\vec{P}_{4k-1} – Factorization of Symmetric Complete Bipartite Digraph

U S Raiput Department of mathematics and astronomy, Lucknow University, Lucknow (India)

ABSTRACT

In path factorization, Ushio K [1] gave the necessary and sufficient conditions for P_k -design when k is odd. P_{2p} -Factorization of a complete bipartite graph for p, an integer was studied by Wang [2]. Further, Beiling [3] extended the work of Wang [2], and studied P_{2k} -factorization of complete bipartite multigraphs. For even value of k in P_k -factorization the spectrum problem is completely solved [1, 2, 3]. However, for odd value of k i .e. P_3, P_5, P_7, P_9 and P_{4k-1} , the path factorization have been studied by a number of researchers [4, 5, 6, 7, 8]. The necessary and sufficient conditions for the existences of P_3 –factorization of symmetric complete bipartite digraph were given by Du B [9]. Earlier we have discussed the necessary and sufficient conditions for the existence of \vec{P}_{5} and \vec{P}_7 –factorization of symmetric complete bipartite digraph [10, 11]. Now, in the present paper, we give the necessary and sufficient conditions for the existence of \vec{P}_{4k-1} –factorization of symmetric complete bipartite digraph of $K_{m,n}^*$.

Mathematics Subject Classification: 68R10, 05C70, 05C38.

Key words: Complete bipartite Graph, Factorization of Graph, Symmetric Graph.

1. INTRODUCTION

Let $K_{m,n}^*$ be a complete bipartite symmetric digraph with two partite sets having m and n vertices. A spanning sub graph \vec{F} of $K_{m,n}^*$ is called a path factor if each component of \vec{F} is a path of order at least two. In particular, a spanning sub graph \vec{F} of $K_{m,n}^*$ is called a \vec{P}_{4k-1} -factor if each component of \vec{F} is isomorphic to \vec{P}_{4k-1} . If $K_{m,n}^*$ is expressed as an arc disjoint sum of \vec{P}_{4k-1} -factors, then this sum is called \vec{P}_{4k-1} -factorization of $K_{m,n}^*$. Here, we take path of order 4k - 1. A \vec{P}_{4k-1} is the directed path on 4k - 1 vertices.

2. MATHEMATICAL ANALYSIS

The necessary and sufficient conditions for the existence of \vec{P}_{4k-1} –factorization of complete bipartite symmetric digraph are given below in theorem 2.1.

Theorem 2.1: Let *m* and *n* be the positive integers then $K_{m,n}^*$ has a \vec{P}_{4k-1} –factorization iff:

$$(1) \ 2kn \ge (2k-1)m,$$

(2) $2km \ge (2k-1)n$,

Bal Govind Shukla

Department of mathematics and astronomy, Lucknow University, Lucknow (India)

(3) $m + n \equiv 0 \pmod{4k - 1}$, and

(4) (4k-1)mn/[(2k-1)(m+n)] is an integer.

Proof of necessity of theorem 2.1

Proof: Let r be the number of \vec{P}_{4k-1} -factor in the factorization, and *e* be the number of copies of \vec{P}_{4k-1} -factor in a factorization, which can be computed by using

$$= \frac{(4k-1)mn}{[(2k-1)(m+n)]} \qquad \dots (1)$$

and

$$=\frac{m+n}{4k-1}$$
...(2)

respectively.

Obviously, r and e will be integers. Thus conditions (3) and (4) in theorem 2.1 are necessary. Let *a* and *b* be the number of copies of \vec{P}_{4k-1} with its end points in Y and X, respectively in a particular \vec{P}_{4k-1} –factor. Then by simple arithmetic we can obtain, 2kb + (2k - 1)a = m and 2ka + (2k - 1)b = n.

From this, we can compute *a* and *b* which are as follows:

$$a = \frac{2kn - (2k - 1)m}{4k - 1} \qquad ...(3)$$

$$b = \frac{2km - (2k - 1)n}{4k - 1} \qquad ...(4)$$

Since, by definition a and b are integers, therefore equation (1) and (2) imply,

 $\frac{2kn - (2k-1)m}{4k-1} \ge 0$

and

$$\frac{2km - (2k-1)n}{4k-1} \ge 0$$

this implies that $2kn \ge (2k-1)m$ that $2km \ge (2k-1)n$. Therefore condition (1) and

...(4).

International Journal of Computer Applications (0975 – 8887) Volume 98– No.11, July 2014

(2) in theorem 2.1 are necessary. This proves the necessity of theorem 2.1.

Proof of sufficiency of theorem 2.1

Further, we need the following number theoretic result (lemma 2.2) to prove the sufficiency of theorem 2.1. Its proof can be found in any good text related to number theory [12].

Lemma 2.2: If gcd(xu, yv) = 1 then gcd(uv, ux + vy) = 1, where x, y, u and v are positive integers.

We prove the following result of lemma 2.3, which will be used further.

Lemma 2.3: If $K_{m,n}^*$ has \vec{P}_{4k-1} –factorization, then $K_{sm,sn}^*$ has a \vec{P}_{4k-1} –factorization for every positive integer *s*.

Proof: Let $K_{s,s}$ is 1- factorable [13] and $\{F_1, F_2, ..., F_s\}$ be a 1- factorization of it. For each *i* with $1 \le i \le s$, replace every edge of F_i by a $K_{m,n}^*$ to get a spanning sub-graph G_i of $K_{sm,sn}^*$ such that the graph G_i 's $\{1 \le i \le s\}$ are pair wise edge disjoint, and there union is $K_{sm,sn}^*$. Since $K_{m,n}^*$ has a \vec{P}_{4k-1} -factorization, it is clear that G_i is also \vec{P}_{4k-1} -factorable, and hence $K_{sm,sn}^*$, \vec{P}_{4k-1} -factorization.

Now to prove the sufficiency of theorem 2.1, there are three cases to consider:

Case (i) 2kn = (2k - 1)m; In this case from lemma 2, $K_{m,n}^*$ has \vec{P}_{4k-1} -factorization. Consider the trivial case at k = 1, m = 1 and n = 2, then number of copy e = 1 and total number of factor r = 2. Path factor is given below:

Fig :1 shows the path $y_1x_1y_2$; $y_2x_1y_1$.

Case (ii) 2km = (2k - 1)n; Obliviously, $K_{m,n}^*$ has \vec{P}_{4k-1} -factorization since in this case position of *m* and *n* changes only from previous case.

Case (iii): 2km > (2k-1)n and 2kn > (2k-1)m. In this case, let

$$a = \frac{2kn - (2k - 1)m}{4k - 1}$$
, $b = \frac{2km - (2k - 1)n}{4k - 1}$,

$$r = \frac{(4k-1)mn}{[(2k-1)(m+n)]}$$
 and $e = \frac{m+n}{4k-1}$

Then from condition (1)-(4) of theorem 2.1, a, b, e and r are integers and 0 < a < m and 0 < b < n. As obtained previously 2kb + (2k - 1)a = m and 2ka + (2k - 1)b = n. Hence

$$r = 2k(a+b) + \frac{ab}{[(2k-1)(a+b)]}$$

Let

$$z = \frac{ab}{\left[(2k-1)(a+b)\right]'}$$

be a positive integer. Again let gcd((2k-1)a, 2kb) = dthen (2k-1)a = dp and 2kb = dq, where p and q are integer and gcd(p,q) = 1.

Then

γ

$$z = \frac{dpq}{(2k-1)[2kp + (2k-1)q]}$$

These equality implies the following equality:

$$d = \frac{(2k-1)[2kp + (2k-1)q]z}{pq},$$

$$r = \frac{(p+q)[4k^2p + (2k-1)^2q]z}{pq},$$

$$m = \frac{(2k-1)(p+q)[2kp + (2k-1)q]z}{pq},$$

$$n = \frac{[4k^2p + (2k-1)^2q][2kp + (2k-1)q]z}{2kpq},$$

$$a = \frac{p[2kp + (2k-1)q]z}{pq},$$

$$b = \frac{(2k-1)q[2kp+(2k-1)q]z}{2kpq}.$$

Let $2k - 1 = P_1^{k_1}, P_2^{k_2}, \dots, P_r^{k_r}$ where P_1, P_2, \dots, P_r are distinct prime number.

Let $k_1, k_2, ..., k_r$ are positive number, and $2k = q_1^{h_1}, q_2^{h_2}, ..., q_w^{h_w}$ are positive integers, where $h_1, h_2, ..., h_w$ are positive integer.

If

 $p_1^{i_1} p_2^{i_2} \dots p_{\alpha}^{i_a} p_{\alpha+1}^{2k_{\alpha+1}-i_{\alpha+1}} p_{\alpha+2}^{2k_{\alpha+2}-i_{\alpha+2}} \dots p_{\beta}^{2k_{\beta}-i_{\beta}} p_{\beta+1}^{2k_{\beta+1}} p_{\beta+2}^{2k_{\beta+2}} \dots p_{\gamma}^{2k_{\gamma}}.$

 $\begin{array}{ll} \text{Where} & 1 \leq \alpha \leq \beta \leq \gamma, \quad 0 \leq i_j \leq k_i (\text{when} \quad 0 \leq j \leq \alpha) \quad \text{or} \\ 0 < i_j < k_j (\text{when} \quad \alpha + 1 \leq j \leq \beta), \\ \gcd(q, 4k^2) = \\ q_1^{j_1} q_2^{j_2} \ldots q_\mu^{j_\mu} q_{\mu+1}^{2h_{\mu+1} - j_{\mu+1}} q_{\mu+2}^{2h_{\mu+2} - j_{\mu+2}} \ldots q_{\vartheta}^{2h_{\vartheta} - j_{\vartheta}} q_{\vartheta+1}^{2h_{\vartheta+1}} q_{\vartheta+2}^{2h_{\vartheta+2}} \ldots q_w^{2h_w}. \end{array}$

Where $1 \le \mu \le \vartheta \le w$, $0 \le j_i \le h_i$ (when $0 \le i \le \mu$) or $0 < j_i < h_i$ (when $\mu + 1 \le i \le \vartheta$), and let

$$s = p_1^{i_1} p_2^{i_2} \dots p_{\alpha}^{i_{\alpha}}, \qquad t = p_1^{k_1 - i_1} p_2^{k_2 - i_2} \dots p_{\alpha}^{k_{\alpha} - i_{\alpha}}$$

$$u = p_{\alpha+1}^{i_{\alpha+1}} p_{\alpha+2}^{i_{\alpha+2}} \dots p_{\beta}^{i_{\beta}},$$

v

$$= p_{\alpha+1}^{k_{\alpha+1}-i_{\alpha+1}} p_{\alpha+2}^{k_{\alpha+2}-i_{\alpha+2}} \dots p_{\beta}^{k_{\beta}-i_{\beta}},$$

and

$$w = p_{\beta+1}^{k_{\beta+1}} p_{\beta+2}^{k_{\beta+2}} \dots p_{\gamma}^{2k_{\gamma}},$$

$$s' = q_1^{j_1} q_2^{j_2} \dots q_{\mu}^{j_{\mu}}, \qquad t' = q_1^{h_1 - j_1} q_2^{h_2 - j_2} \dots q_{\mu}^{h_{\mu} - j_{\mu}},$$

$$u' = q_{\mu+1}^{j_{\mu+1}} q_{\mu+2}^{j_{\mu+2}} \dots q_{\vartheta}^{j_{\vartheta}}, v'$$

$$= q_{\mu+1}^{h_{\mu+1} - j_{\mu+1}} q_{\mu+2}^{h_{\mu+2} - j_{\mu+2}} \dots q_{\vartheta}^{h_{\vartheta} - j_{\vartheta}},$$

and $w' = q_{\vartheta+1}^{h_{\vartheta+1}} q_{\vartheta+2}^{h_{\vartheta+2}} \dots q_{w}^{h_{\vartheta}}.$

Then 2k - 1 = stuvw and 2k = s't'u'v'w'.

Also let $p = suv^2w^2p'$ and $q = s'u'v'^2w'^2q'$. Now by using p, q, (2k - 1) and 2k the parameter m, n, a, b and r satisfying the condition (1) - (4) are expressed in the following lemma(2.4). The purpose of lemma (2.4) is to discuss the detail of \vec{P}_{4k-1} –factorization, and reduce it to number of base cases, which are then solve in later lemma.

Lemma 2.4:

Case 1: If
$$t' \equiv 1 \pmod{2}$$
 and $v'w' \equiv 1 \pmod{2}$, then
 $m = stut'(suv^2w^2p' + s'u'v'^2w'^2q')(t'vwp' + tv'w'q')z'$
 $n = suvwv'w'(s't'^2u'p' + st^2uq')(t'vwp' + tv'w'q')z'$,
 $a = suvwt'p'(vwt'p' + tv'w'q')z'$,
 $b = stuv'w'q'(vwt'p' + v'w'tq')z'$,
 $d = stut'(vwt'p' + v'w'tq')z'$,
 $r = t'v'w'(suv^2w^2p' + s'u'v'^2w'^2q')(s't'^2u'p' + st^2uq')z'$,

for some positive integer z'.

Case 2: If
$$t' \equiv 0 \pmod{2}$$
, and $v'w' \equiv 1 \pmod{2}$, then

$$\begin{split} m &= stut'(suv^2w^2p' + s'u'v'^2w'^2q')(t'vwp' \\ &+ tv'w'q')z'/2, \end{split}$$

$$\begin{split} n &= suvwv'w'(s't'^2u'p' + st^2uq')(t'vwp' + tv'w'q')z'/2, \\ a &= suvwt'p'(vwt'p' + tv'w'q')z'/2, \\ b &= stuv'w'q'(vwt'p' + v'w'tq')z'/2, \\ r &= t'v'w'(suv^2w^2p' + s'u'v'^2w'^2q')(s't'^2u'p' \\ &+ st^2uq')z'/2, \\ d &= stut'(vwt'p' + v'w'tq')z'/2, \end{split}$$

for some positive integer z'.

Case 3: If
$$t' \equiv 1 \pmod{2}$$
, and $v'.w' \equiv 0 \pmod{2}$, then

$$\begin{split} m &= stut' \big(suv^2 w^2 p' + s'u'v'^2 w'^2 q' \big) (t'vwp' \\ &+ tv'w'q' \big) z'/2, \end{split}$$

$$\begin{split} n &= suvwv'w'(s't'^{2}u'p' + st^{2}uq')(t'vwp' + tv'w'q')z'/2, \\ a &= suvwt'p'(vwt'p' + tv'w'q')z'/2, \\ b &= stuv'w'q'(vwt'p' + v'w'tq')z'/2, \\ r &= t'v'w'(suv^{2}w^{2}p' + s'u'v'^{2}w'^{2}q')(s't'^{2}u'p' + st^{2}uq')z'/2, \\ d &= stut'(vwt'p' + v'w'tq')z'/2, \end{split}$$

for some positive integer z'.

Proof: Let us assume that $gcd(p, (2k-1)^2) = suv^2w^2$ and $gcd(q, 4k^2) = s'u'v'^2w'^2$.

If gcd(p,q) = 1 and $p = suv^2w^2p'$ and $q = s'u'v'^2w'^2q'$ hold,

then

$$gcd(suv^2w^2p', s'u'v'^2w'^2q') = 1.$$

Which implies that, if $gcd(4k^2p, (2k-1)^2 = 1 \text{ and } (2k-1) = stuvw$ and

 $2k = s't'u'v'w' \text{ hold, then } \gcd(s't'^2u'p', st^2uq') = 1.$

Since

$$r = \frac{(suv^2w^2p' + s'u'v'^2w'^2q')(s't'^2u'p' + st^2uq')z}{p'q'}$$

is an integer, therefore by using lemma 2.2, we see that

 $gcd(suv'w^2p',s'u'v'^2w'^2q') = 1$

implies that

 $gcd(suv^2w^2p' + s'u'v'^2w'^2q', p'q') = 1,$

and

$$gcd(s't'^2u'p',st'^2uq') = 1$$

implies that

$$gcd(s't'^{2}u'p' + st^{2}uq', p'q') = 1.$$

Since r is an integer therefore $\frac{z}{n/a'}$ must be an integer.

Let $z_1 = \frac{z}{p'q'}$ then we have

$$d = \frac{stu(vwt'p' + v'w'tq')z_1}{v'w'}$$

is an integer.

Now for the values of t' and v'w' there are three cases will possible.

Case I: When $t' \equiv 1 \pmod{2}$ and $v'w' \equiv 1 \pmod{2}$.

Since,

$$gcd(2, v'w') = gcd(stu, v'w') = gcd(vwt'p' + tv'w'q', v'w') = 1,$$

therefore $z_1 = \frac{z}{v'w'}$ is an integer. Letting $z_2 = \frac{z_1}{v'w'}$ we have $b = \frac{stuv'w'q'(vwt'p' + tv'w'q')z_2}{t'}.$

Since

$$gcd(2,t') = gcd(stuv'w'q',t') = gcd(vwt'p' + tv'w'q',t') = 1.$$

Therefore $\frac{z_2}{t'}$ is an integer. Let $z' = \frac{z_2}{t'}$. Then all the values m, n, a, b, r and d in case (1) hold.

Case 2: When $t' \equiv 0 \pmod{2}$, and $v'w' \equiv 1 \pmod{2}$. Since gcd(2, v'w') = 2,

$$gcd(stu, v'w') = gcd(vwt'p' + tv'w'q', v'w') = 1,$$

therefore $\frac{z'}{1-z}$ is an integer. Let $z_2 = \frac{z_1}{1-z}$, then

refore
$$\frac{1}{v'w'}$$
 is an integer. Let $Z_2 = \frac{1}{v'w'}$, then

$$b = \frac{stuv'w'q'(vwt'p'+tv'w'q')}{2t'}z_2.$$

Since gcd(2, t') = 2, gcd(st'uv'w'q', t') = gcd(vwt'p' + tv'w'q', t') = 1, therefore $\frac{z_2}{t'}$ is an integer. Let $z' = \frac{z_2}{t}$. Then all the values of m, n, a, b, r and d in case (2), hold.

Case 3: When $t' \equiv 1 \pmod{2}$, and $v'w' \equiv 0 \pmod{2}$. Since

gcd(2, v'w') = 2, gcd(stu, v'w')= gcd(vwt'p' + tv'w'q', v'w') = 1, Therefore $\frac{z_2}{2t'}$ is an integer. Let $z' = \frac{z_2}{t'}$, then

$$b = \frac{stuv'w'q'(vwt'p' + tv'w'q')z_2}{2t'}.$$

Since gcd(stuv'w'q',t') = gcd(vwt'p' + t'v'w'q',t') = 1, therefore $\frac{z_2}{2t'}$ is an integer. Let $z' = \frac{z_2}{t'}$. Then all the values of m, n, a, b, r and d in case (3), hold.

This proves the lemma 2.4.

For the parameters *m* and *n* in lemma 2.4 case (1) - case (3) when s = 1, we can construct a \vec{P}_{4k-1} -factorization of $K_{m,n}^*$.

It is easy to see that the existence of a P_{4k-1} -factorization of $K_{m,n}$ implies the existence of a \vec{P}_{4k-1} -factorization of $K_{m,n}^*$. For our main result we need to prove the following lemma:

Lemma 2.5: For any positive integers s, t, u, v, w, s', t', u', v', w', p, and q, let

 $m = stut'(suv^2w^2p + s'u'v'^2w'^2q)(t'vwp + tv'w'q),$ $n = suvwv'w'(s't'^2u'p + st^2uq)(t'vwp + tv'w'q).$

Then $K_{m,n}^*$ has a \vec{P}_{4k-1} -factorization if s.t.u.v.w + 1 = s't'u'v'w', where 4k - 1 = st uvw + s't'u'v'w'.

Proof. The proof is by construction (case 1 of lemma 2.4). Let a = suvwt'p(vwt'p + tv'w'q),

b = stuv'w'q(vwt'p + v'w'tq), hence $r = t'v'w'(suv^2w^2p + s'u'v'^2w'^2q)(s't'^2u'p + st^2uq),$ $and r = r_1. r_2, where$ $r_1 = t'(suv^2w^2p + s'u'v'^2w'^2q),$

and

$$r_2 = v'w'(s't'^2u'p + st^2uq).$$

Let *X* and *Y* be the two partite sets of vertices of $K_{m,n}^*$ such that:

 $X = \{x_{i,j} \colon 1 \le i \le r_1, 1 \le j \le m_0,$ $Y = \{y_{i,j} \colon 1 \le i \le r_2, 1 \le j \le n_0.$

Where first subscript of $x_{i,j}$'s and $y_{i,j}$'s taken additional modulo r_1 and r_2 respectively and the second subscript of $x_{i,j}$'s and $y_{i,j}$'s taken additional modulo m_0 and n_0 respectively, where $m_0 = \frac{m}{r_1}$ and $n_0 = \frac{n}{r_2}$ i.e.,

and

$$m_0 = stu(t'vwp + tv'w'q),$$

$$n_0 = suvw(t'vwp + tv'w'q).$$

Now we construct a model of \vec{P}_{4k-1} -factor of $K_{m,n}^*$, here type *M* copies of \vec{P}_{4k-1} denote the \vec{P}_{4k-1} with its end point in *Y* and type *W* with its end point in *X*. Type *M* copies of \vec{P}_{4k-1} . For each *i*, *x*, *y*, *z* and *x*', $1 \le i \le t'p$, $1 \le x \le vw$, $1 \le y \le suvw$, $1 \le z \le t$ and $0 \le x' \le 1$, let $f\{i, x, y\} = suv^2w^2(i - 1) + suvw(x - 1) + y$, g(i, y, z, x') = s't'u'v'w'(i - 1) + suvw(z - 1) + y + x',

and h(i, x, y, x') = suvw(i - 1) + su(vwt'p + tv'w'q)(x - 1) + y + x' - 1.

Hence set

$$E_{i} = \{ x_{f(i,x,y),j+su(vwt'p+tv'w'q)(z-1)} y_{g(i,y,z,x'),j+h(i,x,y,x')} : \\ 1 \le j \le su(vwt'p+tv'w'q), 1 \le x \le vw, \\ 1 \le y \le suvw, 1 \le z \le t, 0 \le x' \le 1 \}.$$

Each of $E_i(1 \le i \le t'p)$, consists of n_0 vertex disjoint type M copies. And $\bigcup_{1\le i\le t'p} E_i$ contains a = suvwt'p(vwt'p + tv'w'q), vertex disjoint type M copies of \vec{P}_{4k-1} .

Type W copies \vec{P}_{4k-1} .

For each i, x, y, z and $x', 1 \le i \le v'w'q, 1 \le x \le stu$, $1 \le y \le vw, 1 \le z \le t$ and $0 \le x' \le 1$,

let

$$\psi\{i, x, z\} = s't'^2u'v'w'p + st^2u(i-1) + stu(z-1) + x,$$

$$\varphi(i, x, y, x') = suv^2 w^2 t' p + s' u' v' w' t' (i - 1) + vw(x - 1) + y + x',$$

and $\phi(i, x, y, x') = suvwt'p + x + stu(i - 1) + su(vwt'p + tv'w'q)(y - 1) + x' - 1.$

Hence set

$$\begin{split} E_{t'p+i} \\ &= \{ x_{\varphi(i,x,y,x'),j+su(vwt'p+tv'w'q)(x-1)} y_{\psi\{i,x,z\},j+\phi(i,x,y,x')} \\ &1 \leq j \leq su(vwt'p+tv'w'q), 1 \leq x \leq stu, \\ &1 \leq y \leq vw, 1 \leq z \leq t, 0 \leq x' \leq 1 \}. \end{split}$$

Each of $E_{t'p+i}(1 \le i \le v'w'q)$, consists of m_0 vertex disjoint type W copies of \vec{P}_{4k-1} . And $\bigcup_{(1\le i\le v'w'q)} E_{t'p+i}$, contains b = stuv'w'q(vwt'p + v'w'tq) vertex disjoint type Wcopies of \vec{P}_{4k-1} . It is important that stuvw + 1 = s't'u'v'w'.

Let $F = \bigcup_{(1 \le i \le t'p + v'w'q)} E_i$ then F contains t = a + b number of vertex disjoint and

edge disjoints \vec{P}_{4k-1} components, and spans $K_{m,n}^*$. Then the graph *F* is \vec{P}_{4k-1} factor of $K_{m,n}^*$. Further, in the graph *F* = $\bigcup_{(1 \le i \le t'p+v'w'q)} E_i$ each of the second subscript of $x_{i,j}$'s meets each of the second subscripts of $y_{i,j}$'s once and only once.

Define a bijection σ such that $\sigma: X \cup Y \xrightarrow{\text{onto}} X \cup Y$ in such a way that:

$$\sigma(x_{i,j}) = x_{i+1,j}, \ \sigma(y_{i,j}) = y_{i+1,j}$$

For each $i \in (1, 2, ..., r_1)$ and each $j \in (1, 2, ..., r_2)$, let

International Journal of Computer Applications (0975 – 8887) Volume 98– No.11, July 2014

$$F_{i,j} = \{\sigma^i(x)\sigma^j(y) \colon x \in X, y \in Y, xy \in F\}.$$

It is shown that the graphs $F_{i,j}$ ($1 \le i \le r_1$, $1 \le j \le r_2$), are edge disjoints \vec{P}_{4k-1} –

factor of $K_{m,n}^*$ and there union is $K_{m,n}^*$.

Thus $(F_{i,j}: 1 \le i \le r_1, 1 \le j \le r_2)$ is a \vec{P}_{4k-1} -factorization of $K_{m,n}^*$.

This proves the lemma 2.5.

By Similar manner we can also prove the other two cases of lemma 2.4.

Applying lemma 2.3 – 2.4 and 2.5, we see that for parameter *m* and *n* satisfying conditions in theorem 2.1, $K_{m,n}^*$ has a \vec{P}_{4k-1} –factorization.

3. REFERENCES

- [1] Ushio K: *G*-designs and related designs, Discrete Math., 116(1993), 299-311.
- [2] Wang H: P_{2p} –factorization of a complete bipartite graph, discrete math.120 (1993) 307-308.
- [3] Beiling Du: P_{2k} –factorization of complete bipartite multigraph. Australasian Journal of Combinatorics 21(2000), 197 199.
- [4] Ushio K: P₃ –factorization of complete bipartite graphs. Discrete math.72 (1988) 361-366.
- [5] Wang J and Du B: P_5 factorization of complete bipartite graphs. Discrete math. 308 (2008) 1665 1673.
- [6] Wang J : P₇ factorization of complete bipartite graphs. Australasian Journal of Combinatorics, volume 33 (2005), 129-137.

- [7] U. S. Rajput and Bal Govind Shukla: P₉ factorization of complete bipartite graphs. Applied Mathematical Sciences, volume 5(2011), 921- 928.
- [8] Du B and Wang J: P_{4k-1} factorization of complete bipartite graphs. Science in China Ser. A Mathematics 48 (2005) 539 – 547.
- [9] Du B: \vec{P}_3 –factorization of complete bipartite symmetric digraphs. Australasian Journal of Combinatorics, volume 19 (1999), 275-278.
- [10] U. S. Rajput and Bal Govind Shukla: \vec{P}_5 –factorization of complete bipartite symmetric digraph. .IJCA(12845-0234) Volume 73 Number 18 year 2013.
- [11] U. S. Rajput and Bal Govind Shukla: \vec{P}_7 –factorization of complete bipartite symmetric digraph. International Mathematical Forum, vol. 6(2011), 1949-1954.
- [12] David M. Burton: Elementary Number Theory. UBS Publishers New Delhi, 2004.
- [13] Harary F: Graph theory. Adison Wesley. Massachusettsf complete bipartite symmetric digraph. .IJCA(12845-0234) Volume 73 Number 18 year 2013.
- [14] U. S. Rajput and Bal Govind Shukla: \vec{P}_7 –factorization of complete bipartite symmetric digraph. International Mathematical Forum, vol. 6(2011), 1949-1954.
- [15] David M. Burton: Elementary Number Theory. UBS Publishers New Delhi, 2004.
- [16] Harary F: Graph theory. Adison Wesley. Massachusetts, 1972.