
International Journal of Computer Applications (0975 – 8887)

Volume 98– No.14, July 2014

6

Spyware Detection based upon Hybrid Approach In
Android Smartphones

Sumit Sharma

Assistant Professor, CSE Department,
Chandigarh University, Gharuan

Mohali, India

Parmjit Kaur
Dept. of Computer Science

CGC Group of Collages, Gharuan
Mohali, India

ABSTRACT

Smart phones, which were once a luxury product has now

become a household product. This transformation has been

due to the vast amount of functionalities which a smart phone

provides in just a single device. Smartphone OS, such as

Android, is an Open Source mobile platform that enables us to

install third party applications. Due to large amount of

applications that are available on the app store, it becomes

very difficult for a user to distinguish between a malware free

and malware containing application. In this paper, we are

proposing a hybrid approach for detection of spyware genre

applications out of all the installed applications.

Keywords

Android Privacy, Spyware, Android Permission Database,

Frame Layout, Static Source Code Analysis

1. INTRODUCTION
In recent days, usage of Mobile Devices has become

indispensable part of every human-being. Smartphones has

gained more popularity than the all purpose personal

computers. According to the CISCO report, till the completion

of 2014, quantity of mobile-connected devices will go beyond

the population of world. Nowadays, Smartphones represent

only 27% of the mobile devices. But till the end of 2018,

Smartphones will represent more than 50% of the total mobile

devices [19]. Another reason for Smartphones usages is its

expandable memory up to 128 GB (up to 64 GB Card Slot and

32/64 GB internal storage and 3 GB RAM) [9]. Hackers

become more attractive towards smart phones than PC, and

particularly the Google’s Android OS. An Android is an open

source1 OS (operating system) developed by the Open

Handset Alliance and held by Google Inc [20]. Android

becomes more popular because Google Play alone had

500,000 applications that are classified as free or paid, in May

2012.

 In 2012, A. P I N T O gives a report Android Malware 400%

increase in which he describe how Android Malware has

increased over the time. A recent study conducted by a MIT

organization found that there is increase of about 400% in

Android malware since summer 2010. How every time you

open a website first a fraudulent website does come up? Yes,

it is the malware which piggyback some other application and

then starts performing stealthily in the background to harm

user’s privacy. The main purpose of this report is to make the

reader aware of the impressive grow of malware being

targeted to smartphones [3].

 Attacks are introduced in the system, when an attacker made

the third party application in which he introduces the

malicious code and upload it on the Google Play Store.

Infected application is downloaded and installed by Android

User on their smart phone. At the time of installation of an

android app, the user is presented with all the permissions the

application is supposed to use. But as this permission denial is

not applicable to single permissions, the user has to either

completely discontinue the installation process or accept all of

them. Now, while the user makes use of that application and

in the back-ground the app can mishandle the permission

granted to it and steal the private data of the user. This type of

misuse takes advantage of the Android Permission Model or

we can say add the malware or malicious code in the system

[10].

In this Paper, we describe how malwares are spreading

through internet onto the mobile devices and henceforth

proposing a three way spyware detection mechanism to

enhance the security of user private data.

2. OVERVIEW OF ANDROID

2.1 Application and components
 The programming language used for the development of

android applications is Java, compiled into byte codes and

then using dx converter, it will be converted to a dalvik

executable (.dex) file. After that it will further be compiled

into android package (apk) file, which can be installed on the

android devices [8].

 Intents are scattered between four components of application

which is required for the development of Android

applications. Detail of these major components is described

below and developer must declare it in

AndroidManifest.XML file [7].

2.1.1 Activity
 Activity is a visible process which works in the foreground of

the mobile screen and interacting with the user with the help

of user interfaces [7, 20].

2.1.2 Service
 Service is a background process which is not visible to the

user or we can say that works without a screen User Interface.

For e.g., it can perform the operations in background process

like playing the music or downloading the file [7].

2.1.3 Broadcast Receiver/Receiver
 Receiver is a component for android application development

which is used to receive the Broadcast Intent from the

Operating System. For e.g., if there is need to identify the

operating system boot event then it has to obtain Broadcast

Intent with the help of Broadcast Receiver [7].

 After receiving Intents, broadcast receiver sent it to numerous

applications. When it received the suitable Intent, Receivers

are activated and then perform in the background process to

control the event. The message passing mechanism of

http://cybersecurity.mit.edu/author/a_pinto/

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.14, July 2014

7

android is using the intents at the core. The major categories

of intents being used are: normal, sticky, and ordered.

Normal intents being broadcasted to all the receivers; ordered

intents are bound to be circulated one by one leaving it to any

application to stop the propagations whereas sticky intents

remain active even if received by all the receivers for the sake

of rebroadcasting to upcoming receivers [3].

2.1.4 Content Provider/Provider
Content Provider/Provider is a database i.e. it supplies data

storage for applications and share data with other applications.

For e.g., call history and list of contacts etc are managed [7].

Fig 1: Android permission request (left) and the

permissions of an installed application (right) [12]

Our main focus is to provide security in android smartphones

by implementing a permission-based security mechanism. All

the permissions are declared in AndroidManifest.XML file

and give a list of default permissions in

android.Manifest.permission class, and it also permits us to

declare new permissions in AndroidManifest.XML file. In an

application, the new permissions should be defined and

started into a system when installation of application is

completed on the system. Permission is authorized at the

installation time. To complete its task, there is requirement of

list of permissions for an application. This shows the set of

requested permissions on the screen with the intention that the

user can review them. As we know Permissions are based

upon all or nothing basis so if the user allows then the

installation process starts otherwise the application is not

installed on the smartphones. Accordingly, the security

principle implements the system in which they define that,

operations can perform by application only if they are

permitted to do so or it would affect others parts of the system

if they have right privilege to do so[11].

2.2 Android Manifest file
The Android application is stored as .apk file as signed

archive file. In .apk file, there is compiled codes of an

application, binary resources and also signed with the

developer’s certificate. This package also contains an XML

file, called the AndroidManifest.XML file [11]. The manifest

also describe extra metadata for the application like icons and

the version number of the application. This XML file is read

by the Android system during installation of the application

[18]. The information included in the manifest file is as

follow:

 Set of application sub-components: In Manifest File,

application is developed by a group of sub elements

for components like activity, service, content

provider, and broadcast receiver which we have

defined earlier [11]. All Activity, Service and

Provider are statically announced whereas Receiver is

declared dynamically within the file [18].

 Set of permission declarations: Permission element is

used to declare permission in an application like

Access Coarse Location for accessing information

about location of device. The permission is appended

to a system after the installation of application [11].

 Set of permissions expected to be granted: An

application uses <uses-permission> element for listing

all the permissions which are required to complete its

task. All the lists of permission are requested and

shown on the screen while the installation time. It is

depend upon the user either allows the installation by

granting all the requested permissions or aborts it. In

XML file, different terms are used for the requested

permissions at the installation time i.e. requested-

permissions and use-permissions is used for the

permissions after being granted in the application.

 Set of permissions used for protection: In the XML

file, android: permission attribute is used by

application element and component elements. All the

permissions required by the application are listed

down in the AndroidManifest.XML file. The

permission access could be asked for either the whole

application i.e. in the application attribute or it could

be asked by the developer for individual components

of the application i.e. by the services, activities or

broadcast receivers registered in the application. That

is the reason there is need of checking the permissions

asked by the application in the manifest file as well as

evaluating the level at which it is asked [11].

2.3 Protection level
The protection level determines how the permission is

granted. The Android supports 4 protection levels for

permissions: level 0 to 3, i.e. normal, dangerous, signature,

and signatureOrSystem [11].

 Level-zero (0) permissions or named as normal

permissions which create a low-risk factor and

automatically granted by the system because these are

not seen or we can say it is hidden in a folded list of

option on the screen and normally it only affect the

applications scope. Example are VIBRATE and SET

WALLPAPER etc [10].

 Level-one (1) permissions or dangerous permissions

which poses a higher-risk permissions and it shown

on the screen at the installation time of application,

For example permit costly access to service like

starting phone calls or usage of Internet or usage of

devices sensors, or sensitive user data. A noticeable

permission is the permission to examine the log files

on dangerous-level [10].

 Level-two (2) permissions or signature permissions

are only allowed if the application that is being

installed, is signed by the private key corresponding to

the same certificate as the application that initially

defined this permission. These permissions can be

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.14, July 2014

8

used by developers, e.g., to distribute information

between their particular application, while avoiding

applications of other developers to gain access to this

information. So even if the user would consent,

signature permission cannot be allowed to

applications signed with the private key

corresponding to a different certificate [10].

 Level-three (3) permissions or signatureOrSystem

permission can be allowed by the system to

applications that are included in the systems image, or

by applications that have been signed with the

identical certificate as the system image. Highest

category of permissions are preserved for a handset of

manufacturers and Operating System developers.

Representatives of the highest category are the

permissions to install new application (packages) or to

change security settings [10].

3. MALWARE AND ITS TYPES
 Moser et al explained the definition for Malware in which he

defines that the Software that “deliberately fulfills the harmful

intent of an attacker” is normally referred to as malware or

malicious software. Malware is generated by merging the

words ‘malicious’ and ‘software’[4]. There are different types

of malware like “adware”, “virus”, “worm”, “spyware” or

“Trojan horse” etc which are used to categorize malware

samples that show identical malicious behavior [1].

In this section, a brief summary for the different groups of

malware programs which have been observed in the wild.

3.1 Viruses
Small program with dangerous intent which has capability to

repeat itself is referred to as Virus. Virus code gets executed

automatically, Whenever file is run. It may spread through

any medium like network or corrupted media like USB drives,

floppy disks to uninfected computer [4].

3.2 Worms
Worms are programs which has capability of replicating their

programs. It makes use of network to transmit replica of itself

to other systems invisibly without authorization of user. It

may also affect the network by consuming its bandwidth. It

does not require the support of any file unlike virus and

worms. It may encrypt files, delete files, or send junk email.

Examples of Worms are My Doom, Blaster, Sasser, Melissa

etc [4].

3.3 Spyware
It is a combined phrase for software which observes and

collects personal information about the user such as the email

address, credit card number, pages frequently visited, and key

pressed by user etc. Spyware usually comes into a system

when free or trial softwares are downloaded [4].

Spyware are basically of two types: Commercial spyware and

malicious spyware. Commercial spywares are oriented

towards targeting a specific user and the installation process

of the spyware is manual whereas the malicious spyware

covertly steals data and transmits it to the third party just as

the desktop version of the spyware works.

CarrierIQ is an example of commercial spyware which has

been used by many handset manufacturers and network

operators. This software is pre-installed on the mobile devices

to gather data about all the activities done on the device like

web searches, firmware, battery performance and application

performance to allegedly increase the customer satisfaction by

logging dropped calls and similar information. The issues

related to CarrierIQ are that the user is not aware whether it is

installed or not, furthermore even if the user knows about the

existence of the spyware he/she cannot uninstall it without

rooting the whole operating system. Additionally, there was

no way for the normal users to identify what information the

vendors deemed necessary to increase the user experience

[12].

3.4 Adware
When malicious software is installed or application is used,

Adware itself plays, displays, or downloads advertisements to

a computer. Advertising-supported software or Adware code

is mostly embedded into free software. Peer-to-peer clients

and free games such as KaZaa, BearShare etc are examples of

adware [4].

4. DETECTION PROCESS OVERVIEW
 In this process, we propose an approach which involves three

way mechanism to detect the spyware so that we can enhance

security to the end-users’ private data. The pre- requisite of

the approach involves two initial setup steps where the

location of the installed application is found and then the apk

file is reverse engineered. The hybrid approach of using all

three approaches collectively is explained here step by step:

4.1 Application Description
 As we know, when developer develops any application then

they make description about that application so that end-user

can easily understand the application features and its

functionality. When end-user checks any application from

play-store then they visualize the description about that

particular application. Our main focus is on description of the

application because description is the only source that helps

the end-user to understand about that applications

functionality.

In Android OS permissions are declared in XML File.

Permissions are all or nothing i.e. either users allow all

requested permissions or refuse all of them without

installation of application. The information is given to the

end-user about those permissions, which their application

needs according to the developer thinking, but does not gives

information about those permissions which the application

actually uses behind the user interface [17]. Because

unauthorized user declare the extra permissions for their

personal usage or for stealing the personal information of end-

user and end-user cannot understand it. Our main purpose is

to detect the spyware and adware according to the given

description so that we can prohibit the harmful impact of

unauthorized users and provide safety to end-users. This can

be done by mapping of required Permission of the application

with Static Permission Database [16].

4.2 Graphical Layout
 A layout defines the visual structure for a user interface.

Android Development Tool provides a lot of features to

permit us to design and make our application’s user interface.

A lot of functionalities are accessed by opening one of our

application’s XML layout files in Eclipse which is in the

graphical layout editor [13].

An Android layout is a class that controls organizing the way

its children show on the screen. There are different types of

standard layouts like RelativeLayout, LinearLayout,

FrameLayout, AbsoluteLayout, TableLayout. In this Paper,

we describe only FrameLayout which is related to our work

[14]. Frame Layout is designed in such a manner so that it can

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.14, July 2014

9

show a single item to block out an area on the screen. It is

applied to grasp a single child view, because it can be difficult

to arrange child views in a way that's scalable to different

screen sizes without the children overlapping each other [15].

FrameLayout becomes more useful when elements are unseen

and displayed programmatically. Attribute android:visibility is

used in the AndroidManifest.XML to hide particular

elements. It can call by using the code setVisibility to achieve

the same thing. There are three types of visibility values are

visible, invisible (does not display, but still takes up space in

the layout), and gone (does not display, and does not take

space in the layout) [14].

Due to its useful feature i.e. elements are hidden and

displayed programmatically, unauthorized user take the

advantage of this feature and steal the personal information of

user. But some malicious applications uses this feature and

place the Camera preview object in a Frame Layout and place

another child view to block the visibility of camera preview

which could hence use either the front or rear camera to take

user images. This may be compromising to the user at large

number of situations. In this paper our second proposed way

in which we check the frame layout and all of its hidden

element.

4.3 Source Code Analysis
In source code analysis, we check all objects i.e. declared in

its java file are properly used according to their description or

not. If not then there is chances that malware is existed in the

application and use the personal information for their own

purpose.

5. CONCLUSION
In this paper, we are proposing the three way method by

permission mapping, Frame layout detection and source code

analysis to indicate presence of spyware in an application. A

weight is attached to the application at each level based upon

the severity and if the application crosses the threshold limit

an notification is thrown to the user. This enhanced user

understanding for making right decision about an application

and enhanced the security of user’s personal data.

6. REFERENCES
[1] Egele, Manuel, Theodoor Scholte, Engin Kirda, and

Christopher Kruegel. "A survey on automated dynamic

malware-analysis techniques and tools." ACM

Computing Surveys (CSUR) 44, no. 2 (2012): 6.

[2] Blasing, Thomas, Leonid Batyuk, A-D. Schmidt, Seyit

Ahmet Camtepe, and Sahin Albayrak. "An android

application sandbox system for suspicious software

detection." In Malicious and Unwanted Software

(MALWARE), 2010 5th International Conference on, pp.

55-62, IEEE, 2010.

[3] A.pinto, “Android Malware 400% increase” [Available

online]: http://cybersecurity.mit.edu/2012/11/android-

malware-400-increase/.

[4] Vinod, P., R. Jaipur, V. Laxmi, and M. Gaur. "Survey on

malware detection methods." In Proceedings of the 3rd

Hackers’ Workshop on Computer and Internet Security

(IITKHACK’09), pp. . 74-79. 2009

[5] Mohd Afizi, Mohd Shukran, Wan Sharil and Sham Bin

Sharif, “Android Augmented Reality System In Malaysia

Military Operations – Unit Positions.” in Australian

Journal of Basic and Applied Sciences, Vol. 6, Issue 8,

p79, Aug2012.

[6] Sharma Sumit, Rohitt Sharma, Paramjit Singh, and

Aditya Mahajan. "Age Based User Interface in Mobile

Operating System." arXiv preprint

arXiv:1205.1687 (2012).

[7] Agematsu, Harunobu, Junya Kani, Kohei Nasaka,

Hideaki Kawabata, Takamasa Isohara, Keisuke

Takemori, and Masakatsu Nishigaki, "A Proposal to

Realize the Provision of Secure Android Applications--

ADMS: An Application Development and Management

System." In Innovative Mobile and Internet Services in

Ubiquitous Computing (IMIS), 2012 Sixth International

Conference on, pp. 677-682, IEEE, 2012.

[8] Nema Behutiye, Woubshet. "Android ECG Application

Development." (2012).

[9] Features of Samsung Galaxy S5 [Available Online

http://www.gsmarena.com/samsung_galaxy_s5-6033.php

[10] Satpal, Nitin B. "Enhancing Permission Model of

Android." PhD diss., Indian Institute of Technology

Bombay, 2013.

[11] Shin, Wook, Shinsaku Kiyomoto, Kazuhide Fukushima,

and Toshiaki Tanaka. "A formal model to analyze the

permission authorization and enforcement in the android

framework." In Social Computing (SocialCom), 2010

IEEE Second International Conference on, pp. 944-951.

IEEE, 2010.

[12] Boksasp, Trond, and Eivind Utnes. "Android apps and

permissions: Security and privacy risks." (2012).

[13] The Android Developer’s Guide Graphical Layout

[Available Online]

http://developer.android.com/tools/help/adt.html#graphic

al-editor/

[14] Learn Android- Tutorials For Developing With Android

[Available Online] http://www.learn-

android.com/2010/01/05/android-layout-tutorial/

[15] The Android Developer’s Guide – Frame Layout

[Available Online]

http://developer.android.com/reference/android/widget/F

rameLayout.html

[16] The Android Developer’s Guide - Android Manifest

Permissions [Available Online]

http://developer.android.com/reference/android/Manifest.

permission.html

[17] Au, Kathy Wain Yee, Yi Fan Zhou, Zhen Huang,

Phillipa Gill, and David Lie. "Short paper: a look at

smartphone permission models." In Proceedings of the

1st ACM workshop on Security and privacy in

smartphones and mobile devices, pp. 63-68. ACM, 2011.

[18] Android Development Tutorial [Available Online]

http://www.vogella.com/tutorials/Android/article.html

[19] Cisco Visual Networking Index: Global Mobile Data

Traffic Forecast Update, 2013-2018, White Paper,

February 5, 2014.

[20] Kaur, Parmjit, and Sumit Sharma. "Google Android a

mobile platform: A review." In Engineering and

Computational Sciences (RAECS), 2014 Recent

Advances in, pp. 1-5. IEEE, 2014.

IJCATM : www.ijcaonline.org

