
International Journal of Computer Applications (0975 – 8887)

Volume 97– No.6, July 2014

31

A Metaheuristic approach for Batch Sizing and

Scheduling Problem in Flexible Flow Shop with

Unrelated Parallel Machines

Ebrahim Asadi Gangraj
Assistant professor of industrial engineering

Babol Nooshirvani University of Technology, Babol,
Iran

Nasim nahavandi
Associate professor of industrial engineering

Tarbiat Modares University, Tehran, Iran

ABSTRACT

This article considers a makespan minimization batch sizing

and scheduling problem in a flexible flow shop scheduling

problem with unrelated parallel machines and sequence

dependent setup time. Because of NP-completeness of this

problem, it is necessary to use the heuristics method.

Therefore, this article presents a new mixed simulated-genetic

algorithm (MSGA) to tackle this problem. In the comparison,

this research reports optimality gaps which are calculated with

respect to MSGA method and optimal solution for small

instances and the average objective function for large

instances. Computational studies indicate that the MSGA is

computationally efficient and effective even for small and

large instances.

Keywords

Batch sizing, flexible flow shop, metaheuristic method,

scheduling.

1. INTRODUCTION
In the literature, scheduling problems have entailed the

sequencing of orders (jobs) with fixed processing and set-up

times. But in the real world, an order actually consists of

several pieces or items. In this situation, order processing

times become a decision variable in batch sizing problem.

Therefore, the term "batch" is used in this research. In batch

sizing problems, orders can be divided and a setup time is

incurred when processing a new batch. For this problem, there

is a trade-off between minimizing the total setup time (by

reduces the number of batches or, equivalently, by increases

the size of the batches), and order waiting time minimization

(by increases the number of batches, or by reduces the batch

sizes) [1].

This study concentrates on a manufacturing system with

sequence dependent setup time between the batch processing.

Because of equipment limitation, the customer orders must be

split to batches with minimum and maximum bound for each

batch quantity. This research focuses on a flexible flow shop

environment with unrelated parallel machines, with makespan

minimization. Therefore these questions are answered in this

research: How the orders must be partitioned to batches and

processed so that makepan is minimized?

 The scheduling of n jobs through m stages where, at any

stage, there exists one or more unrelated processors, is termed

as flexible flow shop (FFS), flexible flow line (FFL), hybrid

flow shop (HFS), or a flow shop with multiple processor

(FSMP) scheduling problem with unrelated parallel machines.

The FFS exists in many real world manufacturing problems,

such as semiconductor assembly facilities [2], packaging

industries [3], steal manufacturing [4], electronics

manufacturing [5], glass container fabrication [6], automobile

assembly [7], printed circuit board assembly [8,9], printed

circuit board fabrication [10], ceramic tile manufacturing [11],

and lead frame manufacturing [12].

There is a considerable amount of research available for the

FFS. Jungwattanakit et al. [13] focused on bi-objective

scheduling problem for FFS problems with unrelated parallel

machines and setup times. Sheikh [14] presented a multi-

objective FFS problem with limited time lag between stages.

They presented a MILP with the objectives of maximizing the

total profit from scheduled jobs and minimizing deviation

from the due date. Huang et al., [15] dealt with permutation

flow-shop scheduling problem with the minimizing makespan

measure. They proposed a two-phase hybrid particle swarm

optimization algorithm to tackle this problem. Rosas-gonzález

et al. [16] studied a Genetic Algorithm (GA) to solve the N-

Jobs M-Machines Permutation Flow-Shop Scheduling

Problem with Break-down times and makespan minimization.

Batch sizing problems with setup times and costs have been

considered by various researchers [17]. In some scheduling

problems, either job processing times are usually assumed to

be fixed or controllable. When job splitting is allowed, batch

sizes are decision variables, and job processing times is

controllable. Prasad and Maravelias [18] considered a

simultaneous scheduling and batch sizing problem for multi-

product, multi-stage environment. They developed a new

mixed integer linear programming formulation that contains

three levels of decisions: batches selection, assignment of

batches to units and sequencing of batches in each unit.

Chrétienne et al. [19] considered the integrated batch sizing

and scheduling problem in single machine environment with

tardiness and setup costs minimization. Wang and Guignard

[20] had been developed a new hybrid method called “partial

parameter uniformization” for batch sizing and scheduling in

single machine environment. Me´ndez et al. [21] presented a

new MILP for flow shop batch scheduling. The proposed

model was based on a continuous time representation with

sequence dependent setup times.

This paper simultaneously considers batch sizing and

scheduling problem in flexible flow shop environment with

sequence dependent setup time. The contributions of this

article are twofold: for the first time, the batch sizing and

scheduling problem has been considered in flexible flow shop

environment with unrelated parallel machines and a

mathematical model is proposed for this problem. Also a

metaheuristic method, mixed simulated-genetic algorithm,

hereafter MSGA, is proposed for this problem in FFS.

The remainder of this paper is organized as follows. Section 2

describes mathematical model for batch sizing and scheduling

problem with unrelated parallel machines in FFS

environment. Section 3 is dedicated to MSGA metaheuristic

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.6, July 2014

32

method. In section 4, an experimental study is presented to

evaluate the proposed method according to some experimental

factors. Finally, section 5 is devoted to the main finding of

this paper and suggestions for conducting some future

researches.

2. MATHEMATICAL MODEL
The problem addressed in this research can be expressed

formally as an integer programming. As mentioned above, the

selected objective function is makespan minimization. The

sets, parameters, decision variables, and the mathematical

model are as follows:

H : Large Number

m : Number of orders

M : Set of order indices (1,2,...,M m)

l : Number of stages

L : Set of stage indices (1,2,...,L l)

in : Number of batch for order i (i
i

i

r
n

b

 
  
 

)

N : Set of Batch indices (1,2,..., iN n)

Q : Set of machine indices in stage L (1,2,.., LQ S)

R : Set of order indices necessary to define decision

variables ( , , , | () () ()R j j i i j j j j i i         )

ib : Minimum batch size of order i (i M)

iB : Maximum batch size of order i (i M)

ir : Demand of order i (i M)

iktp : Processing time of order i on machine k at stage t

(, ,i M k Q t L  )

i isdt  : Sequence dependent setup time if order i  is

processed before order i (,i i M)

ijtC : Completion time of batch j of order i at stage t

(, ,ii M j n t L  )

ijq : Units number of order i in batch j (, ii M j n )

ijktX : 1 if batch j of order i is processed on machine k at

stage t, 0 otherwise (, , ,ii M j n k Q t L   )

ii jj ly   : 1 if batch j of order i is processed earlier than batch

j
of order i  at stage t

(, , , ,ii i M j j n t L   )

ii jj lw   : 1 if batch j of order i and batch j  of order i  are

on same machine at stage t

(, , , ,ii i M j j n t L   )

If the decision variables are defined regarding the range of

their indices, the number of decision variables increases to a

huge number and the efficiency of the mathematical model

will decrease drastically. Thus, the unnecessary decision

variables are omitted by defining set R [22]. For instance, if

ii jj ty   is equal to 1, the value of i ij jty   is 0 and vice versa.

Thus, only one of them is used in the mathematical model.

Therefore the mathematical model of this problem in the FFS

environment with unrelated parallel machines can be

formulated as follows:

,
Min Z= max{ }ijm

i j
C

(1)

lS

k=1

1ijktX  , , ,ii M j n t L   (2)

1

tS

ij ijkt

k

q H X


  , ,ii M j n t L   (3)

1

tS

ij ijkt

k

q X


 , ,ii M j n t L   (4)

1

1 1 1

1

S

ij ik ijk ij

k

C p X q


 , ii M j n  (5)

ijt , 1

1

C
tS

ij t ikt ijkt ij

k

C p X q



 

, ,ii M j n t L  

(6)

 ijtC 1 ii jj l i j t ikt ijkt ij i iH y C p X q sdt        

, , , , ,ii i M j j n k Q t L    
(7)

  ijt1 Ci j t ii jj t ii jj t i kt i j kt ij iiC H w y p X q sdt              

, , , , ,ii i M j j n k Q t L    
(8)

1ii jj t ijkt i j ktw X X     

, , , , ,ii i M j j n k Q t L    
(9)

1

in

ij i

j

q r


 i M (10)

1 1

l lS S

i ijkt ij i ijkt

k k

b X q B X
 

   , ,ii M j n t L   (11)

 , , 0,1ijkt ii jj t ii jj tX y w    

, , , , ,ii i M j j n k Q t L    
(12)

The objective function, as presented in Eq. (1), minimizes

makespan. Constraint sets (2) indicate that each batch must be

assigned to one machine at each stage. Constraint sets (3) and

(4) ensure that each established batch must be processed on

one machine at each stage. Constraint sets (5) show that

completion time of each batch in the first stage is greater than

or equal to its processing time in this stage. Constraint sets (7)

and (8) preclude the interference between the processing

operations of any two batches on a machine at any stage. At

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.6, July 2014

33

most, one of these two constraint sets is active for each pair of

batches. Constraint sets (9) determines the batches which are

processed on the same machine in stage L. Constraint sets

(10) impose that the demand must be fully satisfied for each

order. Constraint sets (11) ensure the batch size constraints

must be met. Finally constraints (12) force variables to

assume binary values 0 or 1.

2.1 Model Linearization
As can be seen, the above model is obviously nonlinear

(because of term .ijkl ijX q in constraints (5), (6), (7), (8));

therefore it causes the long computational runtime. On the

other side, this term can be linearized by introducing new

auxiliary binary integer variable as follows:

1

0

ij ijkt

ijkt

q if X equals
W

otherwise


 


The required new constraint can be defined as follows:

.ijkt ijkt ijW X q

(13)

By considering the above equation, following constraints must

be added to the mathematical model simultaneously:

ijkt ijW q , , ,ii M j n k Q t L   

(14)

ijkt ijklW HX , , ,ii M j n k Q t L   

(15)

(1)ijkt ijkt ijW H X q  

, , ,ii M j n k Q t L   

(16)

3. MIXED SIMULATED GENETIC

ALGORITHM (MSGA)
After many reported experiments in the literature, genetic

algorithms have been found to be efficient, effective and

robust algorithm for complicated problems. Nevertheless,

genetic algorithms also have their shortcomings. In fact, if the

worst members are discarded after each generation, the

population will tend to become homogeneous quickly. And

then the crossovers and mutation may not produce offspring

of large variation. For this reasons, some authors have

suggested inserting another operator, namely, a Boltzmann-

type operator, after the crossover and mutation operations.

Therefore, it is called this new metaheuristic method as mixed

simulated genetic algorithm (MSGA). In MSGA, new

chromosomes are chosen to produce the next generation from

parents and offspring according to Boltzeman function. The

selection criterion is based on the fitness values of parents and

offspring. Chromosomes with higher fitness values have a

greater probability of surviving into the next generation.

Those with less fitness values are not necessarily discarded.

Based on above discussion, the MSGA is now described as

follows:

1. Random chromosome generation: in the MSGA,

number of chromosome in each generation equals a

coefficient of number of orders (Poprate). Then, the

orders are randomly sequenced and formed a

chromosome.

2. Fitness function: for calculating the fitness function,

for each individual in current generation, it must be

determined batch size and batch sequence. Batch

sizing and batch sequencing is now described as

follows:

 Determine the maximum and minimum number of

batches based on following equations:

i
i

i

r
MaNB

b
 i M (17)

i
i

i

r
MiNB

B
 i M (18)

 Generate a random integer value in interval

i iMiNB NB MaNB 

 Calculate the batch size for each order based on

i
i

i

r
FBS round down

NB

 
  

 

 Calculate number of unassigned quantity for each

order as .i i i iRM r FBS NB 

 Append the unassigned quantity to each batch so

that difference between the batch quantities must

not greater than 1.

 Finding the bottleneck stage as

1 1 1

l iS nm

ijk

k i j

l

l

P

FR
S

  




 Sequence batches based on shortest average

processing time at bottleneck stage.

 Select machines at each stage based on following

rule:

 Batch is assigned to all machines (available

and unavailable) at any stage and selects a

machine that has the earliest completion

time.

 Finally calculate the maximum processing time as

makespan.

3. Elitism: to prevent the elimination of good solution,

in each generation, some good chromosomes are

migrated to next generation without fluctuation. In the

MSGA, number of chromosome, for elitism, equals a

coefficient of number of orders (Elitrate).

4. Crossover: The basic operator for producing new

individuals in GA is crossover. Crossover may

produce better individuals that have some genetic

material of both parents. In the MSGA, number of

chromosome, for crossover, equals a coefficient of

number of orders (crossrate). The conventional

crossover operator combines sub-strings belonging to

their parents. In this research, two chromosomes are

selected and a two points cut method is applied to

crossover.

5. Mutation: another basic operation to generate the

individual is mutation. This operator schemes allow

jumps to different areas of the solution space. In this

research, two mutation operators are used; two points

swap and three points swap. In first (second) method,

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.6, July 2014

34

two (three) points are randomly selected and the

corresponding genes are changed. In these methods,

number of chromosome, for mutation, equals a

coefficient of number of orders (mutrate).

6. SA operator: the SA operator is used to produce the

new generation. At first, the chromosomes of current

generation is sorted in ascending order of fitness

value and the chromosomes of last generation is

sorted in descending order of fitness value and then,

they are compared one-to-one. If the fitness value of

current generation is better than the last generation,

the chromosome of current generation is selected for

next generation. On the other side, if the fitness

function of current generation has worse

performance, the SA operator is used. In this

operator, Boltzeman function is applied to select

between chromosomes as follows:

   







 
 

T

xCxC
P ii 1exp

(19)

In equation (19), T is temperature of current generation,

 1iC x 
fitness function of current solution (from current

generation),  iC x fitness function of last solution (from

last generation).

Temperature is function of three operators: initial temperature,

final temperature and cool rate. In each stage the following

function is applied to calculate the current temperature:

.T T coolrate (20)

4. COMPUTATIONAL STUDY
This section is devoted to consider the performance of

proposed method. The best parameters for MSGA method

firstly is selected, and then, compare the performance of

MSGA method with optimal solution and GA.

Table 1: Set parameters for MSGA

Parameter Value

Poprate 1 2 5

Crossrate 0.8 0.6 0.5

Mutrate 0.1 0.2 0.3

Elitrate 0.1 0.2 0.2

Initemp 100 500 1000

For the selection of best value for each parameter, 60

experimental problems are generated for each state and

average of objective function, standard deviation and run time

is summarized in the table 2:

Table 2: average of objective function, standard deviation and run time for set parameters

State Poprate Poprate Crossrate Mutrate Elitrate Initemp Average S. Deviation Time

1 1 0.8 0.1 0.1 500 0.001 0.8 42.45 9.65

2 2 0.8 0.1 0.1 500 0.001 0.8 47.12 11.02

3 5 0.8 0.1 0.1 500 0.001 0.8 71.18 13.60

4 2 0.8 0.1 0.1 500 0.001 0.8 39.40 4.03

5 2 0.6 0.2 0.2 500 0.001 0.8 60.34 4.41

6 2 0.5 0.3 0.2 500 0.001 0.8 73.41 3.54

7 2 0.8 0.1 0.1 100 0.1 0.8 82.94 4.76

8 2 0.8 0.1 0.1 500 0.01 0.8 62.75 4.03

9 2 0.8 0.1 0.1 1000 0.001 0.8 56.92 3.48

10 2 0.8 0.1 0.1 1000 0.01 0.8 47.06 2.60

11 2 0.8 0.1 0.1 1000 0.01 0.9 62.00 2.44

12 2 0.8 0.1 0.1 1000 0.01 0.95 66.77 3.08

regarding table 2, state 1, 2 and 3 is used to select best value

for poprate, state 4, 5 and 6 is for crossrate, mutrate and

elitrate, state 7, 8 and 9 is for initemp and fintemp. At last, in

states 10, 11 and 12, the best value for coolrate is selected.

According to average, standard deviation and run time, the

best set parameters for MSGA is shown in table 3:

Table 3: best value for MSGA parameters

Parameter Value

Poprate 2

Crossrate 0.8

Mutrate 0.1

Elitrate 0.1

Initemp 1000

Fintemp 0.01

coolrate 0.9

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.6, July 2014

35

4.1 MSGA performance evaluation
In order to performance evaluation, two series of experiment

were conducted; For this purpose, the first series compare

proposed algorithms with the optimal solution for the small

size problem and the second series compare the proposed

algorithms with GA metaheuristic for the medium and large

instances. All the heuristics are coded using the MATLAB

software and the entire experiments are performed on a PC

with Intel Core 2 Dou 2.2 GHz CPU and 2 GB RAM. All the

optimal solutions are obtained by Lingo 9.0 software.

Because of NP-completeness of batch sizing and scheduling

problem in FFS, it is very expensive to achieve the optimal

solution for the medium and large instances. Therefore test

problems in table 4 are limited to the small size problem. For

this purpose, 20 instances are generated and Table 4, presents

the comparison of exact method and MSGA:

Table 4: comparison of MSGA and exact method

Test problem Exact MSGA Optimal Gap

1 136 140 2.9%

2 114 120 5.3%

3 140 147 5.0%

4 128 128 0.0%

5 137 146 6.6%

6 162 166 2.5%

7 104 104 0.0%

8 136 144 5.9%

9 152 152 0.0%

10 202 205 1.5%

11 133 142 6.8%

12 254 258 1.6%

13 154 158 2.6%

14 160 162 1.3%

15 200 204 2.0%

16 103 106 2.9%

17 138 146 5.8%

18 110 110 0.0%

19 188 196 4.3%

20 136 152 11.8%

Average 149.4 154.3 3.4%

According to table 4, it can be concluded, the MSGA is

competitive with optimal solution for small instances, as can

be observed from the average objective function (last row).

Based on the results shown in this table, the average

difference between optimal solution and metaheuristic

(optimal gap) is 3.4%.

Unfortunately, since this is the first time that this problem is

considered in the literature, we do not have the results of

applying other algorithms to solve the problem to compare

with the proposed methods. However, the goal of this research

was to obtain the most efficient way of implementing MSGA

algorithm to solve this problem. In fact, this article is

compared proposed algorithm with the pure GA which is

introduced and broadly used in the literature before. For this

purpose, some computational experiments are conducted to

compare the MSGA with GA. For comparison purpose, we

generate some test problems based on table 5:

Table 5: experimental factors

Experimental factor Level
Number of order 3 levels: 10, 20, 50

Number of stage 2 levels: 6, 12

order size1 U[20,50]

Sequence Dependent Setup Time U[5,20]

Number of machines in each stage 3 levels: 3, 5, 8
1The processing time of each item in the order is assumed 1.

According to table 5, it will has 18 different test problems.

Each test problem was run ten times and its performance,

including the best Cmax value, was recorded in table 6. Other

necessary data for each problem, such as maximum and

minimum batch size, are randomly generated.

Table 6: Evaluating the quality of solution of the MSGA in

comparison of GA

Problem MSGA GA % Deviation

O10S6M3 333 340 2%

O10S6M5 272 275 1%

O10S6M8 305 314 3%

O10S12M3 522 559 7%

O10S12M5 401 417 4%

O10S12M8 344 347 1%

O20S6M3 348 351 1%

O20S6M5 287 296 3%

O20S6M8 201 215 7%

O20S12M3 694 729 5%

O20S12M5 481 491 2%

O20S12M8 394 410 4%

O50S6M3 370 377 2%

O50S6M5 415 432 4%

O50S6M8 481 510 6%

O50S12M3 717 746 4%

O50S12M5 564 598 6%

O50S12M8 654 700 7%

The three characteristics that typify the problem are the

number of order, number of stages and number of unrelated

parallel machines at each stage. For example, the notation

O10S12M5 means a 10-order, 12-stage problem and 5

unrelated parallel machines in each stage. The letters J, C and

M are abbreviations for order, stage and machine,

respectively.

The computational results are summarized in Table 6, in

which the “% deviation” columns show the performance

comparison among two algorithms. According to table 9, the

MSGA is outperformed GA metaheuristic in medium and

large size problems.

5. CONCLUSION
In this paper, we studied the simultaneous batch sizing and

scheduling decisions in a flexible flow shop environment with

unrelated parallel machines and setup time. The first

contribution of the paper is to provide a mathematical model

to minimize the makespan for batch sizing and scheduling

problems. Also, this research presents a mixed simulated

genetic algorithm (MSGA) for this problem. The results show

methaheuristic has good performance to reach the optimal

solution.

Future works can consider other environments, such as job

shop and open shop. Other metaheuristics algorithms (SA, TS

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.6, July 2014

36

or PSO) can also be applied for this problem. Afterwards,

considering other type of objective function such as, tardiness,

number of tardy job, flow time is opened for other research.

6. REFERENCES
[1] Coffman, E. G. and Yannakakis, M. 1990. batch sizing

and sequencing on a single machine. Ann. Oper. Res. 26,

135-147.

[2] Quadt, D. and Kuhn, H. 2005. Conceptual framework for

lot-sizing and scheduling of flexible flow lines. Int. J. of

Prod. Res. 43(11), 2291-308.

[3] Adler, L., Fraiman, N., Kobacker, E., Pinedo, M.,

Plotnicoff, J. C. and Wu, T. P. 1993. BPSS: a scheduling

support system for the packaging industry. Oper. Res. 41,

641-648.

[4] Voss, S. and Witt, A. 2007. Hybrid flow shop scheduling

as a multi-mode multi-project scheduling problem with

batching requirements: a real-world application. Inter. J.

of Prod. Econ. 105(2), 445-458.

[5] Wittrock, R. J. 1988. An adaptable scheduling algorithm

for flexible flow lines. Oper. Res. 36, 445-453.

[6] Leon, V. J. and Ramamoorthy, B. 1997. An adaptable

problem space-based search method for flexible flow line

scheduling. IIE Transactions. 29, 115-125.

[7] Agnetis, A., Pacifici, A., Rossi, F., Lucertini, M.,

Nicoletti, S. and Nicolo, F. 1997. Scheduling of flexible

flow shop in an automobile assembly plant. Eur. J. of

Oper. Res. 97(2), 348-362.

[8] Jin, Z.H.; Ohno, K.; Ito, T.; Elmaghraby, S.E.:

Scheduling hybrid flowshops in printed circuit board

assembly lines. Prod. and Oper. Manag. 11(2), 216-230,

(2002)

[9] Hayrinen, T., Johnsson, M., Johtela, T., Smed, J. and

Nevalainen, O. 2000. Scheduling algorithms for

computer-aided line balancing in printed circuit board

assembly. Prod. Planin. Con. 11(5), 497-510.

[10] Alisantoso, D., Khoo, L. P. and Jiang, P. Y. 2003. An

immune algorithm approach to the scheduling of a

flexible PCB flow shop. Inter. J. of Adv. Manuf.

Technol. 22(11), 819-827.

[11] Ruiz, R. and Maroto, C. 2006. A genetic algorithm for

hybrid flowshops with sequence dependent setup times

and machine eligibility. Eur. J. of Oper. Res. 169, 781-

800.

[12] Lee, G. C., Kim, Y. D. and Choi, S. W.. 2004.

Bottleneck-focused scheduling for a hybrid flowshop.

Int. J. of Prod. Res. 42, 165-181.

[13] Jungwattanakit, J. and Reodecha, M. Chaovalitwongse,

P. and Werner, F. 2008. Algorithms for flexible flow

shop problems with unrelated parallel machines, setup

times and dual criteria. Int. J. of Adv. Manuf. Technol.

37, 354-370.

[14] Sheikh, S. 2012. Multi-objective flexible flow lines with

due window, time lag, and job rejection. Int. J. of Adv.

Manuf. Technol. doi: 10.1007/s00170-012-4112-5.

[15] Rosas-gonzález, A., Clemente-guerrero, D., Caballero-

morales, S. and Flores-juan, J. 2013. An Evolutionary

Approach for Solving the N-Jobs M-Machines

Permutation Flow-Shop Scheduling Problem with Break-

Down Times. Int. J. of Comput. Appl. 83(1); 1-6.

[16] Huang, K. Yang, C. and Tsai, C. 2012. A Two-Phase

Hybrid Particle Swarm Optimization Algorithm for

Solving Permutation Flow-Shop Scheduling Problem;

Int. J. of Comput. Appl. 48(1),11-18

[17] Allahverdi, A., NG, C. T. and Cheng, T. C. E., and

Kovalyov, M. Y. 2008. A survey of scheduling problems

with setup times or costs. Eur. J. of Oper. Res. 187(3),

985-1032.

[18] Prasad, P. and Maravelias, C. T. 2008. Batch selection,

assignment and sequencing in multi-stage multi-product

processes. Comput. and Chem. Eng. 32, 1106-1119.

[19] Wang, S. and Guignard, M. 2006. Hybridizing discrete-

and continuous-time models for batch sizing and

scheduling problems. Comput. and Oper. Res. 33, 971-

993.

[20] Chrétienne, P., Hazır, Ö. and Kedad-Sidhoum, S. 2011.

Integrated batch sizing and scheduling on a single

machine. J. of Sched. 14, 541-555.

[21] Me´ndez, C. A., Henning, G. P. and Cerda, J. 2011. An

MILP continuous-time approach to short term scheduling

of resource-constrained multistage flowshop batch

facilities. Comput. and Oper. Res. 25, 701-711.

[22] Tadayon, B. and Salmasi, N. 2013. A two-criteria

objective function flexible flowshop scheduling problem

with machine eligibility constraint. Int. J. of Adv. Manuf.

Technol. 64, 1001-1015.

IJCATM : www.ijcaonline.org

