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ABSTRACT 

This article considers a makespan minimization batch sizing 

and scheduling problem in a flexible flow shop scheduling 

problem with unrelated parallel machines and sequence 

dependent setup time. Because of NP-completeness of this 

problem, it is necessary to use the heuristics method. 

Therefore, this article presents a new mixed simulated-genetic 

algorithm (MSGA) to tackle this problem. In the comparison, 

this research reports optimality gaps which are calculated with 

respect to MSGA method and optimal solution for small 

instances and the average objective function for large 

instances. Computational studies indicate that the MSGA is 

computationally efficient and effective even for small and 

large instances.   
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1. INTRODUCTION 
In the literature, scheduling problems have entailed the 

sequencing of orders (jobs) with fixed processing and set-up 

times. But in the real world, an order actually consists of 

several pieces or items. In this situation, order processing 

times become a decision variable in batch sizing problem. 

Therefore, the term "batch" is used in this research. In batch 

sizing problems, orders can be divided and a setup time is 

incurred when processing a new batch. For this problem, there 

is a trade-off between minimizing the total setup time (by 

reduces the number of batches or, equivalently, by increases 

the size of the batches), and order waiting time minimization 

(by increases the number of batches, or by reduces the batch 

sizes) [1].  

This study concentrates on a manufacturing system with 

sequence dependent setup time between the batch processing. 

Because of equipment limitation, the customer orders must be 

split to batches with minimum and maximum bound for each 

batch quantity. This research focuses on a flexible flow shop 

environment with unrelated parallel machines, with makespan 

minimization. Therefore these questions are answered in this 

research: How the orders must be partitioned to batches and 

processed so that makepan is minimized? 

 The scheduling of n jobs through m stages where, at any 

stage, there exists one or more unrelated processors, is termed 

as flexible flow shop (FFS), flexible flow line (FFL), hybrid 

flow shop (HFS), or a flow shop with multiple processor 

(FSMP) scheduling problem with unrelated parallel machines. 

The FFS exists in many real world manufacturing problems, 

such as semiconductor assembly facilities [2], packaging 

industries [3], steal manufacturing [4], electronics 

manufacturing [5], glass container fabrication [6], automobile 

assembly [7], printed circuit board assembly [8,9], printed 

circuit board fabrication [10], ceramic tile manufacturing [11], 

and lead frame manufacturing [12]. 

There is a considerable amount of research available for the 

FFS. Jungwattanakit et al. [13] focused on bi-objective 

scheduling problem for FFS problems with unrelated parallel 

machines and setup times. Sheikh [14] presented a multi-

objective FFS problem with limited time lag between stages. 

They presented a MILP with the objectives of maximizing the 

total profit from scheduled jobs and minimizing deviation 

from the due date. Huang et al., [15] dealt with permutation 

flow-shop scheduling problem with the minimizing makespan 

measure. They proposed a two-phase hybrid particle swarm 

optimization algorithm to tackle this problem. Rosas-gonzález 

et al. [16] studied a Genetic Algorithm (GA) to solve the N-

Jobs M-Machines Permutation Flow-Shop Scheduling 

Problem with Break-down times and makespan minimization. 

Batch sizing problems with setup times and costs have been 

considered by various researchers [17]. In some scheduling 

problems, either job processing times are usually assumed to 

be fixed or controllable. When job splitting is allowed, batch 

sizes are decision variables, and job processing times is 

controllable. Prasad and Maravelias [18] considered a 

simultaneous scheduling and batch sizing problem for multi-

product, multi-stage environment. They developed a new 

mixed integer linear programming formulation that contains 

three levels of decisions: batches selection, assignment of 

batches to units and sequencing of batches in each unit. 

Chrétienne et al. [19] considered the integrated batch sizing 

and scheduling problem in single machine environment with 

tardiness and setup costs minimization. Wang and Guignard 

[20] had been developed a new hybrid method called “partial 

parameter uniformization” for batch sizing and scheduling in 

single machine environment. Me´ndez et al. [21] presented a 

new MILP for flow shop batch scheduling. The proposed 

model was based on a continuous time representation with 

sequence dependent setup times.  

This paper simultaneously considers batch sizing and 

scheduling problem in flexible flow shop environment with 

sequence dependent setup time. The contributions of this 

article are twofold: for the first time, the batch sizing and 

scheduling problem has been considered in flexible flow shop 

environment with unrelated parallel machines and a 

mathematical model is proposed for this problem. Also a 

metaheuristic method, mixed simulated-genetic algorithm, 

hereafter MSGA, is proposed for this problem in FFS. 

The remainder of this paper is organized as follows. Section 2 

describes mathematical model for batch sizing and scheduling 

problem with unrelated parallel machines in FFS 

environment. Section 3 is dedicated to MSGA metaheuristic 
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method. In section 4, an experimental study is presented to 

evaluate the proposed method according to some experimental 

factors. Finally, section 5 is devoted to the main finding of 

this paper and suggestions for conducting some future 

researches. 

2. MATHEMATICAL MODEL 
The problem addressed in this research can be expressed 

formally as an integer programming. As mentioned above, the 

selected objective function is makespan minimization. The 

sets, parameters, decision variables, and the mathematical 

model are as follows: 

H : Large Number 

m : Number of orders 

M : Set of order indices ( 1,2,...,M m ) 

l : Number of stages 

L : Set of stage indices ( 1,2,...,L l ) 

in : Number of batch for order i ( i
i

i

r
n

b

 
  
 

) 

N : Set of Batch indices ( 1,2,..., iN n ) 

Q : Set of machine indices in stage L ( 1,2,.., LQ S ) 

R : Set of order indices necessary to define decision 

variables (  , , , | ( ) ( ) ( )R j j i i j j j j i i          ) 

ib : Minimum batch size of order i ( i M ) 

iB : Maximum batch size of order i ( i M ) 

ir : Demand of order i ( i M ) 

iktp : Processing time of order i on machine k at stage t 

( , ,i M k Q t L   ) 

i isdt  : Sequence dependent setup time if order i   is 

processed before order i ( ,i i M ) 

ijtC : Completion time of batch j of order i at stage t 

( , ,ii M j n t L   ) 

ijq : Units number of order i in batch j ( , ii M j n  ) 

ijktX : 1 if batch j of order i is processed on machine k at 

stage t, 0 otherwise ( , , ,ii M j n k Q t L    ) 

ii jj ly   : 1 if batch j of order i is processed earlier than batch 

j
of order i  at stage t 

( , , , ,ii i M j j n t L    ) 

ii jj lw   : 1 if batch j of order i and batch j  of order i  are 

on same machine at stage t 

( , , , ,ii i M j j n t L    ) 

If the decision variables are defined regarding the range of 

their indices, the number of decision variables increases to a 

huge number and the efficiency of the mathematical model 

will decrease drastically. Thus, the unnecessary decision 

variables are omitted by defining set R [22]. For instance, if 

ii jj ty   is equal to 1, the value of i ij jty   is 0 and vice versa. 

Thus, only one of them is used in the mathematical model.  

Therefore the mathematical model of this problem in the FFS 

environment with unrelated parallel machines can be 

formulated as follows: 

,
Min Z= max{ }ijm

i j
C  

(1) 

lS

k=1

1ijktX  , , ,ii M j n t L    (2) 

1

tS

ij ijkt

k

q H X


  , ,ii M j n t L    (3) 

1

tS

ij ijkt

k

q X


 , ,ii M j n t L    (4) 

1

1 1 1

1

S

ij ik ijk ij

k

C p X q


 , ii M j n   (5) 

ijt , 1

1

C
tS

ij t ikt ijkt ij

k

C p X q



 

, ,ii M j n t L    

(6) 

 ijtC 1 ii jj l i j t ikt ijkt ij i iH y C p X q sdt        

, , , , ,ii i M j j n k Q t L      
(7) 

  ijt1 Ci j t ii jj t ii jj t i kt i j kt ij iiC H w y p X q sdt              

, , , , ,ii i M j j n k Q t L      
(8) 

1ii jj t ijkt i j ktw X X     

, , , , ,ii i M j j n k Q t L      
(9) 

1

in

ij i

j

q r


 i M  (10) 

1 1

l lS S

i ijkt ij i ijkt

k k

b X q B X
 

   , ,ii M j n t L    (11) 

 , , 0,1ijkt ii jj t ii jj tX y w    

, , , , ,ii i M j j n k Q t L      
(12) 

The objective function, as presented in Eq. (1), minimizes 

makespan. Constraint sets (2) indicate that each batch must be 

assigned to one machine at each stage. Constraint sets (3) and 

(4) ensure that each established batch must be processed on 

one machine at each stage. Constraint sets (5) show that 

completion time of each batch in the first stage is greater than 

or equal to its processing time in this stage. Constraint sets (7) 

and (8) preclude the interference between the processing 

operations of any two batches on a machine at any stage. At 
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most, one of these two constraint sets is active for each pair of 

batches. Constraint sets (9) determines the batches which are 

processed on the same machine in stage L. Constraint sets 

(10) impose that the demand must be fully satisfied for each 

order. Constraint sets (11) ensure the batch size constraints 

must be met. Finally constraints (12) force variables to 

assume binary values 0 or 1. 

2.1 Model Linearization 
As can be seen, the above model is obviously nonlinear 

(because of term .ijkl ijX q  in constraints (5), (6), (7), (8)); 

therefore it causes the long computational runtime. On the 

other side, this term can be linearized by introducing new 

auxiliary binary integer variable as follows: 

1

0

ij ijkt

ijkt

q if X equals
W

otherwise


 


 

The required new constraint can be defined as follows: 

.ijkt ijkt ijW X q
 

(13) 

By considering the above equation, following constraints must 

be added to the mathematical model simultaneously: 

ijkt ijW q , , ,ii M j n k Q t L   
 

(14) 

ijkt ijklW HX , , ,ii M j n k Q t L   
 

(15) 

( 1)ijkt ijkt ijW H X q  

, , ,ii M j n k Q t L   
 

(16) 

3. MIXED SIMULATED GENETIC 

ALGORITHM (MSGA) 
After many reported experiments in the literature, genetic 

algorithms have been found to be efficient, effective and 

robust algorithm for complicated problems. Nevertheless, 

genetic algorithms also have their shortcomings. In fact, if the 

worst members are discarded after each generation, the 

population will tend to become homogeneous quickly. And 

then the crossovers and mutation may not produce offspring 

of large variation. For this reasons, some authors have 

suggested inserting another operator, namely, a Boltzmann-

type operator, after the crossover and mutation operations. 

Therefore, it is called this new metaheuristic method as mixed 

simulated genetic algorithm (MSGA). In MSGA, new 

chromosomes are chosen to produce the next generation from 

parents and offspring according to Boltzeman function. The 

selection criterion is based on the fitness values of parents and 

offspring. Chromosomes with higher fitness values have a 

greater probability of surviving into the next generation. 

Those with less fitness values are not necessarily discarded.  

Based on above discussion, the MSGA is now described as 

follows: 

1. Random chromosome generation: in the MSGA, 

number of chromosome in each generation equals a 

coefficient of number of orders (Poprate). Then, the 

orders are randomly sequenced and formed a 

chromosome.  

2. Fitness function: for calculating the fitness function, 

for each individual in current generation, it must be 

determined batch size and batch sequence. Batch 

sizing and batch sequencing is now described as 

follows: 

 Determine the maximum and minimum number of 

batches based on following equations: 

i
i

i

r
MaNB

b
 i M  (17) 

i
i

i

r
MiNB

B
 i M  (18) 

 Generate a random integer value in interval 

i iMiNB NB MaNB   

 Calculate the batch size for each order based on 

i
i

i

r
FBS round down

NB

 
  

 

 

 Calculate number of unassigned quantity for each 

order as .i i i iRM r FBS NB   

 Append the unassigned quantity to each batch so 

that difference between the batch quantities must 

not greater than 1.  

 Finding the bottleneck stage as 

1 1 1

l iS nm

ijk

k i j

l

l

P

FR
S

  



 

 Sequence batches based on shortest average 

processing time at bottleneck stage. 

 Select machines at each stage based on following 

rule: 

 Batch is assigned to all machines (available 

and unavailable) at any stage and selects a 

machine that has the earliest completion 

time. 

 Finally calculate the maximum processing time as 

makespan. 

3. Elitism: to prevent the elimination of good solution, 

in each generation, some good chromosomes are 

migrated to next generation without fluctuation. In the 

MSGA, number of chromosome, for elitism, equals a 

coefficient of number of orders (Elitrate). 

4. Crossover: The basic operator for producing new 

individuals in GA is crossover. Crossover may 

produce better individuals that have some genetic 

material of both parents. In the MSGA, number of 

chromosome, for crossover, equals a coefficient of 

number of orders (crossrate). The conventional 

crossover operator combines sub-strings belonging to 

their parents. In this research, two chromosomes are 

selected and a two points cut method is applied to 

crossover.  

5. Mutation: another basic operation to generate the 

individual is mutation. This operator schemes allow 

jumps to different areas of the solution space. In this 

research, two mutation operators are used; two points 

swap and three points swap. In first (second) method, 
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two (three) points are randomly selected and the 

corresponding genes are changed. In these methods, 

number of chromosome, for mutation, equals a 

coefficient of number of orders (mutrate). 

6. SA operator: the SA operator is used to produce the 

new generation. At first, the chromosomes of current 

generation is sorted in ascending order of fitness 

value and the chromosomes of last generation is 

sorted in descending order of fitness value and then, 

they are compared one-to-one. If the fitness value of 

current generation is better than the last generation, 

the chromosome of current generation is selected for 

next generation. On the other side, if the fitness 

function of current generation has worse 

performance, the SA operator is used. In this 

operator, Boltzeman function is applied to select 

between chromosomes as follows: 

   







 
 

T

xCxC
P ii 1exp

 

(19) 

In equation (19), T is temperature of current generation, 

 1iC x 
fitness function of current solution (from current 

generation),  iC x fitness function of last solution (from 

last generation).  

Temperature is function of three operators: initial temperature, 

final temperature and cool rate. In each stage the following 

function is applied to calculate the current temperature: 

.T T coolrate  (20) 

4. COMPUTATIONAL STUDY 
This section is devoted to consider the performance of 

proposed method. The best parameters for MSGA method 

firstly is selected, and then, compare the performance of 

MSGA method with optimal solution and GA. 

Table 1: Set parameters for MSGA 

Parameter Value 

Poprate 1 2 5 

Crossrate 0.8 0.6 0.5 

Mutrate 0.1 0.2 0.3 

Elitrate 0.1 0.2 0.2 

Initemp 100 500 1000 

For the selection of best value for each parameter, 60 

experimental problems are generated for each state and 

average of objective function, standard deviation and run time 

is summarized in the table 2: 

 

Table 2: average of objective function, standard deviation and run time for set parameters 

State Poprate Poprate Crossrate Mutrate Elitrate Initemp Average S. Deviation Time 

1 1 0.8 0.1 0.1 500 0.001 0.8 42.45 9.65 

2 2 0.8 0.1 0.1 500 0.001 0.8 47.12 11.02 

3 5 0.8 0.1 0.1 500 0.001 0.8 71.18 13.60 

4 2 0.8 0.1 0.1 500 0.001 0.8 39.40 4.03 

5 2 0.6 0.2 0.2 500 0.001 0.8 60.34 4.41 

6 2 0.5 0.3 0.2 500 0.001 0.8 73.41 3.54 

7 2 0.8 0.1 0.1 100 0.1 0.8 82.94 4.76 

8 2 0.8 0.1 0.1 500 0.01 0.8 62.75 4.03 

9 2 0.8 0.1 0.1 1000 0.001 0.8 56.92 3.48 

10 2 0.8 0.1 0.1 1000 0.01 0.8 47.06 2.60 

11 2 0.8 0.1 0.1 1000 0.01 0.9 62.00 2.44 

12 2 0.8 0.1 0.1 1000 0.01 0.95 66.77 3.08 

 
regarding table 2, state 1, 2 and 3 is used to select best value 

for poprate, state 4, 5 and 6 is for crossrate, mutrate and 

elitrate, state 7, 8 and 9 is for initemp and fintemp. At last, in 

states 10, 11 and 12, the best value for coolrate is selected. 

According to average, standard deviation and run time, the 

best set parameters for MSGA is shown in table 3: 

 

 

Table 3: best value for MSGA parameters 

Parameter Value 

Poprate 2 

Crossrate 0.8 

Mutrate 0.1 

Elitrate 0.1 

Initemp 1000 

Fintemp 0.01 

coolrate 0.9 
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4.1 MSGA performance evaluation 
In order to performance evaluation, two series of experiment 

were conducted; For this purpose, the first series compare 

proposed algorithms with the optimal solution for the small 

size problem and the second series compare the proposed 

algorithms with GA metaheuristic for the medium and large 

instances. All the heuristics are coded using the MATLAB 

software and the entire experiments are performed on a PC 

with Intel Core 2 Dou 2.2 GHz CPU and 2 GB RAM. All the 

optimal solutions are obtained by Lingo 9.0 software. 

Because of NP-completeness of batch sizing and scheduling 

problem in FFS, it is very expensive to achieve the optimal 

solution for the medium and large instances. Therefore test 

problems in table 4 are limited to the small size problem. For 

this purpose, 20 instances are generated and Table 4, presents 

the comparison of exact method and MSGA: 

Table 4: comparison of MSGA and exact method 

Test problem Exact MSGA Optimal Gap 

1 136 140 2.9% 

2 114 120 5.3% 

3 140 147 5.0% 

4 128 128 0.0% 

5 137 146 6.6% 

6 162 166 2.5% 

7 104 104 0.0% 

8 136 144 5.9% 

9 152 152 0.0% 

10 202 205 1.5% 

11 133 142 6.8% 

12 254 258 1.6% 

13 154 158 2.6% 

14 160 162 1.3% 

15 200 204 2.0% 

16 103 106 2.9% 

17 138 146 5.8% 

18 110 110 0.0% 

19 188 196 4.3% 

20 136 152 11.8% 

Average 149.4 154.3 3.4% 

According to table 4, it can be concluded, the MSGA is 

competitive with optimal solution for small instances, as can 

be observed from the average objective function (last row). 

Based on the results shown in this table, the average 

difference between optimal solution and metaheuristic 

(optimal gap) is 3.4%. 

Unfortunately, since this is the first time that this problem is 

considered in the literature, we do not have the results of 

applying other algorithms to solve the problem to compare 

with the proposed methods. However, the goal of this research 

was to obtain the most efficient way of implementing MSGA 

algorithm to solve this problem. In fact, this article is 

compared proposed algorithm with the pure GA which is 

introduced and broadly used in the literature before. For this 

purpose, some computational experiments are conducted to 

compare the MSGA with GA. For comparison purpose, we 

generate some test problems based on table 5: 

Table 5: experimental factors 

Experimental factor Level 
Number of order 3 levels: 10, 20, 50 

Number of stage 2 levels: 6, 12 

order size1 U[20,50] 

Sequence Dependent Setup Time U[5,20] 

Number of machines in each stage 3 levels: 3, 5, 8 
1The processing time of each item in the order is assumed 1. 

According to table 5, it will has 18 different test problems. 

Each test problem was run ten times and its performance, 

including the best Cmax value, was recorded in table 6. Other 

necessary data for each problem, such as maximum and 

minimum batch size, are randomly generated. 

Table 6: Evaluating the quality of solution of the MSGA in 

comparison of GA 

Problem MSGA GA % Deviation 

O10S6M3 333 340 2% 

O10S6M5 272 275 1% 

O10S6M8 305 314 3% 

O10S12M3 522 559 7% 

O10S12M5 401 417 4% 

O10S12M8 344 347 1% 

O20S6M3 348 351 1% 

O20S6M5 287 296 3% 

O20S6M8 201 215 7% 

O20S12M3 694 729 5% 

O20S12M5 481 491 2% 

O20S12M8 394 410 4% 

O50S6M3 370 377 2% 

O50S6M5 415 432 4% 

O50S6M8 481 510 6% 

O50S12M3 717 746 4% 

O50S12M5 564 598 6% 

O50S12M8 654 700 7% 

The three characteristics that typify the problem are the 

number of order, number of stages and number of unrelated 

parallel machines at each stage. For example, the notation 

O10S12M5 means a 10-order, 12-stage problem and 5 

unrelated parallel machines in each stage. The letters J, C and 

M are abbreviations for order, stage and machine, 

respectively. 

The computational results are summarized in Table 6, in 

which the “% deviation” columns show the performance 

comparison among two algorithms. According to table 9, the 

MSGA is outperformed GA metaheuristic in medium and 

large size problems. 

5. CONCLUSION 
In this paper, we studied the simultaneous batch sizing and 

scheduling decisions in a flexible flow shop environment with 

unrelated parallel machines and setup time. The first 

contribution of the paper is to provide a mathematical model 

to minimize the makespan for batch sizing and scheduling 

problems. Also, this research presents a mixed simulated 

genetic algorithm (MSGA) for this problem. The results show 

methaheuristic has good performance to reach the optimal 

solution. 

Future works can consider other environments, such as job 

shop and open shop. Other metaheuristics algorithms (SA, TS 



International Journal of Computer Applications (0975 – 8887) 

Volume 97– No.6, July 2014 

36 

or PSO) can also be applied for this problem. Afterwards, 

considering other type of objective function such as, tardiness, 

number of tardy job, flow time is opened for other research. 
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