
International Journal of Computer Applications (0975 – 8887)

Volume 97– No.5, July 2014

16

Enhanced Computational Algorithm of Binary Division by

Comparison Method

Vandana
Assistant Professor

Computer Science Department, SRMSWCET
Bareilly, India

ABSTRACT

Binary division is the basic operation performed by arithmetic

circuit. It is simpler than the decimal division because the result

always produced in either 1 or 0. All the values of dividend,

divisor, quotient and remainder are in 1’s or o’s form. There are

number of binary division algorithms are available as restoring

method, non restoring method, division by XOR logic operation

and SRT division and comparison method. This paper presents a

new concept of the comparison division method. The comparison

division algorithm provides high speed computation work and

increases’ the system performance.

Key Terms
Binary division, Restoring concept, Comparison method and Non

restoring method, Magnitude comparator

1. INTRODUCTION
Binary division is a procedure that shows how many times the

divisor D divides the dividend A. In division operation the divisor

is subtracted from the dividend, if dividend is greater than the

divisor and the quotient bit is set to 1. Computer system performs

the subtraction operation in 2’s complement form. Division is

equivalent to repeat subtraction of the divisor from the dividend

until the quantity left is smaller in magnitude than the divisor. The

division algorithm rules are [1]:

1-if the portion of the dividend above the divisor is greater than or

equal to the divisor:

 then subtract the divisor from the dividend and

 put the result of the subtraction “1” to the right end of

the quotient.

 If the result is zero, place a “0” to the right end of the

quotient.

2- Shift the divisor one place right.

3-repeat until dividend is less than the divisor and quotient is

correct. The dividend is the remainder.
This process, if done straight forwardly, is very time consuming. It

is substantially speeded if the most significant digits of the divisor

and dividend are aligned before the first subtraction, and the

divisor then shifted to the right one position whenever the partial

remainder becomes smaller than the divisor before shifting. One

shift may be necessary before any subtraction

There are two kinds of division algorithms, digit recurrence

division and division by convergence. Digit recurrence division is

simple and has less complexity than convergence division

algorithm. There are three methods available for division

algorithms

1-Restoring method (additional restoration cycles for the

restoration).

2-Comparison method

3-Non restoring method (restoration cycles are removed)

The non-restoring division algorithm is the fastest among the digit

recurrence division methods because there is no need of

restoration cycles.

2. RESTORATION METHOD

The division algorithm is very time consuming if it is done straight

forwardly, because we need to compare the remainder with the

divisor after every subtraction. The restoring division algorithm is

the simplest of the three digit recurrence division methods. In

restoring division, subtraction continues until the sign of the partial

remainder changes; the change causes an immediate addition of

the divisor and a corresponding decrement of the accumulating

quotient, before the right shift. The restoring division performs two

additions for each iteration when the temporary partial remainder

is less than zero and this results in making the worst case delay

longer.

2.1 Characteristics of Restoring Method:
 1. Subtraction continues until the sign of the partial remainder

changes.

 2. Causes an immediate addition of the divisor

 3. Additional restoration cycles for the restoration

 4. In restoring method after operation value sign is change after its

previous value.

 5. Causes an immediate addition of the divisor

3. NON-RESTORING METHOD
This non-restoring method [2] provides high computational speed,

because only one addition is performed in per iteration. In this a

quotient set {+1,-1} is required. The quotient digit +1 is used for

subtraction and -1 is used for addition [3].

3.1 Characteristics of non restoring method
1. The sign change causes a shift followed by one or more

additions until the sign changes back.

2. The sign change causes a shift followed by one or more

additions’ until the sign changes

3. Negative radix, and would require a conversion routine to

restore the quotient to normal form. [2]

4. Only one subtraction or addition is taken at each step, setting

sign bit is 0 in the quotient if both the partial remainder and the

divisor are of the same sign (opposite sign).

5. Sequence counter's value is proportional to the operand length

(divisor).

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.5, July 2014

17

4. COMPARISON METHOD
By using comparison method, a division algorithm can be

performed in two ways:

 1- Division with micro-operations

 2- Division with magnitude comparator

4.1 Division with micro-operation
In the comparison method the divisor and dividend are compared

prior to the subtraction operation. If divisor is greater than equal to

dividend, the divisor is subtracted from dividend .if dividend is

less than divisor nothing is done only the partial remainder is

shifted left and the number s are compared again. The comparison

operation can be determined prior to the subtraction by inspecting

the end carry out of the addition operation through parallel adder.

Consider that dividend is stored in register A and divisor is stored

in register B. the comparison operation can be done with EA<-

A+B+1. If E=0, it shows that the dividend is less than divisor and

if E=1, It shows that the dividend is greater than the divisor. In the

comparison method A and B is compared prior to the subtraction

operation. If A>=B, b is subtracted from A. if A<B nothing is

done. The hardware implementation consists of three parts: output

carries , partial remainder and quotient bits.

 Quotient

 Bit is inserted here

Output

carry
 Partial

remainder
Quotient

bits

 Fig (1) Program division

The end carry flip flop is used to store the carry bit after the

addition operation. The comparison operation is done by

inspecting the end carry. To compute the results firstly verify the

register length because there may be exist an overflow condition.

So it is assumed that the dividend part should be less than the

divisor. Comparison method provides the fast speed for division

operation because it saves the restoration time for partial

remainder [1] [4].

4.1.1 Algorithm for comparison method:
1. First check the divide overflow condition by adding 2's

complement of register B to register A. and the result is transferred

to the E and A. and quotient bit is set to 0.

2. If the end carry flip flop E contains the 0 -value, only left shift

operation is performed

3. If E contains 1- value the subtraction and left shift operation is

performed. And the quotient bit is set to 1.

 Fig (2) Flow chart for comparison algorithm

In this comparison method only two types of operation addition

and left shift are required. Software and hardware aspects can be

improved by replacing some divisions by shifts/adds/subs for

optimizing compiler and hardware dividers may be replaced by

simpler adders for VLSI circuits.

4.1.2 Characteristics of comparison algorithm:
1. Reduce execution time

2. No additional set is required for division operation that is no

negative radix is used.

3. Only two micro-operations: add and left shift are required in

each step.

4. Less circuitry is required.

 This method gives better performance because it provides fast

speed. But there may be insufficient partial remainder may

produce because there is no restoration of the partial remainder in

the case when dividend is less than divider.

Dividend in register A and Q

Divisor in register B

Set Q<- -0

SC <-n

 EA<- A+ˉB+1

(comparison)

 E
=1 (A>=B)

 (A<B) 0=

Set Qn <--0

Shl EAQ

 EA<--A+ˉB+1

 Set Qn<--1

 SC<-- SC-1

 SC

Equal to zero Not Equal to zero

 END

Result bit stored in

Q and Remainder

stored in A

Shl EAQ

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.5, July 2014

18

5. PROPOSED WORK - COMPARISON

ALGORITHM USING MAGNITUDE

COMPARATOR
Comparing two binary numbers for equality is a commonly used

operation in computer system and device interface. The hardware

in the comparator can be reduced by implementing only two

outputs, and the third output can be obtained using these two

outputs. For example, if we have the LT and GT outputs, then the

EQ output can be obtained by using only a NOR gate. Thus, when

both the GT and LT outputs are zeros, then the 3rd one (i.e. EQ) is

a ‘1. Another approach for division algorithm is that if we first

compare the magnitudes of both the numbers by using magnitude

comparator. This method saves the computational time in the case

when A=B, and set the quotient bit 1, so there is no need to

perform any micro-operation. In the case when A>B, first we make

the dividend less than divisor with the help of normalization

process so that the necessary condition can be obtained. The

addition and subtraction micro-operation can be performed in the

case when A>B and A<B. The magnitude comparator circuit saves

the initial computational time for comparison operation to provide

the fast speed. In the case of A>B and A<B it performs the

necessary addition, subtraction and shift micro-operations as in the

case of restoring and non restoring [5]. The advantage of this

concept is that it does not perform the micro-operations for A=B to

generate the quotient bit and there is no need to check the

sequence counter value. But in the case of restoring and non-

restoring method the initial equivalence condition is checked on

the basis of micro-operation and we have to perform multiple

micro-operations to produce the quotient bit even in the case of

when A=B.

5.1 Characteristics of magnitude comparator

comparison algorithm:
1-Initial comparison computational time is saved

2- The speed is fast as compare to other division methods.

3-The cost is high because of the addition of the addition of the

combinational circuit.

5.2 Algorithm steps:
1- Check the sufficient condition for the division operation i.e

dividend should be less than divisor for fixed and floating-point

data representation.

2- In case of floating-point data representation the normalization

process is used to make the dividend smaller than divisor.

3- In this method bit-by-bit operations are performed. But in case

of A=B, the quotient bit is set to 1.

4- If A>B, than the divisor is subtracted by dividend.

5- If A<B, than the dividend is shifted to the left and set quotient

bit is equal to 0.

6- if A=B, the divisor is subtracted and after subtraction

operation if remainder is zero than set quotient bit is equal to 1

and there will be no bit -wise operation is performed, and process

will be ended.

 So by collaborating the magnitude comparator with micro-

operations the speed of the processing is increased thus it reduce

the execution time because of the less number of computer
instructions. This method gives the high-performance computing

algorithms which is essential to meet the expanding demand for

computation .The objective of the Division of Computational

Algorithms is to achieve the levels of performance and reliability

required for fundamental computational science applications [6]

,

 Fig(3) Flow chart for division algorithm by

comparison algorithm using magnitude comparator

This flow chart (fig-3) gives the specification of binary division

operation. This method is very simple because of the less number

of instructions. In this algorithm Q is the quotient register. Initially

dividend is stored in double register A and Q.

6. CONCLUSION
In this paper we propose a theoretical concept by giving an

algorithm for binary division by using magnitude comparator and

micro-operations. This method provides a better combination for

both hardware and logical implementation to increase the speed of

Divisor in register A

Dividend in register B and set SC

Is equal to number of the divisor bit

Compare

both

Numbers by

Comparator

A=B A<B

A>B
Shift left

 Dividend and

Quotient bit Qn

 is set to 0

Subtract divisor from

Dividend

Set quotient bit to 1

And shift left dividend

Decrease the sequence

Counter value by 1

SC<-0

END, the result is

Stored in register Q

Set quotient bit to

1

And SC is cleared

to zero

NO

YES

 Check

 Remainder value

Stored in register A

If zero

If

 Not

zero

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.5, July 2014

19

the binary division algorithm and generates the accurate quotient

bits.

7. REFERENCES
[1] Arithmetic operations in a binary computer by Robert F.Shaw

[2] An algorithm for non-restoring algorithm by S. Sonycl, Tata

Institute of Fundamental Research Bombay, India

[3] Fast 32-bit Division on the DSP56800E Minimized non

restoring division algorithm by David Baca

[4] D. Banerji, T. Cheung, and V. Ganesan, “A High-speed

Division Method in Residue Arithmetic, “Proceedings of 5th

IEEE, Symposium on Computer Arithmetic, Michigan, USA,

1981, pp. 158-164

[5] A Protected Division Algorithm , Published in P. Honey man,

Ed., Fifth Smart Card Research and Advanced Application

Conference (CARDIS ’02), pp. 69–74, Usenix Association,

2002. Marc Joye and Karine Villegas

[6] J. H. Yang, C. C. Chang, and C. Y. Chen, “A High- Speed

Division Algorithm in Residue Number System Using Parity-

Checking Technique,”

[7] Binary division and square-rooting using Gray code by CK

Yuen

[8] Improved Algorithms for Non-restoring Division and Square

Root by Kihwan Jun, B.S.E.E., M.S.E. M.S.E.E

[9] A Division Algorithm Using Bisection Method Residue

Number System by Chin-Chen Chang and Jen-Ho Yang

[10] Binary division and square-rooting using Gray code by CK

Yuen

[11] VHDL Implementation of Non Restoring Division Algorithm

Using High Speed Adder/Sub tractor Sukhmeet Kaur1

IJCATM : www.ijcaonline.org

