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ABSTRACT
A Connected graph G is a Hamiltonian laceable if there exists
in G a Hamiltonian path between every pair of vertices in G at
an odd distance.  G is a Hamiltonian-t-Laceable (Hamiltonian-
t*-Laceable) if there exists in G a Hamiltonian path between
every pair (at least one pair) of vertices at distance‘t’ in G. 1≤
t ≤ diamG. In this paper we explore the Hamiltonian-t*-

laceability number  )*( t of graph L (G) i.e., Line Graph of

G and also explore Hamiltonian-t*-Laceable of Line Graphs
of Sunlet graph, Helm graph and Gear graph for t=1,2 and 3.
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1. INTRODUCTION
All graphs considered here are finite, simple, connected and
undirected graph.  Let ))(),(( GEGVG  be a graph.

)(GV and )(GE are called the order and the size of G

respectively.  The order of G denoted by O(G) is the
cardinality of vertices of G.  The distance between u and v
denoted by d(u,v) is the length of the shortest u-v path in G.
G is a Hamiltonian path between every pair of the distinct
vertices in it at an odd distance.  G is a Hamiltonian-t-laceable
if there exists a Hamiltonian path between every pair of the
vertices u and v in G with the property d(u,v)=t, where t is a
positive integer, such that 1≤ t ≤ diamG.

The Line graph L(G) of G has the edges of G as its vertices
and two vertices of L(G) are adjacent if and only if they are
adjacent in G.  In [3],[5],[6] and [7] the authors have studied
Hamiltonian-t-laceability and Hamiltonian-t*laceability of
various graph structures.  In this paper we explore the
Hamiltonian-t*-laceability number of Line graph L(G) and
also Hamiltonian-t*-laceability of Line graph L(G) of the sun
let graph, Helm graph and Gear graph.

DEFINITION 1
The Line graph L(G) of G is the graph of E in which

Eyx , are adjacent as vertices if and only if they are

adjacent as edges in G. In Figure 1, we display the graph G
and its Line graph L (G).

Figure 1

DEFINITION 2
The Sun let graph Sn is a graph with cycle where by each
vertex of the cycle is attached to one pendent vertex.  Each
sun let graph contains r-vertices with r-edges.

In Figure 2, we display the Sun let graph Sn

Figure 2

DEFINITION 3
The wheel graph with n spokes, Wn is the graph that consists
of an n-cycle and one additional vertex, say u, which is
adjacent to all the vertices of the cycle.
In Figure 3, we display the Wheel graph W6.
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Figure 3

DEFINITION 4
The Helm graph Hn is a graph obtained from an n-wheel
graph by adjoining a pendent edge at each node of the cycle.
In Figure 4, we display the Helm graph Hn.

Figure 4

DEFINITION 5
The Gear graph Gn is a wheel graph with a vertex added
between each pair adjacent graph vertices of the outer cycle.
The Gear graph Gn has 2n+1 vertices and 3n edges.
In Figure 5, we display the Gear graph Gn.

Figure 5

DEFINITION 6
For a connected graph G, the t-laceability number )(t

(t*laceabilty number )(* t ) is defined as the minimum

number of edges to be added to G such that there exist a
Hamiltonian path between every pair (at least one pair) of
vertices u and v in G with the property d(u, v) = t where t is
positive integer.

2. RESULTS
Theorem 2.1: The Line graph L (G), where
G=Sn, the sun let graph is Hamiltonian-t*-
laceable for t=1 and 2 if odd n ≥ 3, where 1≤
t ≤ diamG.
Proof:  Consider the graph G=Sn, the Line graph L(Sn) denote
the vertices L(G) by

nnnn bababababa ,,,,,,,,, 11332211  for t= 1,

2 Case (i): For t=1
In L(Sn), we find that .1),( 11 bad and the path

),(: 1 nbaP ),( nn ab  ),( 1nn ba

 ),( 11 nn ab  ),( 21 nn ba

 ),( 32 nn ba

 ),( 66 nn ab ),( 33 ab

),( 23 ba ),( 22 ab ),( 12 ba is a Hamiltonian path.

Hence there exists a Hamiltonian path between at least one

pair of vertices such that .1),( 11 bad Therefore G is a

Hamiltonian-t*-laceable for t=1.

Figure 6: Hamiltonian path from the vertex a1 to b1 in Line
graph L[Sn]

Case (ii): For t=2
In L(Sn), we find that .2),( 21 aad and the path

),(: 1 nbaP ),( nn ab  ),( 1nn ba

 ),( 11 nn ab  ),( 21 nn ba

 ),( 32 nn ba

 ),( 66 nn ab ),( 33 ab

),( 23 ba ),( 12 bb ),( 21 ab
is a Hamiltonian path.  Hence there exists a Hamiltonian path
between at least one pair of vertices such that

.2),( 21 aad .  Therefore G is a Hamiltonian-t*-laceable

for t=2.
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Figure 7: Hamiltonian path from the vertex a1 to a2 in Line
graph L[S7]

Lemma 2.1.1: The Line graph L(G), where G=Sn,

is a Hamiltonian-t*-laceability number if ))(*( t
=1 for t=2 if odd  n ≥ 3 and t=3 if odd n ≥ 5 where
1≤ t ≤ diamG.
Proof: Consider the graph G=Sn, its line L(Sn).  Here we need
to establish the following cases to show that, Hamiltonian-t*-
laceability number if ))(*( t =1 for t=2 if n ≥ 3 and t=2
and 3 if n ≥ 5
Case (i): For t=2

In L(Sn), we find that 2),( 21 bad and the path

),(: 11 baP ),( 1 nbb ),( nn ab  ),( 1nn ba

 ),( 11 nn ab  ),( 21 nn ba

 ),( 22 nn ab  ),( 109 nn ba

 ),( 1010 nn ab  ),( 1110 nn na  ),( 1111 nn ab

 ),( 1211 nn ba ),( 33 ab

),( 23 aa ),( 22 ba is a Hamiltonian path.  Hence there

exists a Hamiltonian path between at least one pair of vertices

such that 2),( 21 bad Therefore G is a Hamiltonian-t*-

laceable for t=2 and Laceability number ))(*( t =1 for t=2.

Figure 8: Hamiltonian path from the vertex a1 to b2 in
Line graph L[S5]

Case (ii): For t=3 if odd n ≥ 5
In L(Sn), we find that d(a1,b3)=3 and the path

),(: 11 baP ),( 21 ab ),( 22 ba ),( 32 ab

),( 3 naa ),( nn ba   ),( 32 nn ba

 ),( 33 nn ab  ),( 1010 nn ab

 ),( 1110 nn ba  ),( 1111 nn ab  ),( 1211 nn ba

 ),( 1211 nn ba ),( 45 bb

),( 44 ab ),( 34 aa is a Hamiltonian path.  Hence there

exists a Hamiltonian path between at least one pair of vertices
such that d(a1,b3)=3. Therefore G is a Hamiltonian-t*-laceable
for t=3 and Laceability number ))(*( t =1 for t=3.

Figure 9: Hamiltonian path from the vertex a1 to b3 in
Line graph L[S7]

Theorem 2.2: The Line graph L (G), where
G=Sn, the sun let graph is Hamiltonian-t*-
laceable for t=1,2 and 3 if even n ≥ 4, where
1≤ t ≤ diamG.
Proof:  Consider the graph G=Sn, the Line graph L(Sn) denote
the vertices L(G) by

nnnn bababababa ,,,,,,,,, 11332211  for t=

1,2 and 3
Case (i): For t=1
In L(Sn), we find that d(a1,b1)=1 and the path

),(: 1 nbaP ),( nn ab  ),( 1nn ba

 ),( 11 nn ab  ),( 21 nn ba  ),( 22 nn ab

 ),( 32 nn ba  ),( 33 nn ab

 ),( 66 nn ab  ),( 33 ab

),( 23 ba ),( 22 ab ),( 12 ba is a Hamiltonian path.

Hence there exists a Hamiltonian path between at least one

pair of vertices such that 1),( 11 bad . Therefore G is a

Hamiltonian-t*-laceable for t=1.
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 ),( 1211 nn ba ),( 33 ab

),( 23 aa ),( 22 ba is a Hamiltonian path.  Hence there

exists a Hamiltonian path between at least one pair of vertices

such that 2),( 21 bad Therefore G is a Hamiltonian-t*-

laceable for t=2 and Laceability number ))(*( t =1 for t=2.

Figure 8: Hamiltonian path from the vertex a1 to b2 in
Line graph L[S5]

Case (ii): For t=3 if odd n ≥ 5
In L(Sn), we find that d(a1,b3)=3 and the path

),(: 11 baP ),( 21 ab ),( 22 ba ),( 32 ab

),( 3 naa ),( nn ba   ),( 32 nn ba

 ),( 33 nn ab  ),( 1010 nn ab

 ),( 1110 nn ba  ),( 1111 nn ab  ),( 1211 nn ba

 ),( 1211 nn ba ),( 45 bb

),( 44 ab ),( 34 aa is a Hamiltonian path.  Hence there

exists a Hamiltonian path between at least one pair of vertices
such that d(a1,b3)=3. Therefore G is a Hamiltonian-t*-laceable
for t=3 and Laceability number ))(*( t =1 for t=3.

Figure 9: Hamiltonian path from the vertex a1 to b3 in
Line graph L[S7]

Theorem 2.2: The Line graph L (G), where
G=Sn, the sun let graph is Hamiltonian-t*-
laceable for t=1,2 and 3 if even n ≥ 4, where
1≤ t ≤ diamG.
Proof:  Consider the graph G=Sn, the Line graph L(Sn) denote
the vertices L(G) by

nnnn bababababa ,,,,,,,,, 11332211  for t=

1,2 and 3
Case (i): For t=1
In L(Sn), we find that d(a1,b1)=1 and the path

),(: 1 nbaP ),( nn ab  ),( 1nn ba

 ),( 11 nn ab  ),( 21 nn ba  ),( 22 nn ab

 ),( 32 nn ba  ),( 33 nn ab

 ),( 66 nn ab  ),( 33 ab

),( 23 ba ),( 22 ab ),( 12 ba is a Hamiltonian path.

Hence there exists a Hamiltonian path between at least one

pair of vertices such that 1),( 11 bad . Therefore G is a

Hamiltonian-t*-laceable for t=1.



International Journal of Computer Applications (0975 – 8887)
Volume 98– No.12, July 2014

20

Figure 10: Hamiltonian path from the vertex a1 to b1 in
Line graph L[S6]

Case (ii): For t=2
In L(Sn), we find that d(a1,a2)=2 and the path

),(: 11 baP ),( 1 nbb ),( nn ab  ),( 1nn ba

 ),( 11 nn ab  ),( 21 nn ba

 ),( 65 nn ba 
 ),( 1414 nn ab 

),( 44 ab ),( 34 ba ),( 33 ab ),( 23 ba

),( 22 ab is a Hamiltonian path.  Hence there exists a

Hamiltonian path between at least one pair of vertices such

that 2),( 21 aad . Therefore G is a Hamiltonian-t*-

laceable for t=2.

Figure 11: Hamiltonian path from the vertex a1 to a2 in
Line graph L[S8]

Lemma 2.2.2: The Line graph L(G), where G=Sn,

is a Hamiltonian-t*-laceability number, ))(*( t

=1 for t=2 and 3 if even  n ≥ 4, where 1≤ t ≤
diamG.
Proof: Consider the graph G=Sn, its line L(Sn).  Here we need
to establish the following cases to show that, Hamiltonian-t*-
laceability number if ))(*( t =1 for t=2 and 3 if n ≥ 4

Case (i): For t=2
In L(Sn), we find that d(a1,b2)=2 and the path

),(: 1 nbaP ),( nn ab  ),( 1nn ba

 ),( 21 nn bb  ),( 22 nn ab  ),( 32 nn ba

  ),( 88 nn ab

 ),( 98 nn ba  ),( 1011 nn bb

 ),( 1010 nn ab

 ),( 1210 nn ba ),( 44 ab

),( 34 ba ),( 33 ab ),( 23 aa ),( 12 ba

),( 21 bb is a Hamiltonian path.  Hence there exists a

Hamiltonian path between at least one pair of vertices such

that 2),( 21 bad .  Therefore, G is a Hamiltonian-t*-

laceable for t=2 and Laceability number ))(*( t =1 for t=2.

Figure 12: Hamiltonian path from the vertex a1 to a2 in
Line graph L[S6]

Case (ii): For t=3
In L(Sn), we find that d(a1,b3)=3 and the path

),(: 11 baP ),( 21 ab ),( 22 ba ),( 32 ab

),( 3 nba ),( nn ab  ),( 11 nn ab

 ),( 21 nn ba ),( 56 ba ),( 55 ab

),( 45 ba ),( 44 ab ),( 34 aa ),( 33 ba
is a Hamiltonian path.  Hence there exists a Hamiltonian path
between at least one pair of vertices such that

3),( 31 bad . Therefore G is a Hamiltonian-t*-

Laceability number ))(*( t =1 for t=3.
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Case (ii): For t=3
In L(Sn), we find that d(a1,b3)=3 and the path

),(: 11 baP ),( 21 ab ),( 22 ba ),( 32 ab

),( 3 nba ),( nn ab  ),( 11 nn ab

 ),( 21 nn ba ),( 56 ba ),( 55 ab

),( 45 ba ),( 44 ab ),( 34 aa ),( 33 ba
is a Hamiltonian path.  Hence there exists a Hamiltonian path
between at least one pair of vertices such that

3),( 31 bad . Therefore G is a Hamiltonian-t*-

Laceability number ))(*( t =1 for t=3.
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Case (ii): For t=3
In L(Sn), we find that d(a1,b3)=3 and the path

),(: 11 baP ),( 21 ab ),( 22 ba ),( 32 ab

),( 3 nba ),( nn ab  ),( 11 nn ab

 ),( 21 nn ba ),( 56 ba ),( 55 ab

),( 45 ba ),( 44 ab ),( 34 aa ),( 33 ba
is a Hamiltonian path.  Hence there exists a Hamiltonian path
between at least one pair of vertices such that

3),( 31 bad . Therefore G is a Hamiltonian-t*-

Laceability number ))(*( t =1 for t=3.
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Figure 13: Hamiltonian path from the vertex a1 to b3 in
Line graph L[S8]

3. Remark
If n ≥ 4, the distance from d(a1,a3)=3 is a Hamiltonian-t*-
laceable for t=3 and its laceability number ))(*( t =1 for

t=3, then the path

),(: 11 baP ),( 1 nbb ),( nn ab  ),( 1nn ba

 ),( 21 nn ba ),( 56 ba ),( 55 ab

),( 45 ba ),( 44 ab ),( 34 ba ),( 23 bb

),( 22 ab ),( 32 aa is a Hamiltonian path

Figure 14: Hamiltonian path from the vertex a1 to a3 in
Line graph L[S8]

Theorem 2.3: The Line graph L (G), where
G=Hn, n ≥ 3, the Helm graph is
Hamiltonian-t*-laceable for t=1,2 and
3,with diameter 3.
Proof: Consider the graph G=Hn, its Line graph is denoted by

L(Hn) denote the vertices of L(G) by ,,, 111 cba ,,, 222 cba

,,, 333 cba ,,, 444 cba ,,,, 111  nnn cba

nnn cba ,, . Hence we need to establish the following

claims to show that G is a Hamiltonian-t*-laceable for t= 1,2
and 3 with diameter 3.
In Figure 15, we display the Helm graph Hn.

Figure 15

Claim 2.3.1: For t=1
Case (i): If n is odd
In L(Hn), we find that 1),( 11 cad and the path

),(: 11 baP ),( 1 nbb ),( nn cb ),( nn ac

 ),( 1nn ba  ),( 11 nn cb  ),( 11 nn ac

 ),( 21 nn ba  ),( 22 nn cb  ),( 22 nn ac

 ),( 32 nn ba  ),( 33 nn cb  ),( 33 nn ac

 ),( 33 cb ),( 33 ac ),( 23 ba

),( 22 ab ),( 22 ca ),( 12 cc is a Hamiltonian path.

Hence there exists a Hamiltonian path between at least one

pair of vertices such that 1),( 11 cad . Therefore G is a

Hamiltonian-t*- Laceable for t=1.

Figure 16: Hamiltonian path from the vertex a1 to c1 in
Line graph L[H5]

Case (ii): If n is even
In L(Hn), we find that 1),( 11 cad and the path
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Case (ii): If n is even
In L(Hn), we find that 1),( 11 cad and the path
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),(: 1 nbaP ),( nn ab ),( nn ca  ),( 1nn bc

 ),( 11 nn ab  ),( 11 nn ca  ),( 21 nn bc

 ),( 22 nn ab ),( 44 ab ),( 44 ca

),( 44 bc ),( 34 bb ),( 33 ab ),( 33 ca

),( 23 bc ),( 22 ab ),( 22 ca ),( 12 bc

),( 12 cb is a Hamiltonian path.  Hence there exists a

Hamiltonian path between at least one pair of vertices such

that 1),( 11 cad . Therefore G is a Hamiltonian-t*-

Laceable for t=1.

Figure 17: Hamiltonian path from the vertex a1 to c1 in
Line graph L[H6]

Claim 2.3.2: For t=2
Case (iii): If n is odd
In L(Hn), we find that 2),( 21 aad and the path

),(: 11 caP ),( 1 nbc ),( nn cb ),( nn ac

 ),( 1nn ba  ),( 11 nn cb  ),( 11 nn ac

 ),( 21 nn ba  ),( 22 nn cb  ),( 22 nn ac

  ),( 55 nn ac

),( 33 cb ),( 33 ac ),( 23 ba ),( 22 cb

),( 12 bc ),( 21 ab is a Hamiltonian path.  Hence there

exists a Hamiltonian path between at least one pair of vertices

such that 2),( 21 aad Therefore G is a Hamiltonian-t*-

Laceable for t=2.

Figure 18: Hamiltonian path from the vertex a1 to a2 in
Line graph L[H5]

Case (iv): If n is even
In L(Hn), we find that 2),( 21 aad and the path

),(: 1 nbaP ),( nn cb ),( nn ac  ),( 1nn ba

 ),( 11 nn cb  ),( 11 nn ac  ),( 21 nn ba

 ),( 22 nn cb  ),( 22 nn ac

  ),( 44 nn ab ),( 44 cb

),( 44 ac ),( 34 ba ),( 33 cb ),( 33 ac

),( 23 ba ),( 22 cb ),( 12 cc ),( 11 bc

),( 21 ab
is a Hamiltonian path.  Hence there exists a Hamiltonian path
between at least one pair of vertices such that

2),( 21 aad d(a1,a2)=2. Therefore G is a Hamiltonian-t*-

Laceable for t=2.

Figure 19: Hamiltonian path from the vertex a1 to a2 in
Line graph L[H6]

Claim 3: For t=3
Case (v): If n is odd
In L(Hn), we find that 3),( 31 aad and the path

),(: 11 baP ),( 1 nbb ),( nn cb ),( nn ac

 ),( 1nn ba  ),( 11 nn ab  ),( 21 nn ba
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),(: 1 nbaP ),( nn ab ),( nn ca  ),( 1nn bc

 ),( 11 nn ab  ),( 11 nn ca  ),( 21 nn bc

 ),( 22 nn ab ),( 44 ab ),( 44 ca

),( 44 bc ),( 34 bb ),( 33 ab ),( 33 ca

),( 23 bc ),( 22 ab ),( 22 ca ),( 12 bc

),( 12 cb is a Hamiltonian path.  Hence there exists a

Hamiltonian path between at least one pair of vertices such

that 1),( 11 cad . Therefore G is a Hamiltonian-t*-

Laceable for t=1.

Figure 17: Hamiltonian path from the vertex a1 to c1 in
Line graph L[H6]

Claim 2.3.2: For t=2
Case (iii): If n is odd
In L(Hn), we find that 2),( 21 aad and the path

),(: 11 caP ),( 1 nbc ),( nn cb ),( nn ac

 ),( 1nn ba  ),( 11 nn cb  ),( 11 nn ac

 ),( 21 nn ba  ),( 22 nn cb  ),( 22 nn ac

  ),( 55 nn ac

),( 33 cb ),( 33 ac ),( 23 ba ),( 22 cb

),( 12 bc ),( 21 ab is a Hamiltonian path.  Hence there

exists a Hamiltonian path between at least one pair of vertices

such that 2),( 21 aad Therefore G is a Hamiltonian-t*-

Laceable for t=2.

Figure 18: Hamiltonian path from the vertex a1 to a2 in
Line graph L[H5]

Case (iv): If n is even
In L(Hn), we find that 2),( 21 aad and the path

),(: 1 nbaP ),( nn cb ),( nn ac  ),( 1nn ba

 ),( 11 nn cb  ),( 11 nn ac  ),( 21 nn ba

 ),( 22 nn cb  ),( 22 nn ac

  ),( 44 nn ab ),( 44 cb

),( 44 ac ),( 34 ba ),( 33 cb ),( 33 ac

),( 23 ba ),( 22 cb ),( 12 cc ),( 11 bc

),( 21 ab
is a Hamiltonian path.  Hence there exists a Hamiltonian path
between at least one pair of vertices such that

2),( 21 aad d(a1,a2)=2. Therefore G is a Hamiltonian-t*-

Laceable for t=2.

Figure 19: Hamiltonian path from the vertex a1 to a2 in
Line graph L[H6]

Claim 3: For t=3
Case (v): If n is odd
In L(Hn), we find that 3),( 31 aad and the path

),(: 11 baP ),( 1 nbb ),( nn cb ),( nn ac

 ),( 1nn ba  ),( 11 nn ab  ),( 21 nn ba
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),(: 1 nbaP ),( nn ab ),( nn ca  ),( 1nn bc

 ),( 11 nn ab  ),( 11 nn ca  ),( 21 nn bc

 ),( 22 nn ab ),( 44 ab ),( 44 ca

),( 44 bc ),( 34 bb ),( 33 ab ),( 33 ca

),( 23 bc ),( 22 ab ),( 22 ca ),( 12 bc

),( 12 cb is a Hamiltonian path.  Hence there exists a

Hamiltonian path between at least one pair of vertices such

that 1),( 11 cad . Therefore G is a Hamiltonian-t*-

Laceable for t=1.

Figure 17: Hamiltonian path from the vertex a1 to c1 in
Line graph L[H6]

Claim 2.3.2: For t=2
Case (iii): If n is odd
In L(Hn), we find that 2),( 21 aad and the path

),(: 11 caP ),( 1 nbc ),( nn cb ),( nn ac

 ),( 1nn ba  ),( 11 nn cb  ),( 11 nn ac

 ),( 21 nn ba  ),( 22 nn cb  ),( 22 nn ac

  ),( 55 nn ac

),( 33 cb ),( 33 ac ),( 23 ba ),( 22 cb

),( 12 bc ),( 21 ab is a Hamiltonian path.  Hence there

exists a Hamiltonian path between at least one pair of vertices

such that 2),( 21 aad Therefore G is a Hamiltonian-t*-

Laceable for t=2.

Figure 18: Hamiltonian path from the vertex a1 to a2 in
Line graph L[H5]

Case (iv): If n is even
In L(Hn), we find that 2),( 21 aad and the path

),(: 1 nbaP ),( nn cb ),( nn ac  ),( 1nn ba

 ),( 11 nn cb  ),( 11 nn ac  ),( 21 nn ba

 ),( 22 nn cb  ),( 22 nn ac

  ),( 44 nn ab ),( 44 cb

),( 44 ac ),( 34 ba ),( 33 cb ),( 33 ac

),( 23 ba ),( 22 cb ),( 12 cc ),( 11 bc

),( 21 ab
is a Hamiltonian path.  Hence there exists a Hamiltonian path
between at least one pair of vertices such that

2),( 21 aad d(a1,a2)=2. Therefore G is a Hamiltonian-t*-

Laceable for t=2.

Figure 19: Hamiltonian path from the vertex a1 to a2 in
Line graph L[H6]

Claim 3: For t=3
Case (v): If n is odd
In L(Hn), we find that 3),( 31 aad and the path

),(: 11 baP ),( 1 nbb ),( nn cb ),( nn ac

 ),( 1nn ba  ),( 11 nn ab  ),( 21 nn ba
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 ),( 22 nn cb  ),( 22 nn ac  ),( 32 nn ba

  ),( 1212 nn ac ),( 33 cb

),( 23 cc ),( 22 ac ),( 22 ba ),( 32 ab
is a Hamiltonian path.  Hence there exists a Hamiltonian path
between at least one pair of vertices such that

3),( 31 aad d(a1,a3)=3. Therefore G is a Hamiltonian-t*-

Laceable for t=3.

Figure 20: Hamiltonian path from the vertex a1 to b2 in
Line graph L[H5]

Case (vi): If n is even
In L(Hn), we find that 3),( 31 aad and the path

),(: 1 nbaP ),( nn ab ),( nn ca  ),( 1nn bc

 ),( 11 nn ab  ),( 11 nn ca  ),( 21 nn bc

 ),( 22 nn ab  ),( 22 nn ca

  ),( 77 nn ca ),( 44 ab

),( 44 ca ),( 54 bc ),( 55 ab

),( 12 bc ),( 11 cb ),( 31 cc ),( 33 ac
is a Hamiltonian path.  Hence there exists a Hamiltonian path
between at least one pair of vertices such that

3),( 31 aad . Therefore G is a Hamiltonian-t*- Laceable

for t=3.

Figure 21: Hamiltonian path from the vertex a1 to a3 in
Line graph L[H6]

Theorem 2.4 The Line graph L (G), where
G=Gn, n ≥ 4, the Gear graph is
Hamiltonian-t*-laceable for t=1,2 and 3,
with diameter 3
Proof: Consider the graph G=Gn, its Line graph is denoted by
L(Gn) denote the vertices of L(G) by

nn aaaaaa ,,,,,, 14321  . Hence we need to

establish the following claims to show that G is a
Hamiltonian-t*-laceable for t= 1,2 and 3 with diameter 3.
Claim 1: For t=1
Case (i): If n is odd
In L(Gn), we find that 1),( 10 aad and the path

 ),(: 220 naaP  ),( 4322 nn aa  ),( 4232 nn aa

 ),( 9392 nn aa ),( 1516 aa

 ),( 5215 naa  ),( 1314 aa

),( 26 naa ),( 52 aa n ),( 45 aa  ),( 123 naa

 ),( 212 aa n ),( 12 aa is a Hamiltonian path.  Hence

there exists a Hamiltonian path between at least one pair of

vertices such that 1),( 10 aad . Therefore G is a

Hamiltonian-t*- Laceable for t=1.

Figure 22: Hamiltonian path from the vertex a0 to a1 in
Line graph L[G7]

Case (ii): If n is even
In L(Gn), we find that 1),( 10 aad and the path

 ),(: 220 naaP  ),( 1222 nn aa  ),( 212 nn aa

 ),( 122 nn aa  ),( 2212 nn aa  ),( 3222 nn aa

 ),( 1415 aa ),( 78 aa

),( 67 aa ),( 34 aa ),( 23 aa

),( 12 aa is a Hamiltonian path.  Hence there exists a

Hamiltonian path between at least one pair of vertices such

that 1),( 10 aad . Therefore G is a Hamiltonian-t*-

Laceable for t=1.
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 ),( 22 nn cb  ),( 22 nn ac  ),( 32 nn ba

  ),( 1212 nn ac ),( 33 cb

),( 23 cc ),( 22 ac ),( 22 ba ),( 32 ab
is a Hamiltonian path.  Hence there exists a Hamiltonian path
between at least one pair of vertices such that

3),( 31 aad d(a1,a3)=3. Therefore G is a Hamiltonian-t*-

Laceable for t=3.

Figure 20: Hamiltonian path from the vertex a1 to b2 in
Line graph L[H5]

Case (vi): If n is even
In L(Hn), we find that 3),( 31 aad and the path

),(: 1 nbaP ),( nn ab ),( nn ca  ),( 1nn bc

 ),( 11 nn ab  ),( 11 nn ca  ),( 21 nn bc

 ),( 22 nn ab  ),( 22 nn ca

  ),( 77 nn ca ),( 44 ab

),( 44 ca ),( 54 bc ),( 55 ab

),( 12 bc ),( 11 cb ),( 31 cc ),( 33 ac
is a Hamiltonian path.  Hence there exists a Hamiltonian path
between at least one pair of vertices such that

3),( 31 aad . Therefore G is a Hamiltonian-t*- Laceable

for t=3.

Figure 21: Hamiltonian path from the vertex a1 to a3 in
Line graph L[H6]

Theorem 2.4 The Line graph L (G), where
G=Gn, n ≥ 4, the Gear graph is
Hamiltonian-t*-laceable for t=1,2 and 3,
with diameter 3
Proof: Consider the graph G=Gn, its Line graph is denoted by
L(Gn) denote the vertices of L(G) by

nn aaaaaa ,,,,,, 14321  . Hence we need to

establish the following claims to show that G is a
Hamiltonian-t*-laceable for t= 1,2 and 3 with diameter 3.
Claim 1: For t=1
Case (i): If n is odd
In L(Gn), we find that 1),( 10 aad and the path

 ),(: 220 naaP  ),( 4322 nn aa  ),( 4232 nn aa

 ),( 9392 nn aa ),( 1516 aa

 ),( 5215 naa  ),( 1314 aa

),( 26 naa ),( 52 aa n ),( 45 aa  ),( 123 naa

 ),( 212 aa n ),( 12 aa is a Hamiltonian path.  Hence

there exists a Hamiltonian path between at least one pair of

vertices such that 1),( 10 aad . Therefore G is a

Hamiltonian-t*- Laceable for t=1.

Figure 22: Hamiltonian path from the vertex a0 to a1 in
Line graph L[G7]

Case (ii): If n is even
In L(Gn), we find that 1),( 10 aad and the path

 ),(: 220 naaP  ),( 1222 nn aa  ),( 212 nn aa

 ),( 122 nn aa  ),( 2212 nn aa  ),( 3222 nn aa

 ),( 1415 aa ),( 78 aa

),( 67 aa ),( 34 aa ),( 23 aa

),( 12 aa is a Hamiltonian path.  Hence there exists a

Hamiltonian path between at least one pair of vertices such

that 1),( 10 aad . Therefore G is a Hamiltonian-t*-

Laceable for t=1.
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 ),( 22 nn cb  ),( 22 nn ac  ),( 32 nn ba

  ),( 1212 nn ac ),( 33 cb

),( 23 cc ),( 22 ac ),( 22 ba ),( 32 ab
is a Hamiltonian path.  Hence there exists a Hamiltonian path
between at least one pair of vertices such that

3),( 31 aad d(a1,a3)=3. Therefore G is a Hamiltonian-t*-

Laceable for t=3.

Figure 20: Hamiltonian path from the vertex a1 to b2 in
Line graph L[H5]

Case (vi): If n is even
In L(Hn), we find that 3),( 31 aad and the path

),(: 1 nbaP ),( nn ab ),( nn ca  ),( 1nn bc

 ),( 11 nn ab  ),( 11 nn ca  ),( 21 nn bc

 ),( 22 nn ab  ),( 22 nn ca

  ),( 77 nn ca ),( 44 ab

),( 44 ca ),( 54 bc ),( 55 ab

),( 12 bc ),( 11 cb ),( 31 cc ),( 33 ac
is a Hamiltonian path.  Hence there exists a Hamiltonian path
between at least one pair of vertices such that

3),( 31 aad . Therefore G is a Hamiltonian-t*- Laceable

for t=3.

Figure 21: Hamiltonian path from the vertex a1 to a3 in
Line graph L[H6]

Theorem 2.4 The Line graph L (G), where
G=Gn, n ≥ 4, the Gear graph is
Hamiltonian-t*-laceable for t=1,2 and 3,
with diameter 3
Proof: Consider the graph G=Gn, its Line graph is denoted by
L(Gn) denote the vertices of L(G) by

nn aaaaaa ,,,,,, 14321  . Hence we need to

establish the following claims to show that G is a
Hamiltonian-t*-laceable for t= 1,2 and 3 with diameter 3.
Claim 1: For t=1
Case (i): If n is odd
In L(Gn), we find that 1),( 10 aad and the path

 ),(: 220 naaP  ),( 4322 nn aa  ),( 4232 nn aa

 ),( 9392 nn aa ),( 1516 aa

 ),( 5215 naa  ),( 1314 aa

),( 26 naa ),( 52 aa n ),( 45 aa  ),( 123 naa

 ),( 212 aa n ),( 12 aa is a Hamiltonian path.  Hence

there exists a Hamiltonian path between at least one pair of

vertices such that 1),( 10 aad . Therefore G is a

Hamiltonian-t*- Laceable for t=1.

Figure 22: Hamiltonian path from the vertex a0 to a1 in
Line graph L[G7]

Case (ii): If n is even
In L(Gn), we find that 1),( 10 aad and the path

 ),(: 220 naaP  ),( 1222 nn aa  ),( 212 nn aa

 ),( 122 nn aa  ),( 2212 nn aa  ),( 3222 nn aa

 ),( 1415 aa ),( 78 aa

),( 67 aa ),( 34 aa ),( 23 aa

),( 12 aa is a Hamiltonian path.  Hence there exists a

Hamiltonian path between at least one pair of vertices such

that 1),( 10 aad . Therefore G is a Hamiltonian-t*-

Laceable for t=1.
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Figure 23: Hamiltonian path from the vertex a0 to a1 in
Line graph L[G6]

Claim 2.4.1: For t=2
Case (i): If n is odd
In L(Gn), we find that 2),( 20 aad and the path

),(: 10 aaP  ),( 221 naa  ),( 1222 nn aa

 ),( 212 nn aa  ),( 122 nn aa

  ),( 4232 nn aa

 ),( 1415 aa ),( 1314 aa ),( 1213 aa

),( 1112 aa ),( 1011 aa ),( 910 aa ),( 89 aa

),( 78 aa ),( 67 aa ),( 56 aa ),( 45 aa

),( 34 aa ),( 23 aa is a Hamiltonian path. Hence there

exists a Hamiltonian path between at least one pair of vertices

such that 2),( 20 aad . Therefore G is a Hamiltonian-t*-

Laceable for t=2

Figure 24: Hamiltonian path from the vertex a0 to a2 in
Line graph L[G7]

Case (ii): If n is even
In L(Gn), we find that 2),( 20 aad and the path

),(: 10 aaP  ),( 221 naa  ),( 1222 nn aa

 ),( 212 nn aa  ),( 122 nn aa

  ),( 4232 nn aa

 ),( 1415 aa ),( 1314 aa ),( 1213 aa

),( 1112 aa ),( 1011 aa ),( 910 aa ),( 89 aa

),( 78 aa ),( 67 aa ),( 56 aa ),( 45 aa

),( 34 aa ),( 23 aa is a Hamiltonian path.  Hence there

exists a Hamiltonian path between at least one pair of vertices

such that 2),( 20 aad . Therefore G is a Hamiltonian-t*-

Laceable for t=2.

Figure 25: Hamiltonian path from the vertex a0 to a2 in
Line graph L[G8]

Claim 3.4.2: For t=3
Case (i): If n is odd
In L(Gn), we find that 3),( 30 aad and the path

),(: 10 aaP ),( 21 aa  ),( 122 naa

 ),( 2212 nn aa  ),( 7222 nn aa  ),( 3272 nn aa

 ),( 4232 nn aa

 ),( 1314 aa

  ),( 1132 aa n ),( 1011 aa

),( 910 aa

 ),( 3222 nn aa ),( 67 aa

),( 56 aa ),( 25 naa ),( 42 aa n ),( 34 aa is a

Hamiltonian path. Hence there exists a Hamiltonian path
between at least one pair of vertices such that

3),( 30 aad . Therefore G is a Hamiltonian-t*- Laceable

for t=3.
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Figure 23: Hamiltonian path from the vertex a0 to a1 in
Line graph L[G6]

Claim 2.4.1: For t=2
Case (i): If n is odd
In L(Gn), we find that 2),( 20 aad and the path

),(: 10 aaP  ),( 221 naa  ),( 1222 nn aa

 ),( 212 nn aa  ),( 122 nn aa

  ),( 4232 nn aa

 ),( 1415 aa ),( 1314 aa ),( 1213 aa

),( 1112 aa ),( 1011 aa ),( 910 aa ),( 89 aa

),( 78 aa ),( 67 aa ),( 56 aa ),( 45 aa

),( 34 aa ),( 23 aa is a Hamiltonian path. Hence there

exists a Hamiltonian path between at least one pair of vertices

such that 2),( 20 aad . Therefore G is a Hamiltonian-t*-

Laceable for t=2

Figure 24: Hamiltonian path from the vertex a0 to a2 in
Line graph L[G7]

Case (ii): If n is even
In L(Gn), we find that 2),( 20 aad and the path

),(: 10 aaP  ),( 221 naa  ),( 1222 nn aa

 ),( 212 nn aa  ),( 122 nn aa

  ),( 4232 nn aa

 ),( 1415 aa ),( 1314 aa ),( 1213 aa

),( 1112 aa ),( 1011 aa ),( 910 aa ),( 89 aa

),( 78 aa ),( 67 aa ),( 56 aa ),( 45 aa

),( 34 aa ),( 23 aa is a Hamiltonian path.  Hence there

exists a Hamiltonian path between at least one pair of vertices

such that 2),( 20 aad . Therefore G is a Hamiltonian-t*-

Laceable for t=2.

Figure 25: Hamiltonian path from the vertex a0 to a2 in
Line graph L[G8]

Claim 3.4.2: For t=3
Case (i): If n is odd
In L(Gn), we find that 3),( 30 aad and the path

),(: 10 aaP ),( 21 aa  ),( 122 naa

 ),( 2212 nn aa  ),( 7222 nn aa  ),( 3272 nn aa

 ),( 4232 nn aa

 ),( 1314 aa

  ),( 1132 aa n ),( 1011 aa

),( 910 aa

 ),( 3222 nn aa ),( 67 aa

),( 56 aa ),( 25 naa ),( 42 aa n ),( 34 aa is a

Hamiltonian path. Hence there exists a Hamiltonian path
between at least one pair of vertices such that

3),( 30 aad . Therefore G is a Hamiltonian-t*- Laceable

for t=3.
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Figure 23: Hamiltonian path from the vertex a0 to a1 in
Line graph L[G6]

Claim 2.4.1: For t=2
Case (i): If n is odd
In L(Gn), we find that 2),( 20 aad and the path

),(: 10 aaP  ),( 221 naa  ),( 1222 nn aa

 ),( 212 nn aa  ),( 122 nn aa

  ),( 4232 nn aa

 ),( 1415 aa ),( 1314 aa ),( 1213 aa

),( 1112 aa ),( 1011 aa ),( 910 aa ),( 89 aa

),( 78 aa ),( 67 aa ),( 56 aa ),( 45 aa

),( 34 aa ),( 23 aa is a Hamiltonian path. Hence there

exists a Hamiltonian path between at least one pair of vertices

such that 2),( 20 aad . Therefore G is a Hamiltonian-t*-

Laceable for t=2

Figure 24: Hamiltonian path from the vertex a0 to a2 in
Line graph L[G7]

Case (ii): If n is even
In L(Gn), we find that 2),( 20 aad and the path
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 ),( 1415 aa ),( 1314 aa ),( 1213 aa

),( 1112 aa ),( 1011 aa ),( 910 aa ),( 89 aa

),( 78 aa ),( 67 aa ),( 56 aa ),( 45 aa

),( 34 aa ),( 23 aa is a Hamiltonian path.  Hence there

exists a Hamiltonian path between at least one pair of vertices

such that 2),( 20 aad . Therefore G is a Hamiltonian-t*-

Laceable for t=2.

Figure 25: Hamiltonian path from the vertex a0 to a2 in
Line graph L[G8]

Claim 3.4.2: For t=3
Case (i): If n is odd
In L(Gn), we find that 3),( 30 aad and the path

),(: 10 aaP ),( 21 aa  ),( 122 naa

 ),( 2212 nn aa  ),( 7222 nn aa  ),( 3272 nn aa

 ),( 4232 nn aa

 ),( 1314 aa

  ),( 1132 aa n ),( 1011 aa

),( 910 aa

 ),( 3222 nn aa ),( 67 aa

),( 56 aa ),( 25 naa ),( 42 aa n ),( 34 aa is a

Hamiltonian path. Hence there exists a Hamiltonian path
between at least one pair of vertices such that

3),( 30 aad . Therefore G is a Hamiltonian-t*- Laceable

for t=3.
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Figure 26: Hamiltonian path from the vertex a0 to a3 in
Line graph L[G9]

Case (ii): If n is even
In L(Gn), we find that 3),( 30 aad and the path

),(: 10 aaP ),( 21 aa  ),( 122 naa

 ),( 2212 nn aa  ),( 4322 nn aa  ),( 3243 nn aa

),( 1819 aa  ),( 5318 naa

 ),( 1617 aa ),( 1516 aa

),( 1415 aa  ),( 5214 naa  ),( 4252 nn aa

 ),( 1342 aa n  ),( 2232 nn aa

),( 89 aa ),( 78 aa ),( 67 aa  ),( 126 naa

 ),( 212 nn aa ),( 52 aa n ),( 45 aa ),( 34 aa is a

Hamiltonian path.  Hence there exists a Hamiltonian path
between at least one pair of vertices such that

3),( 30 aad . Therefore G is a Hamiltonian-t*- Laceable

for t=3.

4. CONCLUSION
In this present study, the concept of Hamiltonian-t*-
laceability in line graphs and t*-laceability number (  are
investigated.  In our further work, Laceability of  total  graphs
of  other  kind  is to be  proposed.
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Figure 26: Hamiltonian path from the vertex a0 to a3 in
Line graph L[G9]
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Figure 26: Hamiltonian path from the vertex a0 to a3 in
Line graph L[G9]
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