Figure 5 (for LRU Set-associative mapping) 

 

Table 6 (for RANDOM associative mapping) 

No. of 

frames 

Page faults  for 

bzip.txt 

Page faults for 

swim.txt 

Page faults for 

gcc.txt 

3 760 1425 1846 

7 620 1127 1475 

15 545 713 1278 

31 449 304 1140 

63 347 118 961 

127 274 82 836 

255 244 82 731 

511 244 82 574 

1023 244 82 571 
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Figure 6 (for RANDOM associative mapping) 

 

Table 7 (for RANDOM Set-associative mapping) 

 

No. of frames 

Page faults  for 

bzip.txt 

Page faults for 

swim.txt 

Page faults 

for gcc.txt 

3 760 1425 1846 

7 645 1116 1478 

15 497 703 1216 

31 438 338 1041 

63 353 189 977 

127 302 153 870 

255 257 93 747 

511 246 86 631 

1023 244 82 578 

 

 

 
Figure 7 (for RANDOM Set-associative mapping) 

 

Table 8 (for SECOND CHANCE associative mapping) 

 

No. of frames 

Page faults  for 

bzip.txt 

Page faults 

for swim.txt 

Page faults 

for gcc.txt 

3 688 1155 1699 

7 558 979 1253 

15 446 617 995 

31 367 168 893 

63 317 91 849 

127 281 82 820 

255 244 82 693 

511 244 82 574 

1023 244 82 571 

 

 

Figure 8 (for SECOND CHANCE associative mapping) 

 

Table 9 (for SECOND CHANCE Set- associative mapping) 

 

No. of frames 

Page faults  for 

bzip.txt 

Page faults 

for swim.txt 

Page faults 

for gcc.txt 

3 688 1155 1699 

7 568 979 1324 

15 473 586 1095 

31 399 277 968 

63 357 206 903 

127 312 121 852 

255 278 101 761 

511 259 100 686 

1023 256 93 629 

 

 

Figure 9 (for SECOND CHANCE Set-associative mapping) 
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Figure 10 (for  bzip application) 

 

    
Table11 (Using swim application) 

   

No. of 

frames 

 

DIRECT 

No. of Page 

faults using 

FIFO 

Associative 

No. of Page 

faults using 

FIFO Set 

Associative 

No. of Page 

faults using 

LRU 

Associative 

No. of Page 

faults using 

LRU Set 

Associative 

No. of Page 

faults using 

Random 

Associative 

No. of Page 

faults using 

Random 

Set 

Associative 

No. of Page 

faults using 

Second 

Chance 

Associative 

No. of Page 

faults using 

Second 

Chance Set 

Associative 

3 1404 1397 1397 1143 1143 1425 1425 1155 1155 

7 1113 1131 1142 1009 995 1127 1116 979 979 

15 849 832 765 687 660 713 703 617 586 

31 480 319 355 173 263 304 338 168 277 

63 367 125 221 95 179 118 189 91 206 

127 340 82 132 82 117 82 153 82 121 

255 219 82 98 82 91 82 93 82 101 

511 218 82 86 82 84 82 86 82 100 

1023 179 82 82 82 82 82 82 82 93 

    
Table10 (Using bzip application) 

   

No. of 

frames 
DIRECT 

No. of Page 

faults using 

FIFO 

Associative 

No. of 

Page faults 

using 

FIFO Set 

Associative 

No. of Page 

faults using 

LRU 

Associative 

No. of Page 

faults using 

LRU Set 

Associative 

No. of 

Page faults 

using 

Random 

Associative 

No. of Page 

faults using 

Random 

Set 

Associative 

No. of Page 

faults using 

Second 

Chance 

Associative 

No. of Page 

faults using 

Second 

Chance Set 

Associative 

3 811 719 719 682 682 760 760 688 688 

7 696 579 600 549 571 620 645 558 568 

15 580 472 483 447 457 545 497 446 473 

31 465 378 402 368 378 449 438 367 399 

63 393 329 352 313 335 347 353 317 357 

127 331 278 292 275 287 274 302 281 312 

255 300 244 259 244 257 244 257 244 278 

511 282 244 248 244 247 244 246 244 259 

1023 265 244 244 244 244 244 244 244 256 
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Figure 11 (for swim application) 

 

    
Table 12 (Using gcc application) 

   

No. of 

frames 
DIRECT 

No. of Page 

faults 

using 

FIFO 

Associative 

No. of 

Page faults 

using 

FIFO Set 

Associativ

e 

No. of Page 

faults using 

LRU 

Associative 

No. of Page 

faults 

using LRU 

Set 

Associative 

No. of Page 

faults 

using 

Random 

Associative 

No. of Page 

faults using 

Random Set 

Associative 

No. of 

Page 

faults 

using 

Second 

Chance 

Associativ

e 

No. of 

Page 

faults 

using 

Second 

Chance 

Set 

Associativ

e 

3 1931 1826 1826 1737 1737 1846 1846 1699 1699 

7 1519 1415 1428 1272 1310 1475 1478 1253 1324 

15 1302 1121 1145 1007 1054 1278 1216 995 1095 

31 1141 928 977 886 938 1140 1041 893 968 

63 993 858 905 849 888 961 977 849 903 

127 878 828 838 819 830 836 870 820 852 

255 787 803 756 796 752 731 747 693 761 

511 716 575 636 573 630 574 631 574 668 

1023 672 571 585 571 583 571 578 571 629 
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5. FUTURE SCOPE 
 Simulation can be used for multiprogramming model 

of operating system. 

 Simulation study can be developed to consider 

complete traces to produce more realistic results. 

 Large size of main memory and cache memory can 

be considered in simulation study. 

 This kind of simulation study can be used to compare 

latest page replacement techniques in cache memory 

in future. 

 Further simulation study can be used to include 

multiple cache memory levels and execution 

environment. 

 Simulation study proposed in the report provides 

useful conclusions for the design of future 

replacement algorithm 

 

6. CONCLUSION  
It is observed that traces bzip, swim and gcc exhibits different 

memory access pattern that’s why producing different number 

of page replacement. In all the cache architectures the gcc 

produces the largest number of page replacement perhaps due 

to irregular memory access pattern while bzip produces 

minimum number of page replacement, initially but swim 

trace gives a rapid decrease in the number of page 

replacement with increase in number of frames. It is observed 

that LRU page replacement in associative and set associative 

gives better performance than other policies in other cache 

architectures for all the memory traces that’s why it can be 

concluded that SECOND CHANCE associative and LRU 

associative performance is better than FIFO and RANDOM 

policies. It is also observed that the performance of SECOND 

CHANCE associative in cache model is slightly better than 

LRU in associative cache model. 
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