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ABSTRACT

A Connected graph G is a Hamiltonian lacesble if there exists
in G aHamiltonian path between every pair of verticesin G at
an odd distance. G is aHamiltonian-t-Laceable (Hamiltonian-
t*-Laceable) if there exists in G a Hamiltonian path between
every pair (at least one pair) of vertices at distance‘t’ in G. 1<
t < diamG. In this paper we explore the Hamiltonian-t*-

laceability number (| *(t)) of graph L (G) i.e., Line Graph of

G and aso explore Hamiltonian-t*-Laceable of Line Graphs
of Sunlet graph, Helm graph and Gear graph for t=1,2 and 3.
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1. INTRODUCTION

All graphs considered here are finite, simple, connected and
undirected graph. Let (G =V (G), E(G)) be a graph.

|V(G)| and |E(G)| are called the order and the size of G

respectively. The order of G denoted by O(G) is the
cardinality of vertices of G. The distance between u and v
denoted by d(u,v) is the length of the shortest u-v path in G.
G is a Hamiltonian path between every pair of the distinct
verticesin it at an odd distance. G is aHamiltonian-t-laceable
if there exists a Hamiltonian path between every pair of the
vertices u and v in G with the property d(u,v)=t, where t isa
positive integer, such that 1< t < diamG.

The Line graph L(G) of G has the edges of G as its vertices
and two vertices of L(G) are adjacent if and only if they are
adjacent in G. In [3],[5],[6] and [7] the authors have studied
Hamiltonian-t-laceability and Hamiltonian-t*laceability of
various graph structures. In this paper we explore the
Hamiltonian-t*-laceability number of Line graph L(G) and
also Hamiltonian-t*-laceability of Line graph L(G) of the sun
let graph, Helm graph and Gear graph.

DEFINITION 1

The Line graph L(G) of G is the graph of E in which
X,y € E are adjacent as vertices if and only if they are

adjacent as edges in G. In Figure 1, we display the graph G
and itsLine graph L (G).

L(G)

G
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DEFINITION 2

The Sun let graph S, is a graph with cycle where by each
vertex of the cycle is attached to one pendent vertex. Each
sun let graph contains r-vertices with r-edges.

In Figure 2, we display the Sun let graph S,
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DEFINITION 3

The wheel graph with n spokes, W, is the graph that consists
of an n-cycle and one additional vertex, say u, which is
adjacent to all the vertices of the cycle.

In Figure 3, we display the Wheel graph W.
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Figure3

DEFINITION 4

The Helm graph H, is a graph obtained from an n-wheel
graph by adjoining a pendent edge at each node of the cycle.
In Figure 4, we display the Helm graph H,..
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The Gear graph G, is a wheel graph with a vertex added
between each pair adjacent graph vertices of the outer cycle.
The Gear graph G, has 2n+1 vertices and 3n edges.

In Figure 5, we display the Gear graph G,.

Figure5

DEFINITION 6
For a connected graph G, the t-laceability number | )

(t*laceabilty number | *(t)) is defined as the minimum

number of edges to be added to G such that there exist a
Hamiltonian path between every pair (at least one pair) of
vertices u and v in G with the property d(u, v) =t wheret is
positive integer.
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2. RESULTS

Theorem 2.1: The Linegraph L (G), where
G=S,, the sun let graph is Hamiltonian-t*-
laceable for t=1 and 2if odd n = 3, where 1<

t < diamG.
Proof: Consider the graph G=S,, the Line graph L(S,) denote
the vertices L(G) by

a,,b,a,,b,,a,,b,,——-a,,,b,,,a,,b, fort=1,
2Case(i): For t=1
InL(Sy, wefind that d(a,,b,) =1. and the path

P : (ai’bn) o (bn’an) o (an’bn—l) v

(bn—1’ an—1) U (an—l’ bn—z) o

(an—z ' bn—3) U—=———- (o

(bn—G ' anfe) U———===—- o (bs’a3) o
(a5,b,) U (b,,a,) U (a,,b,) is a Hamiltonian path.
Hence there exists a Hamiltonian path between at least one

pair of vertices such thatd(@,,b,) =1. Therefore G is a
Hamiltonian-t*-laceable for t=1.

Figure 6: Hamiltonian path from the vertex a;tob,in Line
graph L[Sy]

Case (ii): For t=2

InL(Sy), wefind that d(a,,8,) = 2. and the path
P : (aﬂ.’bn) o (bn’an) % (an’bn—l) o

(b, 1,2, )V (a, 4,0, ,)u

(an—21bn—3) V=== o

(b6 8 6)V———————~ v (b;,a;) v

(ag,b,) v (b,,b) U (b, a,)

is a Hamiltonian path. Hence there exists a Hamiltonian path
between a least one par of vertices such that

d(a;,a,) =2.. Therefore G is a Hamiltonian-t*-lacezble
for t=2.
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Figure 7: Hamiltonian path from the vertex a; toayin Line
graph L[S7]

Lemma 2.1.1: The Line graph L(G), where G=5,

is a Hamiltonian-t*-laceability number if (I * (t))

=1for t=2if odd n=3 and t=3 if odd n = 5 where

I<t < diamG.
Proof: Consider the graph G=S, itsline L(S;). Here we need
to establish the following cases to show that, Hamiltonian-t*-

lacesbility number if (I * (t)) =1 for t=2 if n > 3 and t=2
and3ifn=5
Case(i): Fort=2

InL(S), wefind that d(a,,b,) = 2and the path
P : (al’bl) o (bl’bn) o (bn’an) o (an’bn—l) o
(b, a1V (a,4,b,,)u

(bn—Z ' an—z) U-—-U (an—9 ' bn—lo) o
(020,30 20) Y (A 405Ny 1) Y (B, 45,8, 1) U
(@ .0y p)V———————~ U (b, a5) v

(a;,a,) U (a,,b,) is aHamiltonian path. Hence there
exists a Hamiltonian path between at least one pair of vertices
such thard(ay,0,) =2 Therefore G is a Hamiltonian-t*-
laceable for t=2 and Laceability number (I * (t)) =1 for t=2.

a

Figure 8: Hamiltonian path from thevertex a; to b, in
Linegraph L[S]

Case(ii): Fort=3ifoddn=5
In L(S,), we find that d(a;,bs)=3 and the path
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P:(a.,b)v (b,a,)v (a,,b,) U (b,,a,) U

(as,8,) v (a,,b,) v —--u(a,,,b,5)v
b sa, ) v-—————- U (by_y0: 85 30) Y
(8p10:0n2) Y (B g8, 33) U (84,0, 42) Y
(@ by )V ———————— v (bs,b,) U

(b,,a,) (a,,a;) is a Hamiltonian path. Hence there

exists a Hamiltonian path between at least one pair of vertices
such that d(a;,b3)=3. Therefore G is a Hamiltonian-t*-laceable

for t=3 and Laceability number (I * (t)) =1 for t=3.

Figure 9: Hamiltonian path from the vertex a; to bsin
Linegraph L[S/]
Theorem 2.2: The Linegraph L (G), where
G=S,, the sun let graph is Hamiltonian-t*-
laceable for t=1,2 and 3 if even n = 4, where
I<t<diamG.

Proof: Consider the graph G=S,, the Line graph L(S,) denote
the vertices L(G) by

a,,b,a,,b,,a,,b,,——-a,,,b,,,a,,b, fort=
12and3
Case(i): Fort=1

In L(S,), wefind that d(a;,b,;)=1 and the path
P . (al’bn) o (bn’an) v (an’bn—l) %

(bn—l’ an—l) o (an—l’ bn—z) o (bn—z ’ an—z) o

(a5,b,) U (b,,a,) U (a,,b,) is a Hamiltonian path.
Hence there exists a Hamiltonian path between at least one
pair of vertices such that d(ai,bl) =1. Therefore G is a
Hamiltonian-t*-laceable for t=1.
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Figure 10: Hamiltonian path from the vertex a; tob,in
Linegraph L[Sg]
Case (ii): For t=2
In L(S,), we find that d(a;,a)=2 and the path
P : (ai’b].) % (bl’bn) v (bn’an) o (an'bn—l) v

(bnfl’ an—l) o (anfj_! bn,z) Jy—-————— W
(@50 6) 0 —————— U
(bn—14 ’ an714) Jg-——--—"——— (W]

(b,,a,) U (a,,b;) U (b, a,) U (a5,b,)

U (b,,a,) is a Hamiltonian path. Hence there exists a

Hamiltonian path between at least one pair of vertices such
tha d(a,,8,) =2. Therefore G is a Hamiltonian-t*-
laceable for t=2.

Figure 11: Hamiltonian path from the vertex a; to a,in
Linegraph L[]

Lemma 2.2.2: The Line graph L(G), where G=5,

is a Hamiltonian-t*-laceability number, (I * (t))
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=1 for t=2 and 3 if even n = 4, where 1< t <

diamG.
Proof: Consider the graph G=S,, itsline L(S,). Here we need
to establish the following cases to show that, Hamiltonian-t*-

laceability number if (I * (t)) =1fort=2and3ifn=4

Case (i): For t=2
In L(S,), wefind that d(a;,b,)=2 and the path

P . (al’bn) o (bn’an) v (an’bn—l) o
(b1,b ) v (b, a,5) v (&, ,,0,5) v
-———\V (bn—B’an—B) %

(@, 6,0, 9) V————~ U (0,41,0,40) U
(010,85 30) Y
(an—lo ) bnflz) === U (b4 ) a4) o

(a5, b;) v (bs,85) L (5,8,) V (3;,1,)

U (b,,b,) is a Hamiltonian path. Hence there exists a
Hamiltonian path between at least one pair of vertices such
thatd(a,,b,) =2. Therefore, G is a Hamiltonian-t*-
laceable for t=2 and Lacesbility number (I * (t)) =1 for t=2.

d;

ay

Figure 12: Hamiltonian path from the vertex a; to a,in
Linegraph L[Sg]

Case (ii): For t=3
In L(S,), wefind that d(a;,bs)=3 and the path

P:(a,b)uv(b,a,)u (a,,b,)u (b,,a;) U
(a3’bn) % (bn ’ an) o (bn—l’an—l) %
(anflybnfz)u _____ % (aeibs)u (b5,a5)u
(as,b,) v (by,8,) v (a,,a,) U (85,0;)

is a Hamiltonian path. Hence there exists a Hamiltonian path
between a least one par of verttices such that

d(a,,b;)=3. Theefore G is a Hamiltonian-t*-
Lacesability number (I * (t)) =1 for t=3.
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Figure 13: Hamiltonian path from the vertex a; to bsin
Linegraph L[]

3. Remark
If n> 4, the distance from d(a;,as)=3 is a Hamiltonian-t*-

laceable for t=3 and its laceability number (I * (t)) =1 for
t=3, then the path

P:(a,b)w(b,b) v (b,.a) v (a,,b, ;) v
(an 1lbn72)U _____ Y (ae’b5)u (b5,a5)u
(as,b,) v (b,,a,) L (a,,by) U (b;,b,) U
(b,,a,) U (a,,a,) isaHamiltonian path

Figure 14: Hamiltonian path from the vertex a; to agin
Linegraph L[]

Theorem 2.3: TheLine graph L (G), where
G=H,, n = 3, the Helm graph is
Hamiltonian-t*-laceable for t=1,2 and

3,with diameter 3.
Proof: Consider the graph G=H,,, its Line graph is denoted by

L(H,) denote the vertices of L(G) by &,,b,,C,, &,,b,,C,,
as’b37C3’ a4’b4’C41 _______ ’an—l’bn—llcn—l’
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a,,b,,C,. Hencewe need to establish the following

claims to show that G is a Hamiltonian-t*-laceable for t= 1,2
and 3 with diameter 3.
In Figure 15, we display the Helm graph H,.

Figure 15

Claim2.3.1: For t=1

Case (i): If nisodd

InL(H,), wefind that d(@,,C,;) =1and the path
P:(a,b) v (b,b,) v (b,.c,) v (c,.a,) U

(@, b,4)w (b4, Cy) U (Cyiay )V
(8y4,0,2) W (B, 2:Co2) U (Cozh@yp) Y

(@, 2,0,5) v (B,5.C5) v (€58, 5) Y
————u (b;,c) v (c;,85) U (ag,b,) L
(bz,az)u (az,cz)u (CZ,Cl) is a Hamiltonian path.
Hence there exists a Hamiltonian path between at least one

pair of vertices such that d(ai,cl) =1. Therefore G is a
Hamiltonian-t*- Laceable for t=1.

a; 2

a, ER

Figure 16: Hamiltonian path from the vertex a; toc;in
Linegraph L[Hs]

Case (ii): If niseven
InL(H,), wefind that d(@,,C,;) =1and the path
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P:(a,b,) v (by.a,) v (a,,c)v (c,.b, ;) U
by a, 1) (a,4,Cq) U (Coyiby ) W
(bn—Z’an—z) U-—-—-U (b41a4) o (a4’C4) %
(¢4,0,) Y (b, b)) U (by,a5) v (a5,¢5) U

(C5,b,) U (by,8,) U (a,,¢,) v (C,,b)

O (bz,Cl) is a Hamiltonian path. Hence there exists a
Hamiltonian path between at least one pair of vertices such

thatd(a,,C,) =1. Therefore G is a Hamiltonian-t*-
Laceable for t=1.

a

Figure 17: Hamiltonian path from the vertex a; toc;in
Linegraph L[Hg]

Claim2.3.2: For t=2

Case (iii): If nisodd

InL(H,), wefind that d(@,,a,) = 2 and the path
P:(a,c)u(c,b,) v (b,,c,) v (c,,a,)u
(a,,0,4)w (b, 4,€, 1)V (Cryy8y 1)V
(@na:by2) Y (B,5,C )V (€, a,,) Y
——————— UCp518y5) U= == ==

(by,c5) L (C5,a5) L (a5,b,) U (by,C)) U
(Cz,bl) u(bl,az) is a Hamiltonian path. Hence there
exists a Hamiltonian path between at least one pair of vertices

such that d(8,,8,) = 2Therefore G is a Hamiltonian-t*-
Laceable for t=2.
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a, 3z

a, a;

Figure 18: Hamiltonian path from thevertex a; to ayin
Linegraph L[Hs]

Case (iv): If niseven

InL(H,), wefind that d (8, ,@,) = 2 and the path
P:(a,b,)v (b,,c) U (c,.a,) v (a,,b, 1) v
(0,1,Chn) Y (€ an) v (84,0, ) U

(b, .Cy2)w (Crzha, )V
____U(bn74’an74)u _____ U (b4’C4)u
((-:41a4)U (614’b3)u (b3,C3) Y (C3’a3) o
(a3,b,) v (b,,c,) U (C,,c) v (¢, b)) U

(b, a,)

is a Hamiltonian path. Hence there exists a Hamiltonian path
between a least one par of verttices such that

d(a;,a,) = 2 d(ay,a)=2. Therefore G is a Hamiltonian-t*-
Laceable for t=2.

a3

CH

Figure 19: Hamiltonian path from the vertex a; to a,in
Linegraph L[Hg]

Claim3: For t=3

Case (v): If nisodd

InL(H,), wefind that d(&a,,8,) = 3 and the path
P:(a,b) v (b,b,) v (b,,c,) v (c,,a,) v

(an ' bn—l) o (bn—l’ an—l) o (an—l’ bn—z) o
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(bn—2 ' Cn—z) % (Cn—2 ' an—z) % (an—21bn—3) o
————U(Crp @) IV~ VU (0;,¢5) v
(C5,Cy) U (Cy ) U (a,,0,) U (b, a,)

is a Hamiltonian path. Hence there exists a Hamiltonian path
between a least one par of vertices such that

d(a;,a;) = 3 d(a,a)=3. Therefore G is a Hamiltonian-t*-
Laceable for t=3.

L]

a3

Figure 20: Hamiltonian path from the vertex a; tob,in
Linegraph L[Hg]

Case (vi): If niseven

InL(H,), wefindthat d(a,,8,) = 3 and the path

P . (a'l’bn) o (bn’an) o (an’Cn) o (Cn1bn—1) %
(bn—l’ a‘n—1) % (an—l’ Cn—l) o (Cn—l' bn—z) %

bz a, )V (2, ,,C )Y
-—--u(a, ;¢ )u-————- v (b,,a,) v
(a4,C4)U ((:4’b5)u (b5,a5)u _______ Y
(c,,b) v (b,c) v (c,c5) v (Cya5)

is a Hamiltonian path. Hence there exists a Hamiltonian path
between a least one par of vertices such that

d(a,,a,) = 3. Therefore G is a Hamiltonian-t*- Lacesble
for t=3.
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Figure 21: Hamiltonian path from the vertex a; to agin
Linegraph L[Hg]
Theorem 2.4 The Line graph L (G), where
G=G,, n = 4, the Gear graph is
Hamiltonian-t*-laceable for t=1,2 and 3,

with diameter 3

Proof: Consider the graph G=G,,, its Line graph is denoted by
L(G,) denote the vertices of L(G) by
a,,a,,a;,a,,————— ,8,_1,8, . Hence we need to
establish the following claims to show that Gisa
Hamiltonian-t*-laceable for t= 1,2 and 3 with diameter 3.
Claim 1: For t=1

Case(i): If nisodd

InL(Gy), wefindthat d(a,,a,) =1 and the path

P (85,820 2) Y (85021 8504) Y (B 3,850 4) Y
(Bzng:@39) V——————— U (&, 855)
(A5:85n,5) Y ————U(yy,a5) U ————— i
(8g,8,0) Y (A, 85) U (85,3,) U (85,85, 1) Y
(a,,,,8,) U (8,,8,)is a Hamiltonian path. Hence
there exists a Hamiltonian path between at least one pair of

vertices such that d(a,,a,) =1. Therefore G is a
Hamiltonian-t*- Laceable for t=1.

Figure 22: Hamiltonian path from the vertex agto a; in
Linegraph L[G/]

Case (ii): If niseven

InL(Gy), wefindthat d(a,,a,) =1 and the path
P:(ay8502) Y (@on-2:801) Y (B4, 85,) Y
(B2 8on11) Y (@on11:Boni2) Y (B Bopis) Y
____U(ais’am)u _____ U(6‘8’37)u
(a,85)v————- v (a,,85) v (a3,8,) Vv

(az,al)is a Hamiltonian path. Hence there exists a
Hamiltonian path between at least one pair of vertices such
that d(a,,a,) =1. Therefore G is a Hamiltonian-t*-
Laceable for t=1.

23



ay ap

a;

a8

a
dg 4

Figure 23: Hamiltonian path from the vertex agto a; in
Linegraph L[Gg]

Claim2.4.1; For t=2

Case(i): If nisodd

InL(Gy), wefindthat d(a,,a,) = 2 and the path
P:(ag,a)V (85,8, ,) Y (A 2,85, 1) Y
(a2n—11 a2n) o (a2n ’ a2n+1) -

— === U (a5,a,) Y (y,a5) Y (a5,8,) U
(. 81,) Y (A, 8) Y (ay,8) Y (a,35)
(ag,3,) v (a7,3,) U (a5,85) L (85,3,) U
(a,,a3) U (a;,a,) is a Hamiltonian path. Hence there
exists a Hamiltonian path between at least one pair of vertices
such that d(@,,a,) = 2. Therefore G is a Hamiltonian-t*-
Laceable for t=2

Figure 24: Hamiltonian path from the vertex agto a,in
Linegraph L[G/]
Case (ii): If niseven
InL(Gy), wefindthat d(@,,a,) = 2 and the path
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P:(ag,a) v (8,8, )Y (3 2,8504) Y

————U (a5, a,) Y (A, 8,5) Y (a3, 8,) Y
(8y2,811) Y (B43,850) VU (B9, 8) U (35,85)
(ag,8;) v (87,85) Y (85,85) U (85,8,)
(a,,8;) U (a;,a,) is a Hamiltonian path. Hence there
exists a Hamiltonian path between at least one pair of vertices
such that d(@,,a,) = 2. Therefore G is a Hamiltonian-t*-
Laceable for t=2.

Figure 25: Hamiltonian path from the vertex agto a,in
Linegraph L[Gg]

Claim3.4.2: For t=3

Case (i): If nisodd

InL(Gy), wefind that d(&,,a,) = 3 and the path
P:(as,a)u (a,a,)V (a,,a,, ) v
(B5n118502) Y (Qgn2 s 7) Y (Bons7 80 3) Y
(azn_3’a2n_4) U= ===

______ U (ayy,843) Y

— === U (Qyn.3:8) Y (34, 84) Y
O y
(Qnior@ppyg) I —————— U (a;,85) Y

(8g,35) U (85,3,,) VU (8,,8,) U (8,,8;)is  a
Hamiltonian path. Hence there exists a Hamiltonian path
between a least one par of vertices such that

d(a,,a;) = 3. Therefore G is a Hamiltonian-t*- Laceable
for t=3.
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Figure 26: Hamiltonian path from the vertex agto agin
Linegraph L[Gg]

Case (ii): If niseven

InL(G,), wefindthatd(a,,a,) = 3 and the path
P:(ag,a) v (a,8,) (a,,8,,) v
(Bzn1:8on-2) Y (8025 8504) Y (Bgy gy Bpn3) Y
(B9, g) Y (g, 85, 5) Y

______ U (a7, 8y6) Y (846, 35) U
(Bus:834) Y (811 820,5) Y (Bpisy Bonia) Y
(BpniarBg) W—————— U (@n1318ps2) Y
(a97a8) o (a87a7) o (a7’a6) o (aﬁ’a2n+1) %

(Agni1r800) Y (A5, 85) U (85,8,) U (8,,8;) isa
Hamiltonian path. Hence there exists a Hamiltonian path
between a least one par of vertices such that

d(a,,a;) = 3. Therefore G is a Hamiltonian-t*- Laceable
for t=3.

Figure 27: Hamiltonian path from the vertex agto agin
Linegraph L[Gg]

IJCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume 98- No.12, July 2014

4, CONCLUSION

In this present study, the concept of Hamiltonian-t*-
laceability in line graphs and t*-laceability number ( are
investigated. In our further work, Laceability of total graphs
of other kind isto be proposed.
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