
International Journal of Computer Applications (0975 – 8887)

Volume 98– No.15, July 2014

22

Instruction Customization: A Challenge in ASIP

Realization

Deepti Shrimal
Research Scholar

Department of Computer
Science

Mohan Lal Sukhadia University

 Manoj Kumar Jain, Ph.D
Associate Professor

Department of Computer
Science

Mohan Lal Sukhadia University

ABSTRACT

An Application Specific Instruction set Processors (ASIP) or

alternatively known as customized processor is a processor

designed for a particular application or for a set of

applications. Earlier surveys show that though a significant

research has been done for this most promising processor

design technology, still approaches used in them are lacking

in methodologies to define processor configuration based on

the requirements of the applications. There are number of

approaches claiming to design and synthesize ASIPs but they

are facing many challenges. This paper is an attempt to find

major challenges faced by them as well as the current state of

these promising techniques adopted by the industry. This

paper also analyzed their effort to know really what they

could have achieved so far and identified what should be done

to make these techniques successful. If some limitations can

be removed soon, these techniques are going to expand in an

explosive manner.

General Terms

Architecture, Design techniques, Instruction set

customization, Processors.

Keywords

Application Specific Instruction set Processor (ASIP), Custom

Processor, Embedded System, Micro-architecture, Simulation,

and Synthesis.

1. INTRODUCTION
An Application Specific Instruction set Processor or ASIP is

generally designed for a set of applications for a particular

domain. Special characteristics of these applications guide us

about the target processor. Earlier survey in [1] shows that

significant research has been done for ASIP synthesis and

more research is in progress. With the advent of soc’s, the

need to design a synthesizable processor or programmable

core has become more popular among embedded system

designers now-a-days. These processors offer several

advantage such as reduce cost, high flexibility and high

performance over the ASIC (Application Specific Integrated

Circuit). The main steps in designing ASIP involves

application analysis, design space exploration, instruction set

generation, software tool set generation (including tools for

code generation, operating system, debugger etc) and

hardware synthesis which provides synthesizable processor

descriptions using which ASIP chip is fabricated.

Since the base ISA of these processors can be extended and

customized, they are becoming more popular in academia and

industry. The base instruction set of these processors can be

extended with custom instructions with the help of tightly

integrated functional units [2] as shown in Figure 1.

Fig 1: Base ISA extension using custom logic

There are many commercial processors available in the

market such as Tensilica Xtensa [3], Altera Nios II [4] and

Xilinx MicroBlaze [5] which support extensibility using such

type of functional units. The instruction set and micro-

architectural parameters are changed for different application

or for a set of applications based on these functional units for

target architecture easily. The primary goal of IS

customization in such processors is to design an instruction

set for ASIP that satisfies the hard constraints and also

optimizes the performance of micro-architectural parameters

like register file size, cache memory, functional units

bandwidth etc. Figure 2 shows the overall process to add

custom instruction into ASIP.

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.15, July 2014

23

Fig 2: Custom instruction integration in ASIP

This identification of custom instruction for instruction set

extension can be classified as complete customization or

partial customization depending on whether a new processor

is generated or existing processor is going to be modified.

This extension of an instruction set normally considered for

identify the degree of human efforts to be required and then

accordingly automatic extension or manual extension is done.

Xtensa, Nios II and MicroBlaze are examples of processors

that allow designers to customize instruction set of the

processor automatically rather than manual extension.

2. INSTRUCTION SET

CUSTOMIZATION
There are numerous techniques proposed by many researchers

for automated synthesis of custom instructions of

customizable processors [6] but in last decade, high level

descriptions of application has been received much more

attention than others. This technique uses compiler

infrastructures [7] to find source level DFG’s and then data

flow sub-graphs are evaluated for custom instruction

candidates followed by synthesis of customized hardware and

software components which is depicted in Figure 3.

Fig 3: synthesis of the customized hardware and software

components

Each custom instruction candidate usually comprises the

computation of a frequently executed sub graph of the

application DFG’s and is usually implemented as CFU in the

data path of the processor. To find optimal set of sub graphs

from this DFG’s involves two different subtasks: (i)

identification of custom instruction using which all candidate

sub graphs from the application DFG’s are generated (ii)

selection of custom instruction which is used to evaluate the

performance of each candidate and then optimal candidate is

chosen.

There are several approaches used by many researchers for

instruction set identification and then custom processor has

been designed to meet user requirements. A design proposed

in [8] applied to the base processor of Tensilica Xtensa and

MicroBlaze processor to identify optimal instruction set from

a give high level descriptions. This approach was based on

ILP model and relaxes designer from the data bandwidth

which is usually limited by FSL channels. In the same context

[9] used SFU (specialized functional units) in customized

processor to support extension in parallel fashion.

An approach described in [10] is a mix of subgraph

enumeration and ILP formulation to generate fast custom

instruction synthesis. Apart from this, there are some

techniques/ algorithms proposed by some researchers that

only focused convex maximal subgraph for the same purpose.

An algorithm used in [11] accelerates the entire design space

optimally by considering all legal patterns of subgraph which

satisfies few architectural constraints. Similarly an approach

[12] also generates custom instructions without imposing any

restrictions on the number of input and output operands on

enumerated convex subgraph. In the similar context [13]

considered only independent graph for hardware – software

partitioning at instruction level within basic block and updated

that block to speed up the performance of the processor. All

these approaches discussed above are based on graph

enumeration and their overall description for instruction set

extension is depicted in the Figure 4.

Fig 4: ISE identification approaches

The following section of this paper is discussing about Xilinx

MicroBlaze, Altera Nios II and Tensilica Xtensa processors

which are RISC based and support automatic extension of

instructions in both partial and complete manner using

maximal subgraph to speed up their process of designing

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.15, July 2014

24

custom processor to achieve better performance. The

configuration based comparison among these custom

processors is shown in Table 1. Both Altera and Xilinx

products require the user to define custom instructions using

an HDL whereas Tensilica allows developers to produce

custom instructions in one of two ways. First, using Tensilica

Instruction Extension (TIE) language and second using

Xpress compiler.

Table 1: Comparison of custom processors

 MicroBlaze Nios II Xtensa

ASIC/FPGA

Tech.
Virtex Stratix 0.13 micron

ISA 32 bit RISC 32 bit RISC 32 bit RISC

Cache Memory

(I/D)
Up to 64 KB

Up to 64

KB
Up to 64 KB

Floating Point

Unit (Optional)
IEEE 754 IEEE 754 IEEE754

Pipeline 3 Stages 6 Stages 5 Stages

Custom

Instructions
None

Up to 256

Instructions
Unlimited

Register File

Size
32 32 32 or 64

Implementation FPGA FPGA FPGA/ASIC

3. MICROBLAZE PROCESSOR
Xilinx MicroBlaze processor has 3 stage pipelines with

variable length instruction latencies ranging from one to three

cycles. It is capable of including maximum of 8 inputs and 8

outputs FSL [14]. The FSL is a fast and dedicated interface

which is used to implement customization of instructions.

MicroBlaze has its own ISA which consists of instructions for

blocking and non-blocking reads and writes to the FSL. Two

instructions put/get are used for sending and receiving data in

blocking mode where as nput/nget is used in non-blocking

mode.

MicroBlaze claims to combine all the flexibility advantages of

SCP. Generally, there are two ways to integrate a customized

IP core into a MicroBlaze-based embedded soft processor

system. One way is to connect the IP on the On-chip

Peripheral Bus (OPB). The OPB is part of the IBM Core

ConnectTM on-chip bus standard. The second way is to

connect the user IP to the MicroBlaze dedicated Fast Simplex

Link (FSL) bus system to move operands to the CPU.

MicroBlaze provides flexibility to the designer during the

design process to configure the processor according to their

needs and quickly integrate the processor within any FPGA

[15] as depicted in the basic block architecture in Figure 5.

Xilinx platform studio is used as a tool to define set of

libraries and customizes hardware divider and barrel shifter

rather than performing custom logic in software part.

Fig 5: Core processor of MicroBlaze

Although the MicroBlaze processor has a three-stage pipeline,

during the Execute phase of the pipeline, instructions have

different latencies which are the main disadvantage of it.

Another potential drawback of the MicroBlaze processor is

the non availability of floating point instructions therefore

software routines are required to perform these operations.

4. NIOS II SOFT CORE PROCESSOR
The Nios II Embedded processor is the most versatile and

popular configurable soft processor that supports all Altera

Soc’s, FPGA and hard copy ASIC devices and widely used in

the design of embedded systems and digital signal processing

to system control. Altera Nios II processor support 32 bit

instruction set, 32 general purpose registers, 32x32 multiply

and divide operations , 64 bit dedicated instructions and 128

bit product of multiplication. Nios II can be implemented in

the programmable logic [16] and memory blocks of Altera

FPGA’s. The multi master Avalon switch fabric allows it’s

user to accelerate and optimize their design. Nios II offers the

possibility to integrate 5 custom instructions using 3 main

registers (dataa[0..31], datab[0..31]) as inputs and

(result[0..31]) as output as shown in Figure 6. The following

steps are to be performed to add custom instructions in Nios II

processor

1. Design HDL description of custom instruction

2. Verify the design using VHDL/ Verilog

3. Update the application code with custom instruction

opcode

4. Integrate custom instruction in Nios II core

5. Compile custom instruction opcode

6. Generate custom Nios II bit stream.

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.15, July 2014

25

Fig 6: Custom instruction logic of Nios II

The soft core processor of Nios II is designed for 5 stage

pipelines with separate data and instruction Harvard structure.

Users can customize up to 256 instructions according to their

needs in Nios processor core. Although the size of the register

file is configurable, only 32 registers are visible to programs

at any given time and instruction set of Altera Nios II supports

only the basic arithmetic and logic instruction which is one of

the main limitations of it.

5. TENSILICA XTENSA PROCESSOR
Tensilica Xtensa has five stage pipelines, up to 64 general

purpose physical registers, 6 special purpose registers and 80

base instructions including 16 bit/24 bit RISC instruction

encoding with modeless switching. It allows instruction set

customization using processor configuration and processor

extension. In processor configuration, usually suitable

combinations of predefined set of existing architectural

features such as size of register files, ALU units, single cycle
or multi cycle multiplier [17] etc are selected for

customization where in processor extension designer allows

to add their own functionality to the processor using TIE

language which is independent of the processor pipeline.

Xtensa processor generator [18] uses the input from the

designer to configure software tools, ISS and hardware HDL

shown in Figure 7. The output produced by generator is used

for simulation, debugging, profiling, synthesis, placement and

routing, verification etc.

Since there are differences in the instruction set of one

customized core to another core, it is more difficult for third

party software and tool providers to support Tensilica cores as

compared to fixed architecture cores and hence is less likely

to be used across a range of applications.

Fig 7: Design Flow of Xtensa Processor

6. CONCLUSION

Many companies till today provided their customizable

processor to add flexibility to the base processor by adding

new instructions or hardware description language but they

support only few micro architectural variations. Also, these

processors suffer from communication overhead because of

use of interfaces with specialized hardware. Particularly we

have analyzed processors namely, Xtensa, MicroBlaze, and

Nios II and observed that these processors are far behind the

expected ASIP processor. Though, they have provided

development environment with simulation capabilities to the

designer to give their design features as input but all the

approaches are lacking in defining processor configuration

based on the requirements of the applications. Furthermore

they have not yet getting energy benefits from such ISE

customization and if these types of problems remain then

ASIPs are going to boom in the future.

7. REFERENCES
[1] Jain M.K., Balakrisnana M. and Kumar A. 2001. ASIP

Design and Methodologies: Survey and Issues.

Proceedings of IEEE. VLSI. pp. 76-81.

[2] Ye Z. A., Moshovos A., Hauck S., and Banerjee P.

2000. CHIMAERA: High- Performance Architecture

with a Tightly-Coupled Reconfigurable Functional Unit.

In Proc. 27th Annual International Symposium on

Computer Architecture. pp. 225-235.

[3] Tensilica Inc. homepage, Available:

http://www.tensilica.com

[4] Altera Corp. homepage, Available:

http://www.altera.com.

[5] Xilinx Inc. homepage, Available: http://www.xilinx.com.

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.15, July 2014

26

[6] Cong J., Fan Y., Han G., and Zhang Z. 2004.

Application- specific instruction generation for

configurable processor architectures. In Proc. FPGA,

Monterey. CA. pp 183-189.

[7] Atasu K., Pozzi L., and Ienne P. 2003. Automatic

application- specific instruction-set extensions under

microarchitectural constraints. In Proc.40th DAC. pp

256-261.

[8] Atasu K., Mencer O. and Luk W. 2008. Fast Custom

Instruction Identification by Convex Subgraph

enumeration. pp 1-6.

[9] Chen L, Tarango J., Mitra T. and Brisk P. 2013. A Just-

in-Time Customizable Processor. IEEE. pp 524-531.

[10] Chen X., Maskell D. L., and Sun Y. 2007. Fast

identification of custom instructions for extensible

processors. IEEE Trans. Computer-Aided Des (CAD)

Integrated Circuits. pp 359-368.

[11] Pothineni N., Kumar A. and Paul K. 2008. Exhaustive

Enumeration of Legal Custom Instructions for Extensible

Processors. 21st International Conference on VLSI

Design pp 261-266.

[12] Pozzi L., Atasu K., and Ienne P. 2006. Exact and

approximate algorithms for the extension of embedded

processor instruction sets. IEEE Trans Computer Aided

Des. pp 1209-1229

[13] Biswas P., Banerjee S., Dutt N., Ienne P and Pozzi L.

2006. Performance and energy benefits of instruction set

extension in an FPGA soft core. VLSI Design. pp 651-

656.

[14] Lazányi J. 2005. Instruction Set Extension Using

MicroBlaze processor. FPL. IEEE. pp 729-730.

[15] Hamblen J. O. 2006. Using System-on-a-Programmable-

Chip Technology to Design Embedded System. IJCA. pp

142-152.

[16] Brown S. and Rose J. 1996. FPGA and CPLD

Architectures: A tutorial. IEEE, pp. 42-46

[17] Peddersen J. 2005. Rapid Embedded Hardware/Software

System Generation. Proceedings of the 18th International

Conference on VLSI Design. pp 111-116.

[18] Cheung N. 2003. Rapid Configuration & Instruction

Selection for an ASIP: A Case Study. IEEE. pp 802-807.

IJCATM : www.ijcaonline.org

http://pubs.doc.ic.ac.uk/authors/oskar/
http://pubs.doc.ic.ac.uk/authors/wl/

