
International Journal of Computer Applications (0975 – 8887)

Volume 98– No.16, July 2014

18

Design and Analysis of Adaptive Three Step Search

Block Matching Criterion in Video Data

Awanish Kr. Mishra

Pranveer Singh Institute of Technology, Kanpur

Amod Tiwari, Ph.D

Bhabha Institute of Technology, Kanpur

ABSTRACT
Video Compression has played an important role in

Multimedia data storage and transmission. Video

compression techniques removes spatial as well as temporal

redundancy using intra-frame and inter-frame coding

respectively. A large level of compression can be achieved

through inter-frame coding. In this paper, three step search with

track knowledge has been analyzed by comparing its

performance with original three step search using matching

criterion in the temporal coding of video signal, which are

Minimum Mean Absolute Error, Vector Matching Criterion and

Smooth Constrained - Mean Absolute Error. Three step search

with track knowledge has been proved more effeicient and

effective for all type of video data.

Keywords
Motion Estimation, Search Parameter, Motion

Compensation, MME, Motion Vector

1. INTRODUCTION
Video data has spatial as well as temporal redundancy and are

removed using Video Compression Techniques [1]. Inter-frame

predictive coding is used to eliminate the large amount of temporal

and spatial redundancy that exists in video sequences and helps in

compressing them. In conventional predictive coding the difference

between the current frame and the predicted frame (based on

the previous frame) is coded and transmitted.

The encoding side estimates the motion in the current frame

with respect to a previous frame. A motion compensated [2] image

for the current frame is then created that is built of blocks of image

from the previous frame. The motion vectors for blocks used for

motion estimation are transmitted, as well as the difference

of the compensated image with the current frame is also JPEG

encoded and sent. The encoded image that is sent is then decoded

at the encoder and used as a reference frame for the subsequent

frames. The decoder reverses the process and creates a full frame.

The whole idea behind motion estimation based video compression

is to save on bits by sending JPEG encoded difference images

which inherently have less energy and can be highly

compressed as compared to sending a full frame that is JPEG

encoded. It should be noted that the first frame is always sent full,

and so are some other frames that might occur at some regular

interval (like every 6th frame). The standards do not specify

this and this might change with every video being sent based on the

dynamics of the video. The most computationally expensive and

resource hungry operation in the entire compression process is

motion estimation. Hence, this field has seen the highest activity

and research interest in the past two decades. This paper

implements and evaluates the fundamental block matching

algorithm that is Three Step Search[3] (TSS) using different search

criterion.

The better the prediction, the smaller the error and hence the

transmission bit rate. If a scene is still, thengood prediction for a

particular pixel in the current frame is the same pixel in the

previous frame and the error is zero. However, when there is

motion in a sequence, then a pixel on the same part of the

moving object is a better prediction for the current pixel. The

use of the knowledge of the displacement of an object in

successive frames is called Motion Compensation. There are a

large number of motion compensation algorithms for inter-frame

predictive coding. In this study, however, we have focused only

on one class of such algorithms, called the Block Matching

Algorithms. These algorithms estimate the amount of motion on

a block by block basis, i.e. for each block in the current frame, a

block from the previous frame is found, that is said to

match this block based on a certain criterion.

One of the first algorithms to be used for block based motion

compensation is what is called the Full Search or the

Exhaustive Search. In this, each block within a given search

window is compared to the current block and the best match is

obtained (based on one of the comparison criterion). Although,

this algorithm is the best one in terms of the quality of the

predicted image and the simplicity of the algorithm, it is very

computationally intensive. Some of the efficient block-based

search algorithms are Exhaustive Search (ES), Three Step

Search[3] (TSS), New TSS[4], Four Step Search[5] (FSS),

Diamond Search[6,7].

2. BLOCK MATCHING ALGORITHM
The underlying supposition behind motion estimation is that

the patterns corresponding to objects and background in a frame

of video sequence move within the frame to form corresponding

objects on the subsequent frame. The idea behind block

matching is to divide the current frame into a matrix of ‘macro

blocks’ that are then compared with corresponding block and

its adjacent neighbors in the previous frame to create a

vector that stipulates the movement of a macro block from one

location to another in the previous frame. This movement

calculated for all the macro blocks comprising a frame,

constitutes the motion estimated in the current frame. The search

area for a good macro block match is constrained up to p pixels

on all four sides of the corresponding macro block in previous

frame.

This ‘p’ is called as the search parameter. Larger motions

require a larger p, and the larger the search parameter the more

computationally intensive the process of motion estimation

becomes. Usually the macro block is taken as a square of side 16

pixels, and the search parameter p is 7 pixels. The matching of

one macro block with another is based on the output of a cost

function. The macro block that results in the least cost is the one

that matches the closest to current block.

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.16, July 2014

19

2.1 Exhaustive Search (ES)
This algorithm, also known as Full Search, is the most

computationally expensive block matching algorithm of all. This

algorithm calculates the cost function at each possible location in

the search window. As a result of which it finds the best possible

match and gives the highest PSNR amongst any block

matching algorithm. Fast block matching algorithms try to

achieve the same PSNR doing as little computation as possible.

The obvious disadvantage to ES is that the larger the search

window gets the more computations it requires.

2.2 Three Step Search (TSS)
This TSS [3] is one of the most successful attempts to find correct

motion vector in block matching algorithms during the decade of

80s.

Figure. 1 Three Step Search

The general behaviour is represented in Figure 1. It starts with the

search location at the center and sets the ‘step size’ S = 4, for a

usual search parameter value of 7. It then searches at eight

different locations +/- S pixels around location (0,0). From these

nine locations searched so far, it picks the one giving best result

(least cost) and makes it the new search origin for next round of

three step search. It then sets the new step size S = S/2, and repeats

similar search for two more iterations until S = 1. At that point it

finds the location with the least cost function and the macro block

at that location is the best match, hence the desired block is found.

The calculated motion vector is then saved for transmission. It

gives a flat reduction in computation by a factor of 9. So that for p

= 7, ES will compute cost for

225 macro blocks whereas TSS computes cost for 25 macro blocks

only. The idea behind TSS is that the error surface due to motion in

every macro block is unimodal. A unimodal surface is a bowl

shaped surface such that the weights generated by the cost function

increase monotonically from the global minimum.

2.3 New Three Step Search (NTSS)
NTSS [4] is an advancement of TSS. NTSS shows good results by

providing a center based searching scheme and having provisions

for half way stop to reduce computational cost. It was widely

accepted fast search algorithm and frequently used for

implementing earlier standards like MPEG 1 and H.261.

Figure. 2 New Three Step Search

The TSS uses a uniformly allocated checking pattern for motion

detection and is prone to missing small motions. The NTSS

process is illustrated graphically in Figure 2. In the first step 16

points are checked in addition to the search origin for

lowest weight using a cost function. Of these additional search

locations, 8 are at distance of S = 4 away (similar to TSS) and

the other 8 are at S = 1 away from the search origin. If the

lowest cost is at the origin then the search is stopped right here

and the motion vector is set as (0, 0). If the lowest weight is at

any one of the 8 locations at S = 1, then we change the origin of

the search to that point and check for weights adjacent to it.

Depending on which point it is we might end up checking 5

points or 3 points. The location that gives the lowest weight is

the closest match and motion vector is set to that location. On

the other hand if the lowest weight after the first step was one of

the 8 locations at S = 4, then we follow the normal TSS

procedure. Hence although this process might need a minimum

of 17 points to check every macro block, it also has the worst-

case scenario of 33 locations to check.

2.4 Four Step Search (4SS)
Like NTSS, 4SS [5] is also a center based searching and may

stop its searching in halfway. 4SS sets a fixed pattern size of S =

2 for the first step, no matter what the search parameter p value

is. Thus it looks at 9 locations in a 5x5 window. If the least

weight is found at the center of search window the search jumps

to fourth step. If the least weight is at one of the eight locations

except the center, then we make it the search origin and move to

the second step.

Figure. 3 Four Step Search

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.16, July 2014

20

The search window is still maintained as 5x5 pixels wide.

Depending on where the least weight location was, we might

end up checking weights at 3 locations or 5 locations. The

patterns are shown in Figure 3. Once again if the least weight

location is at the center of the 5x5 search window we jump to

fourth step or else we move on to third step. The third is exactly the

same as the second step. In the fourth step the window size is

dropped to 3x3, i.e. S = 1. The location with the least weight is the

best matching macro block and the motion vector is set to point o

that location. A sample procedure is shown in Figure 4. This search

algorithm has the best case of 17 checking points and worst case of

27 checking points.

Figure. 4 Diamond Search

2.5 Diamond Search (DS)
DS [7] algorithm is very much same as 4SS, only the search

point pattern is modified from a square shape to a diamond shape,

and there is no limit on the number of steps that the algorithm can

take. It takes two different types of fixed patterns, one is for Large

Diamond Search Pattern (LDSP) and the other is for Small

Diamond Search Pattern (SDSP). Both these patterns and the DS

algorithm are illustrated in Figure 4. Similar to FSS, the first step

uses LDSP and if the least weight is at the center location we jump

to fourth step. The consecutive steps, except the final step, are also

similar and use LDSP, but the number of points where cost

function is checked are either 3 or 5 and are illustrated in second

and third steps of procedure shown in Figure 4. The final step uses

SDSP around the new decided search origin and the location with

the least weight is the best match. As the search pattern is neither

too small nor too big and the fact that there is no limit to the

number of steps, this algorithm can find global minimum very

accurately and efficiently. The end result should see a PSNR

close to that of ES while computational expense should be very

less.

2.6 Proposed Adaptive Three Step Search

(ATSS)
ATSS algorithm makes use of the fact that the general motion

in a frame is usually coherent, i.e. if the macro blocks around the

current macro block moved in a particular direction then there is

a high probability that the current macro block will also have a

similar motion vector. This algorithm uses the motion vector of the

macro block to its immediate left to predict its own motion vector.

If the predicted motion vector is not the correct choice according to

the selected matching criterion, then the motion vector is searched

using three step search block matching technique. This time

selected motion vector gives the predicted motion vector for

the next block search. This ATSS is always the first step in search

of matching motion vector for the second block onwards. For

the first block matching motion vector is computed using three

step search only.

3. MATCHING CRITERION

3.1 Mean Absolute Error Criteria
The matching criteria mostly used in the literature is minimum

mean absolute error, which at point (i, j) for an NxN block and

search window of size ±p, is defined as –

 (1)

where, −p<= i , j<= +p and c(x,y) and r(x,y) are pixel values

at position (x,y) in the current and reference frame respectively.

Motion vector is defined as the value of (i, j) for which MAE(i,

j) is minimum. Obviously, the residue error between the

predicted and actual block in the current frame should be

minimum for good matching.

3.2 Vector Matching Criteria
In MAE based criteria, the average error value is

considered while ignoring the individual error term.

S. Wang and H. Chen proposed vector matching criteria for

block matching to overcome this drawback. In this approach,

each NxN block is represented by a vector. Further, each block

is subdivided into smaller blocks of size like 2x2, which is

represented by a component of the corresponding vector and

MAE is calculated between each temporally adjacent subblock

in the current and reference frame.

A threshold value is chosen by exhaustive search and

vector components (out of N2 / 4 ,assuming the subblock size as

2x2) having value smaller than the threshold value are counted

for a given block. Finally, the block having maximum number

of such vector components within the defined search area is

declared to be the best matching block.

3.3 Smooth Constrained – Mean Absolute

Error Criteria
In video data compression, the residue frame which is

calculated by taking the difference of the current and the

predicted frame, is coded using transform coding

technique, called Discrete Cosine Transform (DCT).

According to the characteristics of this transform , the

number of bits required to code a smooth residue frame will be

smaller than the non smooth residue frame. Therefore, X. Jing,

C. Zhu and L. Chau , proposed a smooth contrained based

MAE as block matching criteria for motion compensation to

reduce the required number of bits for coding besides

minimising the total distortion. In this method, not only the

MAE over the residue block is taken into consideration but

also the maximum and minimum residue value error, denoted

as MME, is taken care of as well. Since DCT is applied over 8x8

block, each residue block (16x16) is divided into four equal

size subblocks (8x8) and MME is calculated for each subblock

as

 (2)

 (3)

where alpha is a weighing factor. The block which has minimum

SC-MAE value in the search area, is declared as the best

matched block.

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.16, July 2014

21

Figure 5 Comparison of Average error per pixel Kamin2.avi

Figure 6 Comparison of Average search points per block for

Kamin2.avi

4. EXPERIMENTAL RESULTS
In finding the results from the different Block matching algorithms

using different matching criteria for the block based search, two

sample videos have been used in this research for comparison

Kamin2.avi and Susie.avi. Results from TSS, NTSS, 4SS along

with the proposed ATSS are given in tabular form and also are

shown using graphs for the comparison. These experiments have

been performed in terms of two parameters- average error per

pixel and average search points per block on two videos. For areal

time video results from the proposed ATSS are very motivating.

Figure 7 Comparison of Average error per pixel for

Susie.avi

It has been observed that the proposed matching algorithm gives

the better results in comparison to that of TSS, NTSS and 4SS.

Figure 8 Comparison of Average search points per block for

Susie.avi

As for the videos Kamin2 and Susie.avi, variation in the

intensities of adjacent frames are very high, experimental results

are very much in favor of proposed matching algorithm.

Proposed algorithm improves the results in the sequence of

increasing frames distance i.e. for more frame distance proposed

algorithm gives better results when compared with other

techniques. These results have been found experimentally by

taking first thirty frames form these mentioned videos. Detailed

results are given in the tables and corresponding graphs.

5. CONCLUSIONS
A new block matching technique for prediction of motion vector

has been proposed and experimentally examined with three

other existing methods in terms of average search points per

block, average error per pixel for two videos (kamin2.avi and

Susie.avi) inputs with different size and varying degree of

motion. The proposed algorithm gives much better results in

the case when video quality fades i.e. same pels in different

frames have the different intensity and this difference in

intensity for the redundant pels increases by the time.

6. REFERENCES
[1] T.Sikora, MPEG Digital Video Coding Standards, IEEE

Signal Processing Magazine, pp 82-100, (September

1997)

[2] J.R.Jain and A.K.Jain, Displacement Measurement and its

application in Interframe Coding, IEEE Transactions on

Communications, Volume 29, No 12, (December 1981)

[3] T.Koga, K.Iinuma, A.Hirano and Y.Ishiguro, Motion

Compensated Interframe Coding for Video Conferencing,

Proc NTC81, New Orleans, LA, (November 1981)

[4] R.Li, B.Zeng and M.L.Liou, A New Three Step Search

Algorithm for Block Motion Estimation, IEEE

Transactions on Circuits and Systems for Video

Technology, Volume 4, No 4, (August 1994)

[5] L.Man Po and W.C.Ma, A Novel Four Step Search

Algorithm for Fast Block Motion Estimation, IEEE

transactions on Circuits and Systems for Video

Technology, Volume 6, No 3, (June 1996)

[6] S.Zhu and K.K.Ma, A New Diamond Search

Algorithm for Block Matching Motion Estimation, IEEE

transactions on Image Processing, Volume 9, No 2,

(February 2000)

[7] C.H.Cheung and L.M.Po, A Novel Cross Diamond Search

Algorithm for Fast Block Motion Estimation, IEEE

transactions on Circuits and Systems for Video

Technology, Volume 12, No 12, (December 2002)

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.16, July 2014

22

Table 1 Average error per pixel for Kamin2.avi

Average error per pixel

TSS NTSS 4SS AdaptiveTSS

27 28 31 26

26 27 35 23

32 28 31 28

16 17 16 16

15 15 16 15

27 25 26 24

14 15 20 13

14 14 17 15

24 23 30 26

13 13 20 14

16 14 36 15

31 33 26 25

27 26 27 22

27 27 16 13

13 12 18 10

13 13 20 11

13 12 20 14

14 14 21 10

16 15 26 13

18 20 19 15

17 17 24 14

16 15 24 12

26 26 38 22

33 30 24 23

23 23 28 20

26 27 29 22

27 27 29 23

29 30 34 30

17 16 22 10

Table 2 Average search points per block for

Kamin2.avi

Average search points per block

TSS NTSS 4SS AdaptiveTSS

14.45 14.56 14.15 13.71

14.15 14.23 14.89 10.53

14.85 14.85 14.05 12.32

13.75 13.75 13.51 11.81

13.71 13.71 13.79 13.85

14.21 14.00 13.76 12.15

13.64 13.61 13.55 13.75

13.75 13.61 13.68 13.85

14.49 14.35 14.76 10.25

13.64 13.64 13.72 13.81

13.64 13.65 14.87 9.92

14.69 14.69 13.91 11.49

14.39 14.39 14.40 10.81

14.20 14.20 13.65 8.17

13.71 13.64 14.15 9.79

13.68 13.68 13.80 7.89

13.64 13.57 13.76 10.89

13.61 13.61 14.23 11.11

13.87 13.80 14.31 10.87

13.87 13.87 13.65 10.93

13.76 13.76 14.23 11.87

13.68 13.68 13.91 10.29

14.13 14.24 14.71 10.93

15.17 15.17 14.41 7.45

14.15 14.00 14.29 10.07

14.23 14.33 13.80 11.68

14.21 14.19 13.80 11.93

13.96 14.07 14.59 12.21

13.57 13.57 13.79 13.81

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.16, July 2014

23

Table 3 Average error per pixel for Susie.avi

Average error per pixel

TSS NTSS 4SS AdaptiveTSS

0 0 0 0

5 2 2 1

13 18 16 10

13 15 18 10

14 9 8 7

2 1 1 0

5 1 2 1

11 4 6 2

9 3 4 2

3 2 2 0

19 6 11 2

16 10 12 6

11 9 7 7

23 19 34 13

22 21 29 20

0 0 0 0

39 46 38 31

20 13 9 16

31 34 24 12

37 40 38 26

14 7 18 7

4 2 1 1

25 22 22 20

20 8 13 7

18 16 13 13

36 33 28 23

16 11 12 11

17 7 4 7

26 19 25 12

Table 4 Average search points per block for Susie.avi

Average search points per block

TSS NTSS 4SS AdaptiveTSS

14.50 14.50 14.43 10.50

14.53 14.52 14.48 8.53

14.54 14.56 14.53 9.52

14.57 14.62 14.62 9.57

14.59 14.55 14.48 12.59

14.50 14.50 14.45 10.50

14.51 14.52 14.45 10.50

14.62 14.53 14.45 10.58

14.55 14.55 14.48 10.55

14.50 14.52 14.48 11.50

14.65 14.53 14.50 11.69

14.62 14.59 14.55 12.62

14.58 14.55 14.48 12.58

14.69 14.69 14.73 13.69

14.76 14.71 14.82 11.84

14.50 14.50 14.43 10.50

14.78 14.79 14.77 11.80

14.64 14.57 14.52 10.69

14.72 14.67 14.65 11.33

14.79 14.76 14.72 11.48

14.65 14.58 14.58 12.65

14.51 14.50 14.43 11.51

14.72 14.65 14.60 11.69

14.65 14.57 14.50 14.65

14.58 14.59 14.53 11.58

14.76 14.71 14.66 10.76

14.58 14.59 14.52 7.58

14.59 14.62 14.49 9.66

14.69 14.62 14.64 8.67

IJCATM : www.ijcaonline.org

