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ABSTRACT 

The research in the field of defect and change proneness 

prediction of software has gained a lot of momentum over the 

past few years. Indeed, effective prediction models can help 

software practitioners in detecting the change prone modules 

of a software, allowing them to optimize the resources used 

for software testing. However, the development of the 

prediction models used to determine change prone classes are 

dependent on the availability of historical data from the 

concerned software. This can pose a challenge in the 

development of effective change prediction models. The aim 

of this paper is to address this limitation by using the data 

from models based on similar projects to predict the change 

prone classes of the concerned software. This inter project 

technique can facilitate the development of generalized 

models which can be used to ascertain change prone classes 

for multiple software projects. It would also lead to 

optimization of critical time and resources in the testing and 

maintenance phases. This work evaluates the effectiveness of 

statistical and machine learning techniques for developing 

such models using receiver operating characteristic analysis. 

The observations of the study indicate varied results for the 

different techniques used. 

Categories and Subject Descriptors 

D.2 [Software Engineering]: D.2.8 Metrics, D.4.8 

Performance 

General Terms 

Measurement, Performance, Reliability, Verification 

Keywords 

Change proneness, Inter project validation, Object oriented 

metrics, Receiver operating characteristic analysis. 

1. INTRODUCTION 
Change prediction involves identification of the change prone 

components of a software. Such information can be utilized 

to prioritize resources like effort and time during the software 

development process as more resources should be focused on 

the change prone components to improve the quality of the 

software. Significant research has been conducted by 

researchers for the determination of change prone classes of 

software using various software metrics.  

The development of change prediction models requires a 

training set which includes change data and project metrics. 

The change data comprises of change statistics of the 

different versions of the concerned software. Thus, change 

data collection requires analysis of the software’s project 

history. However in many cases, this data may either be 

unavailable or difficult to collect [1-3]. This limits the 

applicability of change prediction models for those software 

projects where the local data is scarce in nature. 

The limitations of historical data collection necessitate the 

synthesis of more generalized prediction models where 

training data of a particular project can be used for other 

similar projects. This is called as inter project validation. This 

approach is useful when software developers do not have the 

sufficient time or resources to compute historical data from 

the past projects to predict the change prone parts of 

software. Thus such a technique would aid in better planning 

of the limited resources and generation of competent and 

good quality software.  

In this paper, the authors aim to validate inter project 

approach using three software projects from the same 

application domain. The prediction models have been built 

using the commonly used regression and machine learning 

techniques used by researchers [4-7]. They also investigate a 

new group of bio-inspired techniques better known as 

Artificial Immune System (AIS) algorithms for their ability to 

detect change prone classes using inter project validation.  

This paper investigates the following research questions: (1) 

Can the prediction model of one software project be 

effectively used to determine change prone classes of another, 

i.e. is inter project validation feasible? (2) Which techniques 

are better for building generalized change prediction models? 

(3) Which Object-Oriented (OO) metrics are relevant for the 

determination of change prone classes in software?  

The study aims to address these questions by performing an 

empirical validation using three software data sets- FindBugs, 

PMD and Checkstyle. The selected software projects are from 

the same application domain of source code analyzers. The 

models have been developed using diverse techniques and the 

results of the study indicate that the traditional technique 

(logistic regression) and machine learning techniques yield 

comparative and optimistic results for synthesis of 

generalized models. However, the AIS techniques show 

discouraging results for determining the change prone classes 

using inter project prediction. 

According to the organization of the paper section 2 

describes the related work, section 3 defines the various types 

of variables used, section 4 describes the data collection 

procedure and section 5 explains the research methodology. 

Section 6 states the analysis of the results obtained while 

section 7 describes the threats to validity. Section 8 states the 

conclusion of the study.  
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2. RELATED WORK 
Inter project defect prediction is the strategy used to train 

models of software projects having scarce local defect data by 

utilizing the training data from other projects. A number of 

authors have published studies investigating the effectiveness 

of this strategy.  

Kitchenham et al. [8] analyzed within-company and inter-

company based prediction models by reviewing ten papers 

that investigated the approach of inter project defect 

estimation. The results were declared as inconclusive and 

called for more independent studies and standardized 

experimental procedures for homogeneity. Zimmerman et al. 

[9] analyzed inter project estimations on 12 open source and 

commercial software systems to determine the dependency of 

inter project defect prediction of various factors. They 

concluded that the method is not always effective due to 

factors such as development process used, source 

characteristics and application domain of projects. 

Another approach to inter project defect prediction was made 

by Canfora et al. [10] who presented a multi-objective 

regression model which was built using a genetic algorithm. 

The model was empirically evaluated on 10 data sets from the 

PROMISE repository. The study showcased promising 

results. He et al. [11] also concluded in their study that in 

some cases, inter project estimation gives better results than 

within project estimations. This was analyzed using 34 data 

sets of 10 open source software under 3 large experiments.  

Recent studies have emphasized on change proneness as a 

relevant software quality attribute [12-16]. Han et al. [12] 

evaluated the change using UML 2.0 models. They used 

Behavioral Dependency Measurement approach on 

JFreeChart, a multi-version open source project. Elish et al. 

[13] investigated the relationship between change proneness 

and evolution based metrics. These metrics were derived and 

analyzed using GQM approach. The results of this study 

displayed significant correlation between change proneness 

and the computed evolution-based metrics. 

Zhou et al. [14] computed the capability of different metrics 

for determining the change prone classes by combining 62 

metrics and change data of 102 large systems developed in 

Java and analyzed them using statistical meta-analysis 

techniques. The research concluded that size metrics are 

better performance indicators of change proneness than other 

metrics such as cohesion, inheritance and cohesion [15]. 

Malhotra et al. [17] performed an empirical validation to 

determine the relationship between change proneness and OO 

metrics in a software using three open source software 

projects developed in Java language. The results showed that 

performance of some machine learning techniques 

outperformed that of logistic regression. The analysis was 

done using Receiver Operating Characteristic (ROC) 

technique. 

A study on inter project change prediction was performed by 

Malhotra et al. [18] in which two open source software 

FreeMind and Frinika were used to depict the efficiency of 

machine learning techniques to predict the change prone 

classes in one software using the training data of another. 

Three machine learning techniques were used and the 

research concluded competent results. Stemming from this 

approach, the authors seek to further diversify the search for a 

generalized model to predict change proneness in software 

where historical data is not available. This paper tests the 

applicability of not only machine learning but also logistic 

regression and AIS techniques to determine the likelihood of 

change in a software. To the best of the authors’ knowledge, 

no prior study investigated the use of Artificial Immune 

Systems (AIS) methods in inter project change proneness 

prediction. The study provides conclusive results by taking 3 

projects with similar project settings and varied prediction 

techniques so that practitioners and developers can plan the 

maintenance and testing process effectively for the 

development of better quality software. 

3. INDEPENDENT AND DEPENDENT 

VARIABLES 
This section defines all the variables used in the study. 

3.1 Independent Variables 
Independent variables are the variables that are investigated 

by researchers to analyze their effect on the dependent 

variable in a study [19]. OO Metrics provide quantitative 

measures of the various characteristics of a software such as 

inheritance, size, coupling, etc. This knowledge of the 

attributes of software can be used to improve the process of 

software development.               

Table 1: Metrics used in the study 

 

S.No. Metric Definition Source 

1 

Coupling 

between 

objects 

( CBO) 

CBO is the number of 

classes a class of software 

is coupled with. 

[20] 

2 Depth of 

Inheritance 

( DIT) 

DIT provides the number 

of steps required to reach 

the tree root in the 

inheritance hierarchy 

from the class node.  

[20] 

3 Lack of 

Cohesion 

( LCOM) 

The number of dissimilar 

techniques minus the 

number of similar 

techniques 

[20] 

4 Number of 

Children 

(NOC) 

For a hierarchy, NOC 

provides the number of 

sub-classes to a class. 

[20] 

5 Weighted 

techniques 

per class 

( WMC) 

For a class, WMC is the 

quantified sum of the 

complexities of all its 

methods. 

[20] 

6 Response 

for a class 

( RFC) 

RFC provides the number 

of possible methods 

executed in response to 

messages received by 

class objects. 

[20] 

7 Lines of 

Code 

( LOC) 

LOC gives the sum of 

total source code lines 

apart from the comments 

[21] 
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This study uses OO metrics provided by Chidamber & 

Kemerer as they are the most widely used metrics in the 

literature [20-22]. 

Table 1 lists the metrics utilized in this paper [20]. The 

values of these metrics have been extracted using Understand 

for Java software. (http://www.scitools.com/)  

3.2 Dependent Variable 
The dependent variable is the behavior of the software which 

is being observed by the researchers. In this study, change 

proneness of the software is the dependent variable. As 

defined in [17], change proneness is the likelihood of change 

in a class in the subsequent releases of the software. It can be 

quantified by analyzing the lines of code that have been 

added, deleted or modified. The detailed technique for 

determination of change proneness of a class has been 

described in section 4.  

4. EMPIRICAL DATA COLLECTION 
In this section, the procedure used for data collection for all 

the software projects under analysis has been stated. 

4.1 Data Collection Procedure 
Three open source software have been used as the software 

projects under analysis. The projects are – FindBugs, PMD 

and checkstyle and the source code is available on 

www.sourceforge.net. These projects have been developed in 

Java language and belong to a similar application domain i.e. 

source code analyzers. The change data from two versions of 

each of the software projects is taken to empirically validate 

the process of change proneness prediction. The change data 

accounts for the various defect removals and enhancements 

that a project undergoes in the subsequent versions of 

software. The details of each software such as version, release 

date, number of classes and LOC for all of the projects are 

listed in table 2.  The deduced change statistics along with the 

OO metrics constitute the data points for the development of 

the prediction models. 

 

A number of steps are followed to collect data from the 

software projects under analysis. A more detailed method of 

data collection can be referred from Malhotra et al. [17]. The 

first step is to compute the independent variables of the three 

projects.  The independent variables i.e. OO metrics, are 

collected from the previously released version of each of the 

projects using the Understand for Java software. The metrics 

of unknown classes, methods, files are ignored and the 

information about of the required classes is extracted. The 

second step is the generation of the comparable versions of 

each of the software projects. These versions are generated by 

processing the two releases of the software projects under 

analysis and extracting the classes common to both the 

versions. A variable named ‘ALTER’ which holds binary 

values- ‘1’ if there are one more changes in a common class 

of the software project, ‘0’ is there is no difference in that 

class of both the releases. The methodology followed to 

process these versions and evaluate the variable ALTER is in 

accordance with that of Malhotra et al. [17].  

Table 2 Software Details 

Name Version Release date LOC Classes 

FindBugs 
1.2.1 31-5-2007 82827 849 

1.3.9 21-08-2009 1,10,907 1080 

PMD 
3.9 19-12-2006 71,114 822 

4.0 20-07-2007 
54,031 679 

Checkstyle 
5.3 19-10-2010 

52,360 792 

5.4 14-07-2011 
52,888 796 

 

Figure 1 – Method for Prediction of Change Prone Classes in Inter Project Validation

  

http://www.sourceforge.net/
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For FindBugs, there were 555 common classes between the 

two releases. Thus, the change data of these classes combined 

with their OO characteristics yield 555 data points. Similarly, 

analysis of PMD and Checkstyle generated 432 and 212 data 

points respectively as shown in Table 3. 

For the empirical validation of inter project change 

prediction, FindBugs has been used as the input training set, 

as it provides a large number of data points for training. The 

models built using this data set have then been separately 

tested on the data points provided by the other software 

projects under analysis- PMD and Checkstyle. The method 

used for inter project validation in this study has been 

depicted in Figure 1.  

Table 3: Details of generated data points 

Name of the software No. of data points generated 

FindBugs 555 

PMD 432 

Checkstyle 212 

 

5. RESEARCH METHODOLOGY 
The following section states the techniques used for analysis 

of the data points acquired using the data collection 

procedure. 

5.1 Correlation based feature selection 
In order to develop effective prediction models, one requires 

a representative input set of variables that can be used. Such 

an input set is achieved through Correlation Based Feature 

Selection (CFS), which removes the unwanted or noisy 

features from the inputs. This results in decrease of 

dimensionality of the feature set yielding an optimal number 

of inputs. It can reduce the time of execution and improve the 

efficiency of such models [23]. This paper explores the 

effectiveness of three types of techniques for inter project 

change proneness prediction, namely statistical, machine 

learning (ML) and AIS techniques. Section 5.1.1 describes 

the statistical technique used, Sections 5.1.2- 5.1.4 describe 

the machine learning techniques and Sections 5.1.5- 5.1.7 

describes the AIS techniques used in the study. The default 

settings provided in the WEKA tool for the ML and that of 

the WEKA plugin for AIS techniques have been used [28]. 

5.1.1 Logistic Regression 
Logistic Regression (LOG) is a statistical technique useful in 

modeling the relationship between a dependent variable and a 

set of independent variables. It differs from linear regression 

as the logistic function determines probabilities of the 

occurrence of an event as opposed to the prediction of change 

in dependent variable. [24] The probabilities are modeled as 

a function of the specified inputs. The formula for logistic 

regression is as follows: 

    

5.1.2 Bagging 
In Bootstrap aggregating (BAGG) technique, replicates of the 

training set are produced through sampling. For the learning 

data of size m, the method creates bootstrap samples of size 

less than m. The individual results of all the models are then 

assembled and the records are stored. The accuracy of this 

technique is dependent on the significance of the selected 

training data [25]. The default settings used in WEKA tool 

are 10 iterations, bag size percent of 100 and REP tree as the 

classifier.   

5.1.3 Adaptive Boosting 
Adaptive Boosting (ADA) is a popular ensemble algorithm 

which is commonly used for boosting methods. It is applied 

to learn weak classifiers and derive a stronger performance 

classifier from the individual classifiers [26]. On the basis of 

performance, weights are assigned to the individual weak 

learners and expertise is gained by analyzing the incorrect 

classifications made by the previous models. The accuracy of 

this algorithm wavers with noisy data. The WEKA default 

settings were applied with 10 iterations and weight mass 

percentage of 100 used to build the classifiers. 

5.1.4 Bayesian Network 
In Bayes Net (BN) algorithm, a network is created which 

comprises of a set of individual nodes and directed edges 

connection them [27].This network aids in the determination 

of the relationship between random variables and 

probabilistic values of the relationship dependency. The 

technique is useful when there is uncertainty in the problem 

domain, regarding the relationship between the input 

variables. It investigates the strength of the connections 

between the variables quantitatively. The final result is the 

joint probabilistic distribution derived from the network. A 

simple estimator and K2 search algorithm have been used as 

the default settings in WEKA tool. 

5.1.5  AIRS1 
Inspired from biological computation and artificial 

intelligence, it is a supervised learning algorithm. The first 

involves initialization followed by artificial recognition ball 

(ARB) generation, competing for resources and memory cell 

identification. The detail of the methodology can be seen in 

[28]. The default settings of the plug in of WEKA for AIRS 

have been used. The algorithm is operated at an affinity 

threshold scalar of 0.2 and clonal rate of 10.0. 

5.1.6 AIRS2Parallel 
AIRS2Parallel (A2P) operates in parallel through partitioning 

and can be used to get a speedup in the levels of classification 

accuracy [29]. This technique differs from AIRS1 in relation 

to the mannerism in which clones are mutated and value of 

different user parameters like simulation value. A merging 

scheme is used to jointly classify from the various individual 

memory pools of the partitions. The settings in WEKA 

include a clonal rate of 10.0 and hyper mutation rate of 2.0. 

5.1.7 Clonal Selection Classifier Algorithm 
Clonal selection classifier algorithm (CSCA) is a 

classification algorithm developed by Brownlee [30], 

inspired by the CLONALG algorithm and its variants. It can 

be expressed as a fitness function where the goal is to 

maximize the accuracy of classification and minimize that of 

misclassification. The settings used in WEKA are a clonal 

scale factor of 1.0 and initial population size of 50. 

6. ANALYSIS & RESULTS 
This section concludes the observations made by the 

performance of the prediction models on the given data sets 

using logistic, machine learning and AIS techniques. The 

effectiveness of the prediction models have been evaluated by 

the following parameters [17]: 

1. Sensitivity: It is the percentage of the ratio of 

classes that were correctly predicted to exhibit 
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change. High value of sensitivity indicates a good 

prediction technique for change proneness. 

2. Specificity: It is the percentage of ratio of classes 

that were incorrectly predicted to exhibit change. 

Values of sensitivity and specificity in closest 

proximity to each other yield the cutoff point which 

is the optimal points in analysis of the models. 

3. Receiver Operating Characteristic (ROC) Analysis: 

ROC curve is utilized as a measure for prediction in 

ROC analysis with 1- specificity as the x coordinate 

and sensitivity as the y coordinate [18]. The area-

under-curve (AUC) helps in determining the 

prediction accuracy of the model.  

4. Ten-cross validation: In n cross validation, the 

input data set is divided into n sub data sets where 

n-1 sets are operated upon as training sets to 

analyze the nth set which is the test set. To make 

the statistical tests results more reliable, a ten cross 

validation was performed on all the data sets. [31] 

In the following subsections, results of the analysis are stated.  

6.1 Descriptive Statistics 
Tables 4, 5 and 6 provide the detailed statistics of the 

considered metrics in this study. These include the minimum 

(Min), maximum (Max), Mean, Median (Med), 1st Quartile 

(Q1), 3rd Quartile (Q3) and standard deviation (SD). Some of 

the data characteristics are as follows: 

1. Size of the three software projects is diverse with a 

range of 5 to 2724 LOC for Checkstyle with mean 

of 104 LOC, PMD has range from 5 to 8858 LOC 

and mean of 87 LOC. The software which is used 

as the training set for both the mentioned projects, 

FindBugs, has a range from 7-553 LOC with a 

mean of 83 LOC. 

2. LCOM holds high values of upto 100 in all the sets.  

3. Low levels of inheritance can be observed in all 

projects with low mean values of NOC (0.1 for 

Findbugs, 0.4 for PMD and 0.3 for Checkstyle.) 

and DIT ( 3.5 for Findbugs, 2.4 for PMD and 2.3 

for Checkstyle.). The results are similar to studies 

in related fields [11-13]. 

Table 4: Metric Statistics for FindBugs 

 

 

 

 

 

 

Table 5: Metric Statistics for PMD 

 

Table 6: Metric Statistics for Checkstyle 

 

6.2 Inter project validation results for 

PMD 
In order to evaluate inter project validation, the authors use 

FindBugs as the training set and PMD as the test set. For 

using PMD as the test set, data points from the FindBugs 

dataset formed the training set. CFS was applied to the input 

set to get the optimal combination of metrics. The metrics 

selected after applying CFS technique were CBO, LOC and 

WMC. The data points of the PMD software were added as 

inputs to the model generated using the FindBugs software 

using the WEKA tool and the performance of different 

techniques has been observed as in table 7.  

The model developed using LOG gave good results with an 

AUC measure of 0.79 and high values of specificity and 

sensitivity of 76.4% and 75.9% respectively. The cut-off 

point recorded by LR was at 0.458. The models generated 

using the BN and ADA techniques showed similar outputs 

with an AUC measure of 0.769 and 0.78 respectively and cut 

off points of 0.344 and 0.461 respectively. Both techniques 

displayed high values of specificity of 81% and 80.4% 

respectively. The cutoff point of BAGG model was 0.415 

with both specificity and sensitivity values being 75.9%. The 

BAGG model displayed a comparable AUC measure of 

0.774. The results provided by models developed using the 

Artificial Immune System (AIS) techniques were 

discouraging with an AUC measure of 0.64 shown by AIRS1 

technique. Model using the AIRS1 technique displayed 

dissimilar values of sensitivity and specificity of 72.8% and 

55.3% respectively at a cut-off point of 0.5. The A2P 

technique showcased contrasting values with good specificity 

value of 73.8% but low sensitivity value of 54.4%. The 

model developed using CSCA provided relatively good 

results with an AUC measure of 0.704 and specificity and 

Metric Min Max Mean Med Q(1) Q(3) SD 

CBO 0 117 4.9 2.5 2 6 8.7 

NOC 0 101 0.4 0 0 0 5 

RFC 0 579 66.1 47 6 115 71 

LOC 5 8858 86 23 11 49 482 

DIT 1 5 2.4 3 1 3 0.1 

LCOM 0 96 25.5 0 0 56.2 33.4 

WMC 0 3437 24.2 5 3 12 179 

Metric Min Max Mean Med Q(1) Q(3) SD 

CBO 0 27 3.3 3 2 4 3.1 

NOC 0 16 0.1 0 0 0 1.3 

RFC 1 88 37.9 43 30 51 18.1 

LOC 7 553 83 56 32.75 112 76.7 

DIT 1 7 3.5 4 2 4 1.5 

LCOM 0 100 42.4 50 0 77 36.7 

WMC 1 106 14.4 10 5 19 13.6 

Metric Min Max Mean Med Q(1) Q(3) SD 

CBO 0 62 6.3 4 2 7 8.1 

NOC 0 79 0.3 0 0 0 3.4 

RFC 1 309 43 12 5 40.5 62.7 

LOC 5 2724 104 52 24 110 185 

DIT 1 7 2.3 1 1 3 1.8 

LCOM 0 100 49.3 55 22.5 78 33 

WMC 1 440 23 12 5 24 36.9 
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(b)  
(a)  

(c)  (d)  

(e)  

sensitivity of 76.8% and 63.6% respectively. The statistical 

and machine learning techniques indicate comparable 

performance. Their performance can be analyzed through 

ROC curves in Figure 2.  

Table 7: Results for PMD software 

Method  Specificity Sensitivity Cutoff point AUC 

LOG 76.4 75.9 0.458 0.79 

BN 81.0 70.0 0.344 0.769 

ADA 80.4 70.8 0.461 0.78 

BAGG 75.9 75.9 0.415 0.774 

AIRS1 55.3 72.8 0.50 0.640 

A2P 73.8 54.4 0.50 0.641 

CSCA 76.8 63.6 0.50 0.702 

 

Fig. 2: ROC curves for PMD Software Models: a.LOG b. 

BN c. ADA d. BAGG e. AIRS1 f. A2P g. CSCA 

 

6.3 Inter Project Results for Checkstyle 
After applying the CFS technique to the training set provided 

by the FindBugs data set, the metrics extracted to form the 

feature set were CBO, LOC and WMC. The metrics data 

from the Checkstyle software gives the inputs required for the 

test set. The results displayed by the models developed using 

the different techniques have been shown in table 8. 

The best results were shown by the model using the BN 

technique with an AUC measure of 0.704 and good values of 

sensitivity and specificity of 70.7% and 70.2% respectively. 

The cut-off point for the BN technique was at 0.510.  The 

ADA technique displayed similar results with a higher cut-off 

point of 0.604. The model developed using the LR technique 

exhibited low results with an AUC measure of 0.642. The 

specificity and sensitivity of the LR model was 60.8% and 

61.0% respectively. The model using BAGG technique 

displayed comparable results with low sensitivity and 

specificity of 63.4% and 63.2% respectively at a cut-off point 

of 0.591 and AUC measure of 0.629. The AIS models 

exhibited disappointing results with the best results 

showcased by the model developed using the CSCA 

technique with an AUC measure of 0.661. The CSCA model 

showed high sensitivity of 85.4% but very low specificity of 

46.8% at a cut-off point of 0.5. The model using the AIRS1 

and A2P techniques exhibited extremely low AUC measures 

of 0.542 and 0.563 respectively. The A2P model showed 

specificity and sensitivity of 63.7% and 51.2% respectively. 

The ROC curves of all the models developed for Checkstyle 

as the test set can be seen in Figure 3.  

Table 8: Results for Checkstyle software 

7. THREATS TO VALIDITY 
This section is used to describe the possible threats to the 

validity of the work. 

7.1 Construct Validity 
Construct validity depends on the usage of the dependent & 

independent variables and the methods used to determine 

them. The dependent variable in this study is a binary 

variable which has been calculated manually and thus does 

not provide any threats. However, this study does not 

categorize whether the change occurred was corrective, 

adaptive, perfective or preventive in nature as in [32]. This 

could be a possible source of threat.  

7.2 External Validity 
In this study, three open source software have been analyzed 

from similar application domain to decrease the threat of 

external validity. However, it still poses a threat as 

generalization cannot be concluded unless the same 

  

  

 

 

 

 

Method  Specificity Sensitivity Cutoff point AUC 

LOG 60.8 61.0 0.467 0.642 

BN 70.2 70.7 0.510 0.704 

ADA 70.2 70.7 0.604 0.703 

BAGG 63.2 63.4 0.591 0.629 

AIRS1 18.1 90.2 0.500 0.542 

A2P 63.7 51.2 0.500 0.563 

CSCA 46.8 85.4 0.500 0.661 

(f)  

(g)  
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(a)  
(b)  

(c)  (d)  

(e)  

procedure is replicated across a number of data sets with 

different implementation and application environments. 

Fig. 3: ROC curves for Checkstyle Software Models: a. 

LOG b. BN c. ADA d. BAGG e. AIRS1 f. A2P g. CSCA 

8. CONCLUSION AND FUTURE WORK 
The study aimed at the investigation of the applicability of 

inter project validation to detect change prone classes in a 

software. The work was validated using three software 

projects in which the Findbugs software data set was used as 

the training set and PMD and Checkstyle software data sets 

were used as the test sets. The models developed to predict 

change proneness were developed using a range of popular 

logistic and machine learning techniques and some 

unexplored AIS techniques. 

The effect of OO metrics on change proneness in software 

was also analyzed and their relation comprehended. The 

conclusion of the study are stated as follows: 

1. The results exhibited by the prediction models 

demonstrate that in the absence of prior historical 

data, software can be tested for change proneness 

on models built using statistics from other project 

data. This is known as inter project validation. Such 

techniques can help developers to predict the 

change prone modules of a software in the absence 

of complete project data. This can be utilized to 

make the software testing process more efficient in 

terms of both time and resources. 

2. The accuracy of logistic and machine learning 

techniques for predicting change proneness in inter- 

projects is comparable with BN and LR showing 

good results with high values of specificity and 

sensitivity. The AIS algorithms which exploit the 

characteristics displayed by the immune systems 

prove ineffective in their classification accuracy for 

inter-project validation.  

3. The CBO, LOC and WMC metrics indicate strong 

correlation with the dependent variable of the 

study, i.e. change proneness. This can be seen by 

their selection in the input feature set using the CFS 

method. 

These observations are valid for medium- sized object 

oriented systems. The authors plan to further generalize the 

applicability of inter project validation across diverse 

language and application environments and discover the most 

effective techniques for analyzing such models.  
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