
International Journal of Computer Applications (0975 – 8887)

Volume 97– No.8, July 2014

1

Applicability of Inter Project Validation for Determination

of Change Prone Classes

Ruchika Malhotra

Department of Software
Engineering

Delhi Technological University
Bawana Road, New Delhi

Vrinda Gupta

Department of Software
Engineering

Delhi Technological University
Bawana Road, New Delhi

Megha Khanna

Acharya Narendra Dev College
University of Delhi

Govindpuri, New Delhi

ABSTRACT

The research in the field of defect and change proneness

prediction of software has gained a lot of momentum over the

past few years. Indeed, effective prediction models can help

software practitioners in detecting the change prone modules

of a software, allowing them to optimize the resources used

for software testing. However, the development of the

prediction models used to determine change prone classes are

dependent on the availability of historical data from the

concerned software. This can pose a challenge in the

development of effective change prediction models. The aim

of this paper is to address this limitation by using the data

from models based on similar projects to predict the change

prone classes of the concerned software. This inter project

technique can facilitate the development of generalized

models which can be used to ascertain change prone classes

for multiple software projects. It would also lead to

optimization of critical time and resources in the testing and

maintenance phases. This work evaluates the effectiveness of

statistical and machine learning techniques for developing

such models using receiver operating characteristic analysis.

The observations of the study indicate varied results for the

different techniques used.

Categories and Subject Descriptors

D.2 [Software Engineering]: D.2.8 Metrics, D.4.8

Performance

General Terms

Measurement, Performance, Reliability, Verification

Keywords

Change proneness, Inter project validation, Object oriented

metrics, Receiver operating characteristic analysis.

1. INTRODUCTION
Change prediction involves identification of the change prone

components of a software. Such information can be utilized

to prioritize resources like effort and time during the software

development process as more resources should be focused on

the change prone components to improve the quality of the

software. Significant research has been conducted by

researchers for the determination of change prone classes of

software using various software metrics.

The development of change prediction models requires a

training set which includes change data and project metrics.

The change data comprises of change statistics of the

different versions of the concerned software. Thus, change

data collection requires analysis of the software’s project

history. However in many cases, this data may either be

unavailable or difficult to collect [1-3]. This limits the

applicability of change prediction models for those software

projects where the local data is scarce in nature.

The limitations of historical data collection necessitate the

synthesis of more generalized prediction models where

training data of a particular project can be used for other

similar projects. This is called as inter project validation. This

approach is useful when software developers do not have the

sufficient time or resources to compute historical data from

the past projects to predict the change prone parts of

software. Thus such a technique would aid in better planning

of the limited resources and generation of competent and

good quality software.

In this paper, the authors aim to validate inter project

approach using three software projects from the same

application domain. The prediction models have been built

using the commonly used regression and machine learning

techniques used by researchers [4-7]. They also investigate a

new group of bio-inspired techniques better known as

Artificial Immune System (AIS) algorithms for their ability to

detect change prone classes using inter project validation.

This paper investigates the following research questions: (1)

Can the prediction model of one software project be

effectively used to determine change prone classes of another,

i.e. is inter project validation feasible? (2) Which techniques

are better for building generalized change prediction models?

(3) Which Object-Oriented (OO) metrics are relevant for the

determination of change prone classes in software?

The study aims to address these questions by performing an

empirical validation using three software data sets- FindBugs,

PMD and Checkstyle. The selected software projects are from

the same application domain of source code analyzers. The

models have been developed using diverse techniques and the

results of the study indicate that the traditional technique

(logistic regression) and machine learning techniques yield

comparative and optimistic results for synthesis of

generalized models. However, the AIS techniques show

discouraging results for determining the change prone classes

using inter project prediction.

According to the organization of the paper section 2

describes the related work, section 3 defines the various types

of variables used, section 4 describes the data collection

procedure and section 5 explains the research methodology.

Section 6 states the analysis of the results obtained while

section 7 describes the threats to validity. Section 8 states the

conclusion of the study.

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.8, July 2014

2

2. RELATED WORK
Inter project defect prediction is the strategy used to train

models of software projects having scarce local defect data by

utilizing the training data from other projects. A number of

authors have published studies investigating the effectiveness

of this strategy.

Kitchenham et al. [8] analyzed within-company and inter-

company based prediction models by reviewing ten papers

that investigated the approach of inter project defect

estimation. The results were declared as inconclusive and

called for more independent studies and standardized

experimental procedures for homogeneity. Zimmerman et al.

[9] analyzed inter project estimations on 12 open source and

commercial software systems to determine the dependency of

inter project defect prediction of various factors. They

concluded that the method is not always effective due to

factors such as development process used, source

characteristics and application domain of projects.

Another approach to inter project defect prediction was made

by Canfora et al. [10] who presented a multi-objective

regression model which was built using a genetic algorithm.

The model was empirically evaluated on 10 data sets from the

PROMISE repository. The study showcased promising

results. He et al. [11] also concluded in their study that in

some cases, inter project estimation gives better results than

within project estimations. This was analyzed using 34 data

sets of 10 open source software under 3 large experiments.

Recent studies have emphasized on change proneness as a

relevant software quality attribute [12-16]. Han et al. [12]

evaluated the change using UML 2.0 models. They used

Behavioral Dependency Measurement approach on

JFreeChart, a multi-version open source project. Elish et al.

[13] investigated the relationship between change proneness

and evolution based metrics. These metrics were derived and

analyzed using GQM approach. The results of this study

displayed significant correlation between change proneness

and the computed evolution-based metrics.

Zhou et al. [14] computed the capability of different metrics

for determining the change prone classes by combining 62

metrics and change data of 102 large systems developed in

Java and analyzed them using statistical meta-analysis

techniques. The research concluded that size metrics are

better performance indicators of change proneness than other

metrics such as cohesion, inheritance and cohesion [15].

Malhotra et al. [17] performed an empirical validation to

determine the relationship between change proneness and OO

metrics in a software using three open source software

projects developed in Java language. The results showed that

performance of some machine learning techniques

outperformed that of logistic regression. The analysis was

done using Receiver Operating Characteristic (ROC)

technique.

A study on inter project change prediction was performed by

Malhotra et al. [18] in which two open source software

FreeMind and Frinika were used to depict the efficiency of

machine learning techniques to predict the change prone

classes in one software using the training data of another.

Three machine learning techniques were used and the

research concluded competent results. Stemming from this

approach, the authors seek to further diversify the search for a

generalized model to predict change proneness in software

where historical data is not available. This paper tests the

applicability of not only machine learning but also logistic

regression and AIS techniques to determine the likelihood of

change in a software. To the best of the authors’ knowledge,

no prior study investigated the use of Artificial Immune

Systems (AIS) methods in inter project change proneness

prediction. The study provides conclusive results by taking 3

projects with similar project settings and varied prediction

techniques so that practitioners and developers can plan the

maintenance and testing process effectively for the

development of better quality software.

3. INDEPENDENT AND DEPENDENT

VARIABLES
This section defines all the variables used in the study.

3.1 Independent Variables
Independent variables are the variables that are investigated

by researchers to analyze their effect on the dependent

variable in a study [19]. OO Metrics provide quantitative

measures of the various characteristics of a software such as

inheritance, size, coupling, etc. This knowledge of the

attributes of software can be used to improve the process of

software development.

Table 1: Metrics used in the study

S.No. Metric Definition Source

1

Coupling

between

objects

(CBO)

CBO is the number of

classes a class of software

is coupled with.

[20]

2 Depth of

Inheritance

(DIT)

DIT provides the number

of steps required to reach

the tree root in the

inheritance hierarchy

from the class node.

[20]

3 Lack of

Cohesion

(LCOM)

The number of dissimilar

techniques minus the

number of similar

techniques

[20]

4 Number of

Children

(NOC)

For a hierarchy, NOC

provides the number of

sub-classes to a class.

[20]

5 Weighted

techniques

per class

(WMC)

For a class, WMC is the

quantified sum of the

complexities of all its

methods.

[20]

6 Response

for a class

(RFC)

RFC provides the number

of possible methods

executed in response to

messages received by

class objects.

[20]

7 Lines of

Code

(LOC)

LOC gives the sum of

total source code lines

apart from the comments

[21]

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.8, July 2014

3

This study uses OO metrics provided by Chidamber &

Kemerer as they are the most widely used metrics in the

literature [20-22].

Table 1 lists the metrics utilized in this paper [20]. The

values of these metrics have been extracted using Understand

for Java software. (http://www.scitools.com/)

3.2 Dependent Variable
The dependent variable is the behavior of the software which

is being observed by the researchers. In this study, change

proneness of the software is the dependent variable. As

defined in [17], change proneness is the likelihood of change

in a class in the subsequent releases of the software. It can be

quantified by analyzing the lines of code that have been

added, deleted or modified. The detailed technique for

determination of change proneness of a class has been

described in section 4.

4. EMPIRICAL DATA COLLECTION
In this section, the procedure used for data collection for all

the software projects under analysis has been stated.

4.1 Data Collection Procedure
Three open source software have been used as the software

projects under analysis. The projects are – FindBugs, PMD

and checkstyle and the source code is available on

www.sourceforge.net. These projects have been developed in

Java language and belong to a similar application domain i.e.

source code analyzers. The change data from two versions of

each of the software projects is taken to empirically validate

the process of change proneness prediction. The change data

accounts for the various defect removals and enhancements

that a project undergoes in the subsequent versions of

software. The details of each software such as version, release

date, number of classes and LOC for all of the projects are

listed in table 2. The deduced change statistics along with the

OO metrics constitute the data points for the development of

the prediction models.

A number of steps are followed to collect data from the

software projects under analysis. A more detailed method of

data collection can be referred from Malhotra et al. [17]. The

first step is to compute the independent variables of the three

projects. The independent variables i.e. OO metrics, are

collected from the previously released version of each of the

projects using the Understand for Java software. The metrics

of unknown classes, methods, files are ignored and the

information about of the required classes is extracted. The

second step is the generation of the comparable versions of

each of the software projects. These versions are generated by

processing the two releases of the software projects under

analysis and extracting the classes common to both the

versions. A variable named ‘ALTER’ which holds binary

values- ‘1’ if there are one more changes in a common class

of the software project, ‘0’ is there is no difference in that

class of both the releases. The methodology followed to

process these versions and evaluate the variable ALTER is in

accordance with that of Malhotra et al. [17].

Table 2 Software Details

Name Version Release date LOC Classes

FindBugs
1.2.1 31-5-2007 82827 849

1.3.9 21-08-2009 1,10,907 1080

PMD
3.9 19-12-2006 71,114 822

4.0 20-07-2007
54,031 679

Checkstyle
5.3 19-10-2010

52,360 792

5.4 14-07-2011
52,888 796

Figure 1 – Method for Prediction of Change Prone Classes in Inter Project Validation

http://www.sourceforge.net/

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.8, July 2014

4

For FindBugs, there were 555 common classes between the

two releases. Thus, the change data of these classes combined

with their OO characteristics yield 555 data points. Similarly,

analysis of PMD and Checkstyle generated 432 and 212 data

points respectively as shown in Table 3.

For the empirical validation of inter project change

prediction, FindBugs has been used as the input training set,

as it provides a large number of data points for training. The

models built using this data set have then been separately

tested on the data points provided by the other software

projects under analysis- PMD and Checkstyle. The method

used for inter project validation in this study has been

depicted in Figure 1.

Table 3: Details of generated data points

Name of the software No. of data points generated

FindBugs 555

PMD 432

Checkstyle 212

5. RESEARCH METHODOLOGY
The following section states the techniques used for analysis

of the data points acquired using the data collection

procedure.

5.1 Correlation based feature selection
In order to develop effective prediction models, one requires

a representative input set of variables that can be used. Such

an input set is achieved through Correlation Based Feature

Selection (CFS), which removes the unwanted or noisy

features from the inputs. This results in decrease of

dimensionality of the feature set yielding an optimal number

of inputs. It can reduce the time of execution and improve the

efficiency of such models [23]. This paper explores the

effectiveness of three types of techniques for inter project

change proneness prediction, namely statistical, machine

learning (ML) and AIS techniques. Section 5.1.1 describes

the statistical technique used, Sections 5.1.2- 5.1.4 describe

the machine learning techniques and Sections 5.1.5- 5.1.7

describes the AIS techniques used in the study. The default

settings provided in the WEKA tool for the ML and that of

the WEKA plugin for AIS techniques have been used [28].

5.1.1 Logistic Regression
Logistic Regression (LOG) is a statistical technique useful in

modeling the relationship between a dependent variable and a

set of independent variables. It differs from linear regression

as the logistic function determines probabilities of the

occurrence of an event as opposed to the prediction of change

in dependent variable. [24] The probabilities are modeled as

a function of the specified inputs. The formula for logistic

regression is as follows:

5.1.2 Bagging
In Bootstrap aggregating (BAGG) technique, replicates of the

training set are produced through sampling. For the learning

data of size m, the method creates bootstrap samples of size

less than m. The individual results of all the models are then

assembled and the records are stored. The accuracy of this

technique is dependent on the significance of the selected

training data [25]. The default settings used in WEKA tool

are 10 iterations, bag size percent of 100 and REP tree as the

classifier.

5.1.3 Adaptive Boosting
Adaptive Boosting (ADA) is a popular ensemble algorithm

which is commonly used for boosting methods. It is applied

to learn weak classifiers and derive a stronger performance

classifier from the individual classifiers [26]. On the basis of

performance, weights are assigned to the individual weak

learners and expertise is gained by analyzing the incorrect

classifications made by the previous models. The accuracy of

this algorithm wavers with noisy data. The WEKA default

settings were applied with 10 iterations and weight mass

percentage of 100 used to build the classifiers.

5.1.4 Bayesian Network
In Bayes Net (BN) algorithm, a network is created which

comprises of a set of individual nodes and directed edges

connection them [27].This network aids in the determination

of the relationship between random variables and

probabilistic values of the relationship dependency. The

technique is useful when there is uncertainty in the problem

domain, regarding the relationship between the input

variables. It investigates the strength of the connections

between the variables quantitatively. The final result is the

joint probabilistic distribution derived from the network. A

simple estimator and K2 search algorithm have been used as

the default settings in WEKA tool.

5.1.5 AIRS1
Inspired from biological computation and artificial

intelligence, it is a supervised learning algorithm. The first

involves initialization followed by artificial recognition ball

(ARB) generation, competing for resources and memory cell

identification. The detail of the methodology can be seen in

[28]. The default settings of the plug in of WEKA for AIRS

have been used. The algorithm is operated at an affinity

threshold scalar of 0.2 and clonal rate of 10.0.

5.1.6 AIRS2Parallel
AIRS2Parallel (A2P) operates in parallel through partitioning

and can be used to get a speedup in the levels of classification

accuracy [29]. This technique differs from AIRS1 in relation

to the mannerism in which clones are mutated and value of

different user parameters like simulation value. A merging

scheme is used to jointly classify from the various individual

memory pools of the partitions. The settings in WEKA

include a clonal rate of 10.0 and hyper mutation rate of 2.0.

5.1.7 Clonal Selection Classifier Algorithm
Clonal selection classifier algorithm (CSCA) is a

classification algorithm developed by Brownlee [30],

inspired by the CLONALG algorithm and its variants. It can

be expressed as a fitness function where the goal is to

maximize the accuracy of classification and minimize that of

misclassification. The settings used in WEKA are a clonal

scale factor of 1.0 and initial population size of 50.

6. ANALYSIS & RESULTS
This section concludes the observations made by the

performance of the prediction models on the given data sets

using logistic, machine learning and AIS techniques. The

effectiveness of the prediction models have been evaluated by

the following parameters [17]:

1. Sensitivity: It is the percentage of the ratio of

classes that were correctly predicted to exhibit

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.8, July 2014

5

change. High value of sensitivity indicates a good

prediction technique for change proneness.

2. Specificity: It is the percentage of ratio of classes

that were incorrectly predicted to exhibit change.

Values of sensitivity and specificity in closest

proximity to each other yield the cutoff point which

is the optimal points in analysis of the models.

3. Receiver Operating Characteristic (ROC) Analysis:

ROC curve is utilized as a measure for prediction in

ROC analysis with 1- specificity as the x coordinate

and sensitivity as the y coordinate [18]. The area-

under-curve (AUC) helps in determining the

prediction accuracy of the model.

4. Ten-cross validation: In n cross validation, the

input data set is divided into n sub data sets where

n-1 sets are operated upon as training sets to

analyze the nth set which is the test set. To make

the statistical tests results more reliable, a ten cross

validation was performed on all the data sets. [31]

In the following subsections, results of the analysis are stated.

6.1 Descriptive Statistics
Tables 4, 5 and 6 provide the detailed statistics of the

considered metrics in this study. These include the minimum

(Min), maximum (Max), Mean, Median (Med), 1st Quartile

(Q1), 3rd Quartile (Q3) and standard deviation (SD). Some of

the data characteristics are as follows:

1. Size of the three software projects is diverse with a

range of 5 to 2724 LOC for Checkstyle with mean

of 104 LOC, PMD has range from 5 to 8858 LOC

and mean of 87 LOC. The software which is used

as the training set for both the mentioned projects,

FindBugs, has a range from 7-553 LOC with a

mean of 83 LOC.

2. LCOM holds high values of upto 100 in all the sets.

3. Low levels of inheritance can be observed in all

projects with low mean values of NOC (0.1 for

Findbugs, 0.4 for PMD and 0.3 for Checkstyle.)

and DIT (3.5 for Findbugs, 2.4 for PMD and 2.3

for Checkstyle.). The results are similar to studies

in related fields [11-13].

Table 4: Metric Statistics for FindBugs

Table 5: Metric Statistics for PMD

Table 6: Metric Statistics for Checkstyle

6.2 Inter project validation results for

PMD
In order to evaluate inter project validation, the authors use

FindBugs as the training set and PMD as the test set. For

using PMD as the test set, data points from the FindBugs

dataset formed the training set. CFS was applied to the input

set to get the optimal combination of metrics. The metrics

selected after applying CFS technique were CBO, LOC and

WMC. The data points of the PMD software were added as

inputs to the model generated using the FindBugs software

using the WEKA tool and the performance of different

techniques has been observed as in table 7.

The model developed using LOG gave good results with an

AUC measure of 0.79 and high values of specificity and

sensitivity of 76.4% and 75.9% respectively. The cut-off

point recorded by LR was at 0.458. The models generated

using the BN and ADA techniques showed similar outputs

with an AUC measure of 0.769 and 0.78 respectively and cut

off points of 0.344 and 0.461 respectively. Both techniques

displayed high values of specificity of 81% and 80.4%

respectively. The cutoff point of BAGG model was 0.415

with both specificity and sensitivity values being 75.9%. The

BAGG model displayed a comparable AUC measure of

0.774. The results provided by models developed using the

Artificial Immune System (AIS) techniques were

discouraging with an AUC measure of 0.64 shown by AIRS1

technique. Model using the AIRS1 technique displayed

dissimilar values of sensitivity and specificity of 72.8% and

55.3% respectively at a cut-off point of 0.5. The A2P

technique showcased contrasting values with good specificity

value of 73.8% but low sensitivity value of 54.4%. The

model developed using CSCA provided relatively good

results with an AUC measure of 0.704 and specificity and

Metric Min Max Mean Med Q(1) Q(3) SD

CBO 0 117 4.9 2.5 2 6 8.7

NOC 0 101 0.4 0 0 0 5

RFC 0 579 66.1 47 6 115 71

LOC 5 8858 86 23 11 49 482

DIT 1 5 2.4 3 1 3 0.1

LCOM 0 96 25.5 0 0 56.2 33.4

WMC 0 3437 24.2 5 3 12 179

Metric Min Max Mean Med Q(1) Q(3) SD

CBO 0 27 3.3 3 2 4 3.1

NOC 0 16 0.1 0 0 0 1.3

RFC 1 88 37.9 43 30 51 18.1

LOC 7 553 83 56 32.75 112 76.7

DIT 1 7 3.5 4 2 4 1.5

LCOM 0 100 42.4 50 0 77 36.7

WMC 1 106 14.4 10 5 19 13.6

Metric Min Max Mean Med Q(1) Q(3) SD

CBO 0 62 6.3 4 2 7 8.1

NOC 0 79 0.3 0 0 0 3.4

RFC 1 309 43 12 5 40.5 62.7

LOC 5 2724 104 52 24 110 185

DIT 1 7 2.3 1 1 3 1.8

LCOM 0 100 49.3 55 22.5 78 33

WMC 1 440 23 12 5 24 36.9

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.8, July 2014

6

(b)
(a)

(c) (d)

(e)

sensitivity of 76.8% and 63.6% respectively. The statistical

and machine learning techniques indicate comparable

performance. Their performance can be analyzed through

ROC curves in Figure 2.

Table 7: Results for PMD software

Method Specificity Sensitivity Cutoff point AUC

LOG 76.4 75.9 0.458 0.79

BN 81.0 70.0 0.344 0.769

ADA 80.4 70.8 0.461 0.78

BAGG 75.9 75.9 0.415 0.774

AIRS1 55.3 72.8 0.50 0.640

A2P 73.8 54.4 0.50 0.641

CSCA 76.8 63.6 0.50 0.702

Fig. 2: ROC curves for PMD Software Models: a.LOG b.

BN c. ADA d. BAGG e. AIRS1 f. A2P g. CSCA

6.3 Inter Project Results for Checkstyle
After applying the CFS technique to the training set provided

by the FindBugs data set, the metrics extracted to form the

feature set were CBO, LOC and WMC. The metrics data

from the Checkstyle software gives the inputs required for the

test set. The results displayed by the models developed using

the different techniques have been shown in table 8.

The best results were shown by the model using the BN

technique with an AUC measure of 0.704 and good values of

sensitivity and specificity of 70.7% and 70.2% respectively.

The cut-off point for the BN technique was at 0.510. The

ADA technique displayed similar results with a higher cut-off

point of 0.604. The model developed using the LR technique

exhibited low results with an AUC measure of 0.642. The

specificity and sensitivity of the LR model was 60.8% and

61.0% respectively. The model using BAGG technique

displayed comparable results with low sensitivity and

specificity of 63.4% and 63.2% respectively at a cut-off point

of 0.591 and AUC measure of 0.629. The AIS models

exhibited disappointing results with the best results

showcased by the model developed using the CSCA

technique with an AUC measure of 0.661. The CSCA model

showed high sensitivity of 85.4% but very low specificity of

46.8% at a cut-off point of 0.5. The model using the AIRS1

and A2P techniques exhibited extremely low AUC measures

of 0.542 and 0.563 respectively. The A2P model showed

specificity and sensitivity of 63.7% and 51.2% respectively.

The ROC curves of all the models developed for Checkstyle

as the test set can be seen in Figure 3.

Table 8: Results for Checkstyle software

7. THREATS TO VALIDITY
This section is used to describe the possible threats to the

validity of the work.

7.1 Construct Validity
Construct validity depends on the usage of the dependent &

independent variables and the methods used to determine

them. The dependent variable in this study is a binary

variable which has been calculated manually and thus does

not provide any threats. However, this study does not

categorize whether the change occurred was corrective,

adaptive, perfective or preventive in nature as in [32]. This

could be a possible source of threat.

7.2 External Validity
In this study, three open source software have been analyzed

from similar application domain to decrease the threat of

external validity. However, it still poses a threat as

generalization cannot be concluded unless the same

Method Specificity Sensitivity Cutoff point AUC

LOG 60.8 61.0 0.467 0.642

BN 70.2 70.7 0.510 0.704

ADA 70.2 70.7 0.604 0.703

BAGG 63.2 63.4 0.591 0.629

AIRS1 18.1 90.2 0.500 0.542

A2P 63.7 51.2 0.500 0.563

CSCA 46.8 85.4 0.500 0.661

(f)

(g)

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.8, July 2014

7

(a)
(b)

(c) (d)

(e)

procedure is replicated across a number of data sets with

different implementation and application environments.

Fig. 3: ROC curves for Checkstyle Software Models: a.

LOG b. BN c. ADA d. BAGG e. AIRS1 f. A2P g. CSCA

8. CONCLUSION AND FUTURE WORK
The study aimed at the investigation of the applicability of

inter project validation to detect change prone classes in a

software. The work was validated using three software

projects in which the Findbugs software data set was used as

the training set and PMD and Checkstyle software data sets

were used as the test sets. The models developed to predict

change proneness were developed using a range of popular

logistic and machine learning techniques and some

unexplored AIS techniques.

The effect of OO metrics on change proneness in software

was also analyzed and their relation comprehended. The

conclusion of the study are stated as follows:

1. The results exhibited by the prediction models

demonstrate that in the absence of prior historical

data, software can be tested for change proneness

on models built using statistics from other project

data. This is known as inter project validation. Such

techniques can help developers to predict the

change prone modules of a software in the absence

of complete project data. This can be utilized to

make the software testing process more efficient in

terms of both time and resources.

2. The accuracy of logistic and machine learning

techniques for predicting change proneness in inter-

projects is comparable with BN and LR showing

good results with high values of specificity and

sensitivity. The AIS algorithms which exploit the

characteristics displayed by the immune systems

prove ineffective in their classification accuracy for

inter-project validation.

3. The CBO, LOC and WMC metrics indicate strong

correlation with the dependent variable of the

study, i.e. change proneness. This can be seen by

their selection in the input feature set using the CFS

method.

These observations are valid for medium- sized object

oriented systems. The authors plan to further generalize the

applicability of inter project validation across diverse

language and application environments and discover the most

effective techniques for analyzing such models.

9. REFERENCES
[1] S. Watanbe, H. Kaiya and K. Kaijiri, “Adapting a Fault

Prediction Model to Allow Inter Language Reuse,”

PROMISE Proceedings of the 4th international

workshop on Predictor models in software engineering

2008, (2008) pp. 19-24.

[2] W. Li and S. Henry, “Object Oriented Metrics that

Predict Maintainability”, Journal of Systems and

Software, vol. 23 ,(1993) pp. 111-122.

[3] L. Briand, J. Wust and H. Lounis,“Replicated Case

Studies for Investigating Quality Factors in Object

Oriented Designs.” Empirical Software Engineering: An

International Journal, vol. 6 ,(2001) pp. 11-58.

[4] V.R. Basili, L.C. Briand and W.L. Melo, “A Validation

of Object- Oriented Design Metrics as Quality

Indicators,” IEEE Transactions on Software

Engineering, vol. 22, no. 10 , (1996) pp. 751-761.

[5] Y. Singh, A. Kaur and R. Malhotra. “Empirical

Validation of Object-Oriented Metrics for Predicting

Fault Proneness,” Software Quality Journal, vol. 18,

no.1, (2010) pp. 3-35.

[6] R. Kohavi and D. Sommerfield, “Targeting Business

Users with Decision Table Classifiers,” Proceedings of

IEEE Symposium on Information Visualization, (1998)

pp. 102-105.

[7] K. Michalak and H. Kwasnicka,“Correlation-based

Feature Selec-tion Strategy in Neural Classification,”

Sixth International Conference on Intelligent Systems

Design and Applications, vol. 1, (2006) pp. 741-746.

[8] B. Kitchenham, L. Mendes, “A Systematic Review of

Cross- vs. Within-Company Cost Estimation Studies”,

IEEE Transactions on Software Engineering, vol. 33,

no. 5, (2007) pp. 316-329.

(f)

(g)

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.8, July 2014

8

[9] T. Zimmermann, N. Nagappan, H. Gall, E. Giger and B.

Murphy, “Cross-project Defect Prediction A Large Scale

Experiment on Data vs. Domain vs. Process”, in

Proceedings of the 7th joint meeting of the European

Software Engineering Conference and the ACM, (2009)

pp. 91–100.

[10] G. Canfora, A.D. Lucia, “Multi-objective cross project

defect prediction”, Software Testing, Verification and

Validation (ICST), 2013 IEEE Sixth International

Conference, (2013) pp. 252-261.

[11] Z.He, F.Shu, An investigation on the feasibility of

cross-project defect prediction”, Automated Software

Engineering, vol. 19, no.2, (2012) pp. 167-199.

[12] A.R. Han, S. Jeon, D. Bae and J. Hong,“ Behavioral

Dependency Measurement for Change Proneness

prediction in UML 2.0 Design Models,” Computer

Software and Applications 32nd Annual IEEE

International, (2008) pp.76-83.

[13] O. Elish, Al Rahman, “A suite of metrics for

quantifying historical changes to predict future change-

prone classes in object-oriented software.” Journal of

Software: Evolution And Process. J. Softw.: Evol. and

Proc., vol.25, (2013) pp. 407–437.

[14] Zhou Y, Leung H, Xu B “Examining the potentially

confounding effect of class size on the associations

between object oriented metrics and change proneness”,

Software Engineering, IEEE Transactions, vol. 35 , no.

5 , (2009), pp. 607-623.

[15] H. Lu, Y. Zhou, B. Xu, H. Leung and L. Chen, “The

ability of object-oriented metrics to predict change-

proneness: a meta-analysis”, Empirical Software

Engineering Journal June 2012, vol. 17, no. 3, (2012)

pp. 200-242.

[16] M. D'Ambros, M. Lanza and R. Robbes, “On the

Relationship Be-tween Change Coupling and Software

Defects,” 16th Working Conference on Reverse

Engineering, (2009) pp. 135-144.

[17] R. Malhotra and M. Khanna, “Investigation of

Relationship be-tween Object-oriented Metrics and

Change Proneness,” International Journal of Machine

Learning and Cybernetics, Springer vol. 4, no. 4, (2013)

pp. 273-286.

[18] R. Malhotra and M. Khanna, “Inter Project Validation

for Change Proneness Prediction using Object Oriented

Metrics,” Software Engineering- An International

Journal , vol. 3, no. 3 (2012) pp. 21-31.

[19] Kerlinger, F. N. Foundations of behavioral research

(3rd ed.). Fort Worth: Holt, Rinehart and Winston,

Inc.(1986)

[20] S. R. Chidamber and C.F. Kemerer,“A Metrics Suite

for Object Ori-ented Design,” IEEE Transactions of

Software Engineering, vol. 20, no.6 (1994)pp. 476-493.

[21] KK. Aggarwal, Y. Singh, A. Kaur and R. Malhotra,

“Empirical Analysis for Investigating the Effect of

Object-Oriented Metrics on Fault Proneness: A

Replicated Case Study”, Software Process: Improvement

and Practice, vol. 16, no. 1, (2009) pp. 39-62.

[22] Basili VR, Briand LC, Melo WL “A validation of

object oriented design metrics as quality indicators”,

IEEE Trans Softw. Engg , vol. 22, no. 10, (1996) pp.

751–761.

[23] Hall MA, “Correlation-based feature selection for

discrete and numeric class machine learning”,

proceeding of the seventeenth international conference

on machine learning, (2010) pp. 359–366.

[24] Hosmer D, Lemeshow S -Applied logistic regression.

Wiley, New York, (1989).

[25] Kristína Machová, František Barčák, Peter Bednár- A

Bagging Technique using Decision Trees in the Role of

Base Classifiers, (2006).

[26] Yoav Freund Robert E. Schapire. -A short introduction

to boosting, (2009).

[27] Ben-Gal I., Bayesian Networks, in Ruggeri F., Faltin F.

& Kenett R., Encyclopedia of Statistics in Quality &

Reliability, Wiley & Sons, (2007).

[28] C. Catal, B.Diri,”An Artificial Immune System

Approach for Fault Prediction in Object-Oriented

Software”, Dependability of Computer Systems, 2007.

DepCoS-RELCOMEX '07. 2nd International

Conference, (2007) pp. 238-245.

[29] Brownlee, J.- Artificial Immune Recognition System

(AIRS) A review & Analysis, Technical Report 1-02,

Swinburne University of Technology, Australia, (2005).

[30] Khalid A, H.M. Abdul, “Artificial Immune Clonal

Selection Classification Algorithms for Classifying

Malware and Benign Processes Using API Call

Sequences”, IJCSNS, (2010) pp. 31-39.

[31] L. Briand, J. Wust, J. Daly and D.V. Porter, “ Exploring

the Relationships between Design Measures and

Software Quality in Object-oriented Systems,” Journal

of Systems and Software, vol. 51, no.3, (2000) pp. 245-

273.

[32] Stone M” Cross-validator choice and assessment of

statistical predictions”, Journal of the Royal Statistical

Society. Series B (Methodological), vol. 36, no. 2,

(1974), pp.111-147.

IJCATM : www.ijcaonline.org

