
International Journal of Computer Applications (0975 – 8887) 

Volume 98– No.15, July 2014 

22 

Instruction Customization: A Challenge in ASIP 

Realization 

 
Deepti Shrimal 
Research Scholar 

Department of Computer 
Science 

Mohan Lal Sukhadia University 

 

 Manoj Kumar Jain, Ph.D 
Associate Professor 

Department of Computer 
Science 

Mohan Lal Sukhadia University 

 

 

ABSTRACT 

An Application Specific Instruction set Processors (ASIP) or 

alternatively known as customized processor is a processor 

designed for a particular application or for a set of 

applications. Earlier surveys show that though a significant 

research has been done for this most promising processor 

design technology, still approaches used in them are lacking 

in methodologies to define processor configuration based on 

the requirements of the applications. There are number of 

approaches claiming to design and synthesize ASIPs but they 

are facing many challenges. This paper is an attempt to find 

major challenges faced by them as well as the current state of 

these promising techniques adopted by the industry. This 

paper also analyzed their effort to know really what they 

could have achieved so far and identified what should be done 

to make these techniques successful. If some limitations can 

be removed soon, these techniques are going to expand in an 

explosive manner. 
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1. INTRODUCTION 
An Application Specific Instruction set Processor or ASIP is 

generally designed for a set of applications for a particular 

domain. Special characteristics of these applications guide us 

about the target processor. Earlier survey in [1] shows that 

significant research has been done for ASIP synthesis and 

more research is in progress. With the advent of soc’s, the 

need to design a synthesizable processor or programmable 

core has become more popular among embedded system 

designers now-a-days. These processors offer several 

advantage such as reduce cost, high flexibility and high 

performance over the ASIC (Application Specific Integrated 

Circuit). The main steps in designing ASIP involves 

application analysis, design space exploration, instruction set 

generation, software tool set generation (including tools for 

code generation, operating system, debugger etc) and 

hardware synthesis which provides synthesizable processor 

descriptions using which ASIP chip is fabricated. 

Since the base ISA of these processors can be extended and 

customized, they are becoming more popular in academia and 

industry. The base instruction set of these processors can be 

extended with custom instructions with the help of tightly 

integrated functional units [2] as shown in Figure 1. 

 

 

Fig 1: Base ISA extension using custom logic 

There are many commercial processors available in the 

market such as Tensilica Xtensa [3], Altera Nios II [4] and 

Xilinx MicroBlaze [5] which support extensibility using such 

type of functional units. The instruction set and micro-

architectural parameters are changed for different application 

or for a set of applications based on these functional units for 

target architecture easily. The primary goal of IS 

customization in such processors is to design an instruction 

set for ASIP that satisfies the hard constraints and also 

optimizes the performance of  micro-architectural parameters 

like register file size, cache memory, functional units 

bandwidth etc. Figure 2 shows the overall process to add 

custom instruction into ASIP. 
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Fig 2: Custom instruction integration in ASIP 

This identification of custom instruction for instruction set 

extension can be classified as complete customization or 

partial customization depending on whether a new processor 

is generated or existing processor is going to be modified. 

This extension of an instruction set normally considered for 

identify the degree of human efforts to be required and then 

accordingly automatic extension or manual extension is done.  

Xtensa, Nios II and MicroBlaze are examples of processors 

that allow designers to customize instruction set of the 

processor automatically rather than manual extension. 

2. INSTRUCTION SET 

CUSTOMIZATION 
There are numerous techniques proposed by many researchers 

for automated synthesis of custom instructions of 

customizable processors [6] but in last decade, high level 

descriptions of application has been  received much more 

attention than others. This technique uses compiler 

infrastructures [7] to find source level DFG’s and then data 

flow sub-graphs are evaluated for custom instruction 

candidates followed by synthesis of customized hardware and 

software components which is depicted in Figure 3. 

 

Fig 3: synthesis of the customized hardware and software 

components 

Each custom instruction candidate usually comprises the 

computation of a frequently executed sub graph of the 

application DFG’s and is usually implemented as CFU in the 

data path of the processor. To find optimal set of sub graphs 

from this DFG’s involves two different subtasks: (i) 

identification of custom instruction using which all candidate 

sub graphs from the application DFG’s are generated (ii) 

selection of custom instruction  which is used to evaluate the 

performance of each candidate and then optimal candidate is 

chosen. 

There are several approaches used by many researchers for 

instruction set identification and then custom processor has 

been designed to meet user requirements. A design proposed 

in [8] applied to the base processor of Tensilica Xtensa and 

MicroBlaze processor to identify optimal instruction set from 

a give high level descriptions. This approach was based on 

ILP model and relaxes designer from the data bandwidth 

which is usually limited by FSL channels. In the same context 

[9] used SFU (specialized functional units) in customized 

processor to support extension in parallel fashion.  

An approach described in [10] is a mix of subgraph 

enumeration and ILP formulation to generate fast custom 

instruction synthesis. Apart from this, there are some 

techniques/ algorithms proposed by some researchers that 

only focused convex maximal subgraph for the same purpose. 

An algorithm used in [11] accelerates the entire design space 

optimally by considering all legal patterns of subgraph which 

satisfies few architectural constraints. Similarly an approach 

[12] also generates custom instructions without imposing any 

restrictions on the number of input and output operands on 

enumerated convex subgraph. In the similar context [13] 

considered only independent graph for hardware – software 

partitioning at instruction level within basic block and updated 

that block to speed up the performance of the processor. All 

these approaches discussed above are based on graph 

enumeration and their overall description for instruction set 

extension is depicted in the Figure 4. 

 

 
 

Fig 4: ISE identification approaches 

The following section of this paper is discussing about Xilinx 

MicroBlaze, Altera Nios II and Tensilica Xtensa processors 

which are RISC based and support automatic extension of 

instructions in both partial and complete manner using 

maximal subgraph to speed up their process of designing 
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custom processor to achieve better performance. The 

configuration based comparison among these custom 

processors is shown in Table 1. Both Altera and Xilinx 

products require the user to define custom instructions using 

an HDL whereas Tensilica allows developers to produce 

custom instructions in one of two ways. First, using Tensilica 

Instruction Extension (TIE) language and second using 

Xpress compiler.  

Table 1: Comparison of custom processors 

 MicroBlaze Nios II Xtensa 

ASIC/FPGA 

Tech. 
Virtex Stratix 0.13 micron 

ISA 32 bit RISC 32 bit RISC 32 bit RISC 

Cache Memory 

(I/D) 
Up to 64 KB 

Up to 64 

KB 
Up to 64 KB 

Floating Point 

Unit (Optional) 
IEEE 754 IEEE 754 IEEE754 

Pipeline 3 Stages 6 Stages 5 Stages 

Custom 

Instructions 
None 

Up to 256 

Instructions 
Unlimited 

Register File 

Size 
32 32 32 or 64 

Implementation FPGA FPGA FPGA/ASIC 

 

3. MICROBLAZE PROCESSOR 
Xilinx MicroBlaze processor has 3 stage pipelines with 

variable length instruction latencies ranging from one to three 

cycles. It is capable of including maximum of 8 inputs and 8 

outputs FSL [14]. The FSL is a fast and dedicated interface 

which is used to implement customization of instructions. 

MicroBlaze has its own ISA which consists of instructions for 

blocking and non-blocking reads and writes to the FSL. Two 

instructions put/get are used for sending and receiving data in 

blocking mode where as nput/nget is used in non-blocking 

mode.  

MicroBlaze claims to combine all the flexibility advantages of 

SCP. Generally, there are two ways to integrate a customized 

IP core into a MicroBlaze-based embedded soft processor 

system. One way is to connect the IP on the On-chip 

Peripheral Bus (OPB). The OPB is part of the IBM Core 

ConnectTM on-chip bus standard. The second way is to 

connect the user IP to the MicroBlaze dedicated Fast Simplex 

Link (FSL) bus system to move operands to the CPU. 

MicroBlaze provides flexibility to the designer during the 

design process to configure the processor according to their 

needs and quickly integrate the processor within any FPGA 

[15] as depicted in the basic block architecture in Figure 5. 

Xilinx platform studio is used as a tool to define set of 

libraries and customizes hardware divider and barrel shifter 

rather than performing custom logic in software part. 

 

Fig 5: Core processor of MicroBlaze 

Although the MicroBlaze processor has a three-stage pipeline, 

during the Execute phase of the pipeline, instructions have 

different latencies which are the main disadvantage of it. 

Another potential drawback of the MicroBlaze processor is 

the non availability of floating point instructions therefore 

software routines are required to perform these operations.  

4. NIOS II SOFT CORE PROCESSOR 
The Nios II Embedded processor is the most versatile and 

popular configurable soft processor that supports all Altera 

Soc’s, FPGA and hard copy ASIC devices and widely used in 

the design of embedded systems and digital signal processing 

to system control. Altera Nios II processor support 32 bit 

instruction set, 32 general purpose registers, 32x32 multiply 

and divide operations , 64 bit dedicated instructions and 128 

bit product of multiplication. Nios II can be implemented in 

the programmable logic [16] and memory blocks of Altera 

FPGA’s. The multi master Avalon switch fabric allows it’s 

user to accelerate and optimize their design. Nios II offers the 

possibility to integrate 5 custom instructions using 3 main 

registers (dataa[0..31], datab[0..31]) as inputs and 

(result[0..31]) as output as shown in Figure 6. The following 

steps are to be performed to add custom instructions in Nios II 

processor 

1. Design HDL description of custom instruction 

2. Verify the design using VHDL/ Verilog 

3. Update the application code with custom instruction  

opcode 

4. Integrate custom instruction in Nios II core 

5. Compile custom instruction opcode 

6. Generate custom Nios II bit stream. 



International Journal of Computer Applications (0975 – 8887) 

Volume 98– No.15, July 2014 

25 

 
Fig 6: Custom instruction logic of Nios II 

The soft core processor of Nios II is designed for 5 stage 

pipelines with separate data and instruction Harvard structure. 

Users can customize up to 256 instructions according to their 

needs in Nios processor core. Although the size of the register 

file is configurable, only 32 registers are visible to programs 

at any given time and instruction set of Altera Nios II supports 

only the basic arithmetic and logic instruction which is one of 

the main limitations of it.  

5. TENSILICA XTENSA PROCESSOR 
Tensilica Xtensa has five stage pipelines, up to 64 general 

purpose physical registers, 6 special purpose registers and 80 

base instructions including 16 bit/24 bit RISC instruction 

encoding with modeless switching. It allows instruction set 

customization using processor configuration and processor 

extension. In processor configuration, usually suitable 

combinations of predefined set of existing architectural 

features such as size of register files, ALU units, single cycle 
or multi cycle multiplier [17] etc are selected for 

customization where in processor extension designer allows  

to add their own functionality to the processor using TIE 

language which is independent of the processor pipeline. 

Xtensa processor generator [18] uses the input from the 

designer to configure software tools, ISS and hardware HDL 

shown in Figure 7. The output produced by generator is used 

for simulation, debugging, profiling, synthesis, placement and 

routing, verification etc. 

Since there are differences in the instruction set of one 

customized core to another core, it is more difficult for third 

party software and tool providers to support Tensilica cores as 

compared to fixed architecture cores and hence is less likely 

to be used across a range of applications. 

 

Fig 7: Design Flow of Xtensa Processor 

6. CONCLUSION 

Many companies till today provided their customizable 

processor to add flexibility to the base processor by adding 

new instructions or hardware description language but they 

support only few micro architectural variations. Also, these 

processors suffer from communication overhead because of 

use of interfaces with specialized hardware. Particularly we 

have analyzed processors namely, Xtensa, MicroBlaze, and 

Nios II and observed that these processors are far behind the 

expected ASIP processor. Though, they have provided 

development environment with simulation capabilities to the 

designer to give their design features as input but all the 

approaches are lacking in defining processor configuration 

based on the requirements of the applications. Furthermore 

they have not yet getting energy benefits from such ISE 

customization and if these types of problems remain then 

ASIPs are going to boom in the future. 
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