
International Journal of Computer Applications (0975 – 8887)

Volume 97– No.6, July 2014

1

A Novel Case base Indexing Model based on Power Set

Tree

Khaled El-Bahnasy
Information Systems
Ain Shams University
Khalifa El-Maamon st,
Abbasiya sq., Cairo

Egypt

Kareem Mohamed
Naguib

Computer Science
Ain Shams University
Khalifa El-Maamon st,
Abbasiya sq., Cairo

Egypt

Mostafa Aref
Computer Science

Ain Shams University
Khalifa El-Maamon st,
Abbasiya sq., Cairo

Egypt

ABSTRACT
CBR has been successfully applied to the areas of planning,

diagnosis, law and decision making among others. It uses

useful prior cases to solve the new problems. CBR must

accurately retrieve similar prior cases for getting a good

performance. Throughout this thesis The Novel Case Base

Indexing Model based on Power Set Tree has been

introduced. A custom solution designed and built to find the

unique combinations for each case in a Case Base. Then use

these unique combinations to build the Case Base Index.

Finally, a better algorithm has been built to balance the

resources consumptions and harness them to serve the purpose

of finding the unique combinations for large cases that has

more than 38 finding.

Keywords
Case Based Reasoning – Pre-processing - Classification –

Power Set – Tree – Vectors

1. INTRODUCTION
The mission of generating a case base index based on Power

set tree can be divided into three major phases which will be

discussed in details later on throughout this chapter. Most of

systems and techniques relied on rough set to get uniqueness;

this model will combine big data and knowledge management

with Case based reasoning. Big data can affect any domain it

is used in. Old cases are repeated consequently and they

almost use the same solution with little modifications.

Abundant techniques have been used to deal with big data and

how knowledge extracted from it. Effective data and

knowledge manipulation are corner stone in all situations.

In business, Enterprise firms like IBM, Microsoft or SAP

realized the importance of data to themselves and their

customers. They are investing hundred millions of dollars

every year in big data researches and improve their software

performance regarding big data manipulation and knowledge

extraction in order to support their customers’ decisions in the

current fast-changing business environments.

In this paper we are going to explain in details with case

studies the novel model and how can it affect both the

performance and accuracy of finding unique features among

set of features.

1.1 The Novel Case Base Indexing Model
In this section the overview of Case Based Indexing Model

will be discussed, Fig 1 illustrates the CBR Life Cycle and

which stages will be enhanced & improved using this model

(surrounded by black rectangle). This model will mainly focus

on fast cases retrieval and apply solutions to new case.

Fig 1: CBR Life Cycle

This model generates a case base index. The case base index

consists of unique combinations for each case in the original

case base. These unique combinations are added to the case

base index and refer to the original cases. This model uses the

Power Set methodology to get all unique combinations and

prove how power set tree is a complete solution. The

generated index can be used for different purposes such as

reasoning and building decision trees.

The Novel Case Base Indexing Model Main Phases:-

1- Original Case Based is managed to get the case base

index, this process is the most crucial process

among all other processes.

2- The most similar cases to a new case are retrieved in

short time, using the Case Base Index. The

similarity weight for each retrieved case is

calculated. Sort retrieved cases descending.

3- Try the proposed solutions, generate the power set

for the new case, add it to Original Case base and

add unique combinations to Case Base Index.

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.6, July 2014

2

Figure 1. The Knowledge Discovery Process

Fig 2 illustrates the processes of generating the Case Base

Index from original one. The generated Case Base Index will

be used later on, to find the most similar cases to new case.

Fig 2: Indexing Case Base Model View

The Case Base Indexing model consists of 6 Module:

1- Case Base Index Generation: - The power set tree will be

generated for each case individually, then find the unique

findings combinations and add them to the Case Base Index.

2- Index Retrieval: - The most similar cases indexes will be

retrieved from Index Case Base, measure the weight of

similarity for each index retrieved and sort them descending.

3- Original Cases Retrieval: The original cases will be retrieved

from Original Case Base and pass these cases to the next

module “Adaptation”.

4- Adaptation: - Transforms the retrieved solution into an

appropriate solution for the current case using Substitution

adaptation technique.

5- New Case Unique Combinations Addition to Case Base

Index: - The power set tree will be generated for the new

case, to find the unique findings combinations and add them

as index in the Case Base Index.

6- Retain: - The new case will be added to the original case

base.

The Novel Case Base Indexing Model proves how uniqueness

is important and how can it help in resolving problems with

higher accuracy than any other techniques. Power set is a

magical complete solution for finding unique features in

several domains, but power set complexity is growing

exponentially. Power Set generation provides 2n-1

combinations. Due to this exponential complexity, power set

generation becomes very complex. To generate power set tree

you will need to provision resources that can handle this high

complexity. Although Power set is complete solution as it

generates all possible combinations, its complexity still an

impediment to use it in powerful manner. In [1], they

introduced a Tree Structure called Power Set Tree (PST),

which is an ordered tree that represent power set and each

possible reduct is mapped to a node in the PS-tree using

Deleting Feature technique. The novel case base indexing

model based on reversing their technique and generate the

power set tree but by Adding Feature as shown in Fig 3.

Power Set Tree (PST) is used to leverage the benefit of

pruning feature which will decrease the number of

comparisons and visited nodes.

Fig 3: Power Set Tree by Adding Feature for S = {A, B, C,

D}

2. LITERATURE SURVEY FOR

CLASSIFICATION & DECISION TREE

TECHNIQUES
The classification task can be seen as a supervised technique

where each instance belongs to a class, which is indicated by

the value of a special goal attribute or simply the class

attribute [2].

The goal attribute can take on categorical values, each of them

corresponding to a class.

In a paper “A Rough Set approach to feature selection based

on Power Set Tree“ [3], they discussed the motivation of

feature selection in data mining and machine learning is to

reduce the dimensionality of feature space, improve the

predictive accuracy of a classification algorithm, and improve

the visualization and the comprehensibility of the induced

concepts. In this Paper, they introduced a Tree Structure

called Power Set Tree (PST), which is an ordered tree that

represent power set and each possible reduct is mapped to a

node in the PS-tree. They gave two kinds of PS-tree-based

rules for pruning unpromising parts of the search space. Two

novel feature selection algorithms based on PS-tree are also

given. One is a complete algorithm which can guarantee to

find the minimal reduct. The other is a heuristic algorithm

based on PS-tree. The performance of the first algorithm is

compared with that of the strong equivalence method. The

performance of the second algorithm is compared with that of

traditional hill-climbing algorithms and stochastic algorithms.

Trees provide us an efficient way to solve many problems.

The power set tree (PS-tree) is a tree structure to represent the

power set in an order fashion. Since the PS-tree completely

enumerates the subsets of a power set using a particular order,

it can represent the search space of a particular feature

selection problem. Fig 6 illustrates the Power Set Tree (PST)

for <a,b,c,d>.

The PST size is growing exponential 2n – 1 where n is the

number of elements in set. And Due to its exponential size it

is impossible to completely explore it, so they used Pruning

Rules to eliminate a branch of the search tree from

consideration without examining the nodes in the Branch.

In another paper “Effects of data set features on the

performances of classification algorithms” [4], they evaluated

scenarios that examine which data set characteristics most

affect the classification algorithms’ performance. It is still a

complex issue to determine which algorithm is how strong or

how weak in relation to which data set. In this research they

have experimentally examined how data set characteristics

affect algorithm performance, both in terms of accuracy and

in elapsed time. The classification algorithm is widely applied

from natural science to business applications such as customer

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.6, July 2014

3

relationship management (CRM) software, finance, marketing

segmentation, location-based services, and more. Even in an

application domain, it is important to select a classification

algorithm that is optimal for adjusting to the customer’s

current context, because any change in the structure or data

set content can potentially affect the algorithm’s classification

performance. Working with big data sets is growing today as

an important issue for business intelligence. Big data is

defined as a large data set where legacy data analysis tools

cannot effectively gather, store, search, or analyze primarily

because the volume of data generated exceeds the capability

of analysis tools and data storage [5]. To sufficiently process

big data, a system has to be equipped with certain capabilities.

First, the system must gather and process in a timely manner

the large volumes of data that flow from various sources. Big

data is also called the 3Vs: Volume, has a large data set;

Velocity, must be processed quickly, and Variety, sourced

from very diverse data sources. This renders current analysis

tools nearly ineffective [6]. According to The Economist, 150

Exabyte of data were created in 2005; in 2010 that number

was expected to rise to 1200 EBs. Big data includes text and

multimedia gained from various inputs and sensors, thus,

justifying the need to develop a special algorithm or toolkit

like Python to structuralize the unstructured data [7]. Data

visualization at the macro level also has been suggested to

support big data analysis in inspecting the correlation among

data. For example Maltego, which visualizes LinkedIn™ data,

is an excellent tool to mine social network information from

various and unstructured data sets. Other tools proposed for

unstructured data processing include Google’s BigQuery,

Amazon’s AWS (Amazon Web Service) and NoSQL.

However, none of them support classification as data analysis.

Recently, real time analysis of data sets, derived from

multiple sensors, has been increasingly critical. This

intelligence helps make business applications more successful

by providing wider knowledge detection, perspective sharing,

and agile decision making. Such data sets are characterized by

size, diversity of sources and data formats, and the frequency

of their updates. These are seldom considered in conventional

data mining algorithms. Despite its importance, few studies

have investigated what makes the performance of data mining

algorithms under such situations increase or decrease. In this

paper, focusing on classification algorithms, they examined

which characteristics of a data set influence the performance

classification algorithms. As a result, classification algorithms

show different performance about different kind of data

structures, content and context. This implies that context-

aware selection of classification algorithms will be

meaningful in selecting optimal algorithms.

3. POWER SET GENERATION

TECHNIQUES
Power Set generation has different techniques and

methodologies. In The Novel Case Base Indexing Model,

power set generation is considered as the most crucial stage

among the whole model. If Power Set Generation fails, the

whole model will be collapsed. Hence, Power Set Generation

has to be accurate, fast and guaranteed to ends up. In this

section, 3 different techniques will be presented in details.

The first algorithm discusses Power Set generation using

Vector, The rest techniques will be based on Power Set Tree.

These techniques illustrate the difference between different

methodologies, the strengths and weaknesses of each

methodology. Before start to proceed through the Power Set

Generation Algorithm using Vector, some of terminologies

and symbols have to be shown first.

S = Set, R = Rule, F = Finding, D = Disorder, UKB =

Unique Knowledge Base, OKB = Original Knowledge Base

Subsumsion = Set is entailed from another smaller set, eg. S1

= {A, B}, S2 = {A, B, C}, S2 is Subsumsion from S1.

In the first experiment of implementing Power Set to get all

unique combinations. Vector is used as data structure, the

algorithm shown in Fig 3 illustrates how to get unique

combinations using power set and vector.

Unique Combinations Algorithm using Power Set &

Vector:

Vector Algorithm:

Fig 3: Unique Combinations Algorithm

Power Set Generation using Vector Algorithm shown in Fig 3

can be considered as the brute-force technique to generate

power set. Possible combinations are generated consequently

and saved to Vector. After generating all possible

combinations, vector values are to be checked for unique

combinations. If any combination found as unique, it must be

checked if it is subsumsion from another unique combination

or not. Finally, add the unique and not subsumsion

combinations to the Case Base Index.

Power Set Generation using Vector has its pros & cons. Table

1 illustrates these pros & cons.

Table 1. Power Set Generation using Vector Pros & Cons

The following experiment showing how to apply this

algorithm on Knowledge Base to get Unique Combinations:

Suppose the Original Knowledge Base (OKB) contains the

following rules:

Pros Cons

 Easy to

Implement

 Cannot be parallelized.

 Number of Comparisons is equal to number

of power set generated reductions (2n – 1).

 Causes an Out of Memory with Sets that

have more than 20 finding.

 Unbalanced utilization of CPU.

 2 checks required for each combination

(Uniqueness Check, Is Subsumsion check)

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.6, July 2014

4

Fig 4: Unique Combinations Algorithm using Power Set Tree

R1: F3, F4, F6, F7 D1

R2: F1, F4 D1

R3: F6, F8, F9 D2

R4: F5, F6, F7 D3

R5: F2, F8 D3

R6: F2, F3, F5 D3

R7: F3, F7, F10 D4

R8: F1, F7, F10

D5

Reference to Power Set Generation with Vector Algorithm, all

Rules (R) have to be sorted ascending with respect to number

of Findings (F) in each rule.

After Sorting the Original Knowledge Base (OKB,) the rules

would be as the following:

R2: F1, F4 D1

R5: F2, F8 D3

R3: F6, F8, F9 D2

R4: F5, F6, F7 D3

R6: F2, F3, F5 D3

R7: F3, F7, F10 D4

R8: F1, F7, F10 D5
R1: F3, F4, F6, F7

D1

Initially the Unique Knowledge Base (UKB) is empty. By

applying the algorithm mentioned in Fig 3, Power Set will be

generated for each rule, all combinations will then added to

the Vector. After adding all possible combinations to the

Vector, each combination will be checked for uniqueness and

subsumsion. If any combination found as unique and is not

subsumsion, this combination will be added to the Unique

Knowledge Base (UKB).

Finally the Unique Knowledge Base (UKB) contains the

following rules:

UR1: F4 D1

UR2: F2 D2

UR3: F9 D2

UR4: F6, F8 D2

UR5: F5 D3

UR6: F3, F10 D4

UR7: F1, F7 D5

UR8: F1, F10 D5

UR9: F3, F6 D1

As shown in the previous sample, number of comparisons is

equal to the number of combinations generated (2n – 1). 2

checks had to be performed for each finding, one for

uniqueness and another one for IsSubsumsion check. For this

case the total number of comparisons = 56 Comparison.

From Real Case with different KBs, it was found that by

using Core 2 Duo CPU and 4 GB RAM, the algorithm cannot

work on more than Rule with 20 findings (220 – 1).

Performing all these computations consumed all available

memory and CPU. Therefore, the data structure should be

changed and generate a Power Set Tree then perform a

breadth first search for each level. If any node found as

unique, delete it from the tree and all its children. This means

that the IsSubsumsion check will not be performed anymore,

number of comparisons will be reduced too.

The algorithm shown in Fig 4 describes how Power Set Tree

can be used to get unique combinations, with less number of

comparisons than used in vector and benefit from tree pruning

techniques. The whole Power Set Tree reducts will be built

first, and then the breadth first search applied for each level.

Power Set Tree (PST) generation ordering is Lexicographic

Ordering. Building the Power Set Tree (PST) with this

methodology and ordering causes some limitations related to

memory consumption and unbalanced utilization of CPU. If

Power Set Tree (PST) will be generated to a case with more

than 25 finding, memory will be over-filled with tree nodes.

That will cause an Out of Memory Exception and system will

totally crash.

Unique Combinations Algorithm using Power Set Tree:

The Unique Combinations Algorithm using Power Set Tree is

to be applied for the same Original Knowledge Base

mentioned in the previous experiment, to show the difference

and benefits of using Power Set Tree (PST) than Vector. The

same Unified Knowledge Base (UKB) generated from Power

Set Tree Algorithm but with better performance. The main

and clear difference between Vector and Power Set Tree was

in the number of comparisons. Using power set tree,

algorithm did not have to visit or perform some comparisons,

although these comparisons might be unique, but it is

subsumsion from another unique finding. Power Set Tree

(PST) leveraged the capability to know subsumsion

combinations without even checking them.

 Vector used 56 comparison to generate the Unified

Knowledge Base (UKB), but Power Set Tree (PST) used only

31 comparison to get the same result. This difference would

greatly affect performance with large and real data sets.

Table 2 illustrates the main Pros & Cons of Power Set Tree

algorithm.

Unique Combinations Algorithm using Power Set gave us the

ability to find unique combinations for rules with up to 27

finding with the same infrastructure used in Vector

Algorithm. These rules would generate Tree of (227 – 1) node.

Because of this huge number of nodes the memory is filled if

the whole tree generated at once. This means that we need to

duplicate the memory with each +1 increase in the rule

finding, as Power Set generation complexity is growing

exponentially. These results still unsatisfactory, the main goal

of this research is to generate the power set tree for more than

238. Further enhancements should be done to this algorithm

and generate PST level by level in order to avoid out of

memory exception.

Finally, the conclusion of these two experiments is that Vector

implementations could not exceed the rule with more than 20

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.6, July 2014

5

Figure 4.1 Sample of Case Representation

Fig 5: Sample of Case Representation

finding which means 220 probability with unbalanced

consumption of resources, but the Power Set Tree (PST)

technique can reach 227 with better performance and better

resources consumption.

Table 2. Power Set Generation using Power Set Tree Pros

& Cons

4. THE NOVEL CASE BASE INDEXING

MODEL IMPLEMENTATION
The implementation of the Novel Case Base Indexing model

shown before is going to be discussed in this section. The

model has been implemented using C# programming

language, .Net Framework 4.0, TPL, LINQ query language

and XML as the Case Base Files. No external off-shelf tools

have been used. The whole model has been implemented

using C#, LINQ and XML. Language-Integrated Query

(LINQ) is a set of features have introduced in Visual Studio

since 2008 that extends powerful query capabilities to the

language syntax of C# and Visual Basic. LINQ introduces

standard, easily-learned patterns for querying and updating

data, and the technology can be extended to support

potentially any kind of data store. Visual Studio includes

LINQ provider assemblies that enable the use of LINQ with

.NET Framework collections, SQL Server databases,

ADO.NET Datasets, and XML documents. Throughout the

implementation, a partial parallelization in generating the

Case Base Index Stage using the Task Parallel Library (TPL)

has been implemented. The Task Parallel Library (TPL) is a

set of public types and APIs in .Net Framework. The purpose

of the TPL is to make developers more productive by

simplifying the process of adding parallelism and concurrency

to applications. The TPL scales the degree of concurrency

dynamically to most efficiently use all the processors that are

available. In addition, the TPL handles the partitioning of the

work, the scheduling of threads on the ThreadPool,

cancellation support, state management, and other low-level

details. By using TPL. Starting with the .NET

Framework 4, the TPL is the preferred way to write

multithreaded and parallel code. However, not all code is

suitable for parallelization; for example, if a loop performs

only a small amount of work on each iteration, or it doesn't

run for many iterations, then the overhead of parallelization

can cause the code to run more slowly. Furthermore,

parallelization like any multithreaded code adds complexity to

program execution.

4.1 Real Case Bases
This section presents the results of The Novel Case Base

Indexing Model. This model has been applied to 5 real case

bases with different complexities, these cases will be divided

into two parts (Plants, Animals). Plants case bases are varying

from small to medium case bases complexity. The Animals

case base is big case base. Throughout this chapter the

Reasoning tool will also be presented, it can be attached to the

original system. The Reasoning Tool can be used in diseases

diagnosis with high efficiency. This tool can add a great value

to the whole model as it can be used to test the resulted unique

combinations, by inserting each unique combination and make

sure that this combination retrieve only one disorder. Table 3

showing all cases that will be used to prove the efficiency of

The Novel Case Base Indexing Model. These cases are real

cases received from National Agriculture Research Center.

Table 3. Original Case Bases Properties

Table 3 describes the properties of each case base. Each case

base complexity is classified based on the number of cases,

number of classes and the maximum number of tuples per

case. These cases are saved in XML files with the format

shown in Fig 5. Case is consists of 2 attributes (Disorder,

Name), and variable number of tuples depending on Case

Complexity. Each Tuple consists of 3 attributes CPT stands

for Concept, Prop stands for Property and Val stands for

Value.

The Implemented system is managed to handle only the

format mentioned in Fig 5. In the next phases we are planning

to build Formatter system to convert from some popular

formats to this format. Language Integrated Query (LINQ to

XML) has been used to connect with XML files, and gain full

control over XML file. Task Parallel Library (TPL) has been

used to implement partial parallelization on class level. The

Case Base is segmented according to its classes. Each class

has different cases to describe it, these cases are passed to a

thread to work on them sequentially.

4.2 Outputs
As a result of finding the unique combinations for each

disorder using the Power Set Tree (PST). The resulted files

will be used later as the case base index. Table 4 showing the

Pros Cons

 Tree Pruning

Feature.

 No Subsumsion

Check.

 Cannot be parallelized.

 Causes an Out of Memory Exception

with Set that have more than 27

finding.

 Unbalanced utilization of CPU.
 Plants Animals

Case Base Rice Strawberry Cucumber Wheat Animal
Diseases

of Cases 33 69 130 334 3575

of Disorders
(Classes)

18 31 44 41 489

of Findings
(Tuples)

93 255 511 9561 46023

Maximum
Number of
Tuples per Case

5 7 8 8 37

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.6, July 2014

6

properties of each file. Cases Representation in the case base

index would be the same as the original case base to facilitate

the matching process.

Table 4. Case Base Index Properties

 Plants Animals

Case Base Rice Strawberry Cucumber Wheat Animal
Diseases

of Cases 60 99 185 140 21606

of
Disorders
(Classes)

18 29 42 37 433

of
Findings
(Tuples)

76 143 286 204 58092

Maximum
Number
of Tuples
per Case

2 3 2 3 5

As shown in Table 3, Table 4 the total number of cases has

been increased, due to the number of unique combinations

generated from each case. Each case might has several

number of unique combinations. These unique combinations

saved in the Case Base Index with reference to the Original

Cases. However, although the number of cases has been

increased but the complexity of each case is reduced. For

Instance, in the Animal Diseases Case Base, the maximum

number of tuples per case was 37, but in the Case Base Index

it is only 5. Thus the number of comparisons will be reduced

and that would greatly affect the performance of retrieving

and comparing cases processes. Table 3, Table 4

demonstrates the difference between number of disorders in

the Original Case Base, and the Case Base Index.

In Table 4, number of disorders (classes) in the original case

base is decreased in the case base index. This phenomenon

means that some disorders were sumbsume from another

disorders which considered a not accurate cases and must be

neglected to not affect the reasoning or matching with the new

cases processes, this would be discussed thoroughly in the

Analysis part. Moreover, Table 4 showing that maximum

number of tuples per case has been decreased too. This

methodology of generating the case base index is effective

with large case bases like the Animal Diseases case base.

Later on the percentage of data refinement can be used to

expect to which level we have to build the Power Set Tree

(PST) for any further cases. For Example. In The Animal

Diseases Case Base, the tree has been built according to the

maximum number of tuples, if the case has 37 tuple, the PST

will be built with 37 levels with 237 Probability. However, the

greatest number of tuples in the Case Base Index was 5, which

means that from level 6 to level 37 no unique combinations

found and all these comparisons were useless. If the tree had

been built to only level 5, a substantial saving of memory

space and CPU consumption could be done. Table 3, Table 4

showing the difference between number of tuples in original

and index case base. These differences in number of disorders

or tuples reveals that there are some cases that subset from

another larger cases.

For Instance from Animal Diseases Case Base, Table 5 shows

a case from Animal Diseases Case Base. After refinement and

generation of Case Base Index, the same case would be

represented as shown in Table 6. One can clearly see that case

complexity has been decreased. The original case has 37

Tuple with number of combinations equals to 237 – 1, but the

refined case has only 3 tuples. The refined case can be used in

several situations and for different purposes like reasoning or

diagnosis.

Table 5. Original Case from Animal Diseases Case Base

After finding the unique combinations for the case represented

in Table 5, the case will be presented in the case base index as

shown in Table 6.

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.6, July 2014

7

Table 6. Refined Case from Animal Diseases Case Base

4.3 Analysis
This section will discuss and explain the output of the Case

Base Indexing Model. From the results generated in the Case

Base Index, we found some phenomena like shown in Table

3, Table 4.
1. Disorders in the original case bases are greater than

disorders in the case base index.

2. The total number of cases in the case base index is

greater than the Original Cases.

3. Number of Tuples in the Case Base Index is less

than the number of tuples in the original case base.

These phenomena will be discussed and explained separately

for Plants & Animals Case Bases.

Case bases output (Table 7). Table 7 illustrates the difference

between Original Case Base and the Case Base Index.

Throughout this section an explanation will be introduced.

Why these phenomena appeared and the benefits of them.

Table 7. Optimization Ratio for Original Case Bases

As shown in Fig 3, 4, 5, disorders in the case base index are

less than total number of disorders in the original case base.

This happens because some disorders are subsumed from

other disorders.

These cases could be considered as in-accurate cases or need

more refinement to refer properly to the disorder. This also

means that the technique has a self-cleaning feature which

ignores in-accurate cases for better results. The generated

cases in-accurate cases can be referred back to the expert in

order to correct or eliminate them from the case base.

The second finding is that the total number of cases are much

greater than that cases in the original case base. This happens

because one case in the original case base can generate more

than one unique combination. The more the case has tuples

the more probability of generating large number of unique

cases. Although these unique cases might appear as large

number of cases, but substantially their complexities are less

than the original cases. The Unique cases in case base index

has less number of tuples which simplify the comparison

process in case of any new case. Moreover, these unique cases

can be used to build one tree for the whole case base .

Moreover, these cases can be perfectly used in reasoning and

diagnosis and would be rapidly retrieve results instead of

searching and comparing to large number of cases in the

original case base.

The third finding is that number of tuples in the Case Base

Index is less than number of tuples in the Original Case Base

which means that there were some tuples never found as

unique and never selected in any unique combination. These

tuples can be considered a part of the original cases base

cleansing part. The tuples that never found as unique are

useless and only increase the complexity of each case.

5. CONCLUSION & FUTURE WORK
In this paper we have discussed an indexing method to

improve the performance of indexing and retrieving in the

data warehousing. Throughout this thesis The Novel Case

Base Indexing Model based on Power Set Tree has been

introduced. A fully customized solution has been designed

and built to find the unique combinations to each case in a

Case Base, and use these unique combinations to build the

Case Base Index. We get over a lot of unbalanced

consumption of resources, finally, we have built a better

algorithm to balance the resources consumptions and harness

them to serve the main purpose of this research in finding the

unique combinations for large cases that has more than 38

finding. The main strengths of this model that it is applicable

for any domain. The Generated Case Base Index can be used

for many purposes beyond only being a Case Base Index.

After the completion of this thesis. Moreover, A complete

solution has been implemented to build the Case Base into our

format along with reasoning tool to justify any results and a

statistics solution to measure the main difference between the

original case base and the case base index.

6. REFERENCES
[1] Yumin Chen, Duoqian Miao, Ruizhi Wangb, Keshou

Wua , A rough set approach to feature selection based on

power set tree, Knowledge-Based Systems, 275–281,

2011.

[2] Sunita Beniwal, Jitender Arora, Classification and

Feature Selection Techniques in Data Mining,

Department of Information Technology, Maharishi

Markandeshwar University, Mullana,, August 2012,

Ambala-133203, India

[3] Yumin Chen, Duoqian Miao, Ruizhi Wangb, Keshou

Wua , A rough set approach to feature selection based on

power set tree, Knowledge-Based Systems, 24 (2011)

275–281.

[4] Ohbyung Kwon, Jae Mun Sim, Effects of data set

features on the performances of classification algorithms,

Expert Systems with Applications, 40 (2013) 1847–1857

[5] Manyika, J., Chi, M., Brown, B., Bughin, J., Dobbs, R.,

Roxburgh, C.. Big data: the next frontier for innovation,

competition, and productivity. McKinsey Global

Institute, 2011

Disorder Property Value

Anthrax (acute
form)

rumination stopping

muzzle dry

swelling yes

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.6, July 2014

8

[6] Madden, S. From databases to big data. IEEE Internet

Computing, pp. 4–6. Maltego (2012), Paterva.

<http://www.paterva.com>, access date: May, 2012.

[7] Bradbury, D. Data mining with LinkedIn. Computer

Fraud and Security, 2011(10), 5–8.

[8] Cao, L., Domain-driven data mining: challenges and

prospects. IEEE Transactions on Knowledge and Data

Engineering, 22(6), 755–769, 2010

[9] Yuan-Hai Shao, Wei-Jie Chen, Wen-Biao Huang, Zhi-

Min Yang, Nai-Yang Deng, The best separating decision

tree twin support vector machine for multi-class

classification, Procedia Computer Science 17 1032 –

1038, 2013.

[10] Ohbyung Kwon, Jae Mun Sim, Effects of data set

features on the performances of classification algorithms,

Expert Systems with Applications, 40,1847–1857, 2013.

IJCATM : www.ijcaonline.org

