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ABSTRACT 

The attitude control of missiles, spacecraft and satellites is 

essential; in order to remain them fixed in space to perform 

their missions accurately. The attitude equation of a satellite is 

a six- dimensional nonlinear system which includes some 

types of nonlinear behavior such as periodic trajectory, 

chaotic dynamics. In this paper, a sliding mode control design 

method for stabilization of the attitude chaotic satellites with 

unknown inputs and uncertainties. Using Lyapunov theory, 

the stability control system is proven. Simulation results show 

that the proposed controller can be chaotic satellite attitude in 

the presence of unknown inputs and uncertainties will 

converge to the unstable equilibrium points. 
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1. INTRODUCTION 
Chaos the concept and mathematical precision, seemingly 

random and complex phenomenon which is inherent 

deterministic nature. Chaotic dynamics of some features that 

are important, it is very sensitive to initial conditions (that is, 

very little difference in the initial conditions that will change 

future behavior of the rate difference is proportional to 

Lyapunov exponent) so at first thought that the dynamics are 

uncontrollable chaos. One of the concepts of chaos control 

stabilization of chaotic dynamics in unstable equilibrium 

points. First time in [1] proved that there is a problem of 

chaos control. They show that a very small control signal can 

be made to provide conditions for the control chaos dynamics. 

This is a characteristic of chaos, which is not possible at all 

nonlinear dynamics model. Then, many methods have been 

introduced, such as fuzzy control [2], adaptive feedback [3] 

sliding mode [4], impulsive control [5], backstepping control 

[6]. So in the past two decades, the problem of controlling 

chaos dynamics has attracted much interest from researchers. 

Control chaos, in many applications, including secure 

communication [7], gyroscopes [8], removal of heart rhythms 

[9], and many others in [10, 11] has been introduced. In this 

paper, chaotic satellite attitude control problem with unknown 

inputs and uncertainties are discussed. The research in [12] 

was proven to be chaotic attitude motion satellite. Hence, a 

sliding mode controller design method is proposed for 

stabilizing the attitude motion chaotic of satellite. Recently, 

various researches and publications introduced the chaotic 

dynamics of the satellites. Methods that have been introduced 

thus far include predictive control [13], impulsive control 

[14], and neural networks [15]. The second part of the 

describes the chaotic state of satellite dynamics. Next 

controller design method is explained. Fourth, the problem 

attitude control of the satellite with unknown inputs and 

uncertainties expressed. Finally, part five illustrates the 

simulation results. 

2. SATELLITE DYNAMIC AND 

PROBLEM FORMULATION 
In this section, the satellite system and the chaotic dynamics 

are studied. In [16] the problem of satellite attitude control 

with redundant thrusters, and in [17] satellite attitude control 

with an uneven inertia distribution has been investigated. 

However, given that the satellite attitude motion under 

external disturbances becomes chaotic mode, the control 

satellite system will be very complex. So, be very careful 

satellite control system is designed. In [13] and [14] satellite 

attitude control of chaotic behavior has been investigated. The 

orientation of the satellite at a given point can be locally 

described in terms of three angles  ,  and  which are 

successive clockwise rotations about inertial axes I, J and K 

respectively. The kinematic equation of a satellite or 

spacecraft can be written as: 
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And on collecting terms and inverting, the following form is 

resulted, which is more appropriate for solving by numerical 

integration. 
























tan/).(

..

./).(

SinCos

CosSin

CosSinCos

yxz

yx

yx







                    (2) 

The rotational motion for general rigid spacecraft acting under 

the influence of external torques is given by [18].The 

dynamical equation of a satellite, similar to a rigid body can 

be expressed as:   

I I H U                                                              (3) 

Where I is the moment of inertia tensor,  is the angular 

velocity vector, U is the control torque, and H contains any 

external disturbance torques. The dynamical equations of a 

satellite are:  
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Where ,x yI I and zI are the principal moments of inertia, 

,x y  and z are the angular velocities of the satellite, 

,x yU U and zU are the three control torques; ,x yH H and 
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zH are perturbing torques. Principal moments of inertia and 

perturbing torques such as:  

 
Fig.1 Period Attitude satellite 

 

 

Fig.2 Phase Portraits of Period Satellite 
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This torques is chosen so as to force the satellite into chaotic 

motion. By changing the elements value of system matrices, 

many various dynamical behaviors could be observed. For 

example, let H=0 and U=0, the attitude motion of a satellite 

has a twisted periodic trajectory, which is shown in Fig.1 and 

Fig.2. Nonlinear system (4), under the conditions express in 

(5) shows the chaotic attitude satellite.  
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In equation (6) it is seen that the three coupled nonlinear 

relationship exists between the satellite dynamics. Thus, it can 

be seen in the attitude of the satellite is the most complex 

chaotic dynamics. See Fig.3. 

As mentioned, a characteristic of chaos is sensitivity to initial 

conditions. That small change in initial conditions can to 

change the behavior of a dynamic future. For a better 

understanding see Fig.5. The control problem is to suppress 

the chaos and regulate the state trajectory of this system to a 

desire fixed point or around the equilibrium point is unstable 

(i.e.  , , 0 0 0
T

x y z  ). Hence, the proposed controller 

will be described in the next section. 

3. SLIDING CONTROLLER DESIGN 
The object of the attitude control system is to regulate the 

angular velocities of a rigid-body in the space. Satellite 

chaotic dynamical system, consider the following: 

)()( tUDfA                                  (7) 

Where 
nR is the state vector, 

nA R  matrix system 

parameters and : n nf R R  is a nonlinear function. 

nU R is the signal of control, D is the unknown input and 

 is the uncertainty of system. In practice, there are 

uncertainties in the actual systems. For this reason, in this 

paper, the uncertainty of each variable is considered.  

*
, , , , , ,( )x y z x y z x y ze t                                                     (8) 

There is  *
, , 0 0 0

T
x y z  , the satellite system is the 

point of unstable equilibrium. Therefore, the error dynamics 

will be given by: 

( , ) ( )e Ae x y U t                                                  (9) 

Where is , , , ,( ) ( )x y z x y zf   . The main goal of the 

design by controlling the vector, so that lim || ( ) || 0
t

e t


  is 

obtained. Therefore, to solve the stabilization problem of 

consider such as control vector: 

( , ) ( )U x y BG t                   (10) 

B is a constant column vector. Placement (10) in (9) 

simplifies as follow error dynamics.  

( )e Ae BG t                   (11) 

There (11), is an LTI system and G( )t  the input signal 

system. Now, the issue will focus on stabilizing an error 

around the point 0e  . An important consideration in the 

design of the controller is a sliding surface. This is surface:  

( ) 1,2,3,i iS e C e i                 (12) 

That C  is a row vector with constant values. To achieve a 

zero error, tracking error dynamics of sliding surface will be 

completely, or have the following two conditions. 

( ) 0S e                   (13) 

( ) 0S e                                   (14) 

Substituting by (12) in (14) can be obtained: 

 ( ) ( )S e C Ae BG t                  (15) 

By solving equation (15) for variable G( )t , we can achieve 

the desired control. Therefore equation (15) is equal to zero. 

Hence, it is clear that: 

1( )G CB CAe                  (16) 

From equation (16) we can get the condition 0CB   should 

be established. Placement (16) the dynamics equation (10), 

the closed-loop system be reformed as follow. 

Vector C  is chosen such that all eigenvalues of the matrix 

 ( )I B CB C A has a negative real part, so that the control 
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system is asymptotically stable. To design the sliding mode 

controller we use the constant plus proportional rate reaching 

law [19]: 

| |

S
S kS w

S 
  


                               (17) 

In the equation (17),  denotes a sufficiently small design 

constant, and the gains 0w   and 0   is determined such 

that the sliding condition is satisfied and sliding mode motion 

will occur. From equation (16) and (17), we can obtain G( )t : 

1( ) ( ) ( )
| |

S
G t CB C kI A e w

S 

  
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Fig.3 Chaotic Attitude of Satellite 

 

Theorem1. The chaotic dynamics of the satellite system 

converges asymptotically to zero, if all initial conditions 

0
nx   and the sliding control law such as is designed such 

as  ( , ) ( ).u x y BG t    Where ( )G t  is defined by the 

equation (19) and B is a column vector chosen such 

that ( , )A B is completely controllable. Also, the gains w  and 

  are positive. 

 

 
Fig.4 Phase Portraits of chaotic Satellite 

 

Fig4. Chaotic Attitude of Satellite with initial Different 

Proof. By substituting the control laws (18) and (10) into the 

error dynamics (9), we get:  
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In order to observe the stability of the error dynamics with the 

forgoing controller, as a possible Lyapunov function. 

21
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1

2

( ( ) ( ) )
| |

0
| |

V SS

S
C Ae B CB C kI A e w S

S

S
kS w S

S









 
    

 

   


       (21) 

Which is a negative definite function on
nR . Hence, by 

Lyapunov stability theory, it is immediate that the error 

dynamics (19) is globally asymptotically stable for all initial 

conditions (0) ne R . 

4. CONTROL OF CHAOTIC ATTITUDE 

MOTION 
In this paper, the results of previous section, the dynamic of 

chaotic satellite attitude control. According to the equation (8) 

and system (6), error dynamic such as:  

 

Fig6. Stabilizing the attitude motion chaotic satellite using 

proposed controller 
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And:  
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In (23), ,D  is the unknown input and uncertainties 

respectively as: 
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Hence, matric system and nonlinear part is: 
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Fig.7 Error Controller 
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Finally, ( )G t can be determined by selecting gains 

7, 0.2k w  . So we have G( )t as follows: 

1 2G( ) 3.3 3.5875 0.2
| |

S
t e e

S 
   


                         (27) 

By substituting equation (27) in (10) the chaotic attitude 

satellite control with unknown inputs and uncertainties are 

accessible.  

 

Fig.8 Sliding Control proposed 

5. NUMERICAL SIMULATION RESULT 
The simulation results use the fourth-order Runge-Kutte 

integration with step time
610h  . The initial 

condition 0 [3 3 3]T  , and unknown inputs and 

uncertainties in (24) are considered, constant   is selected as 

0.1. Fig.3 chaotic motion of the system (9) and Fig.4 shows 

the phase space. The proposed controller is applied at the 

time 2(sec)t  . Fig.5 attitude control of the satellite with 

unknown inputs and uncertainties, sliding mode control has 

been demonstrated. Fig.6 and Fig.7 are show, the control 

signal proposed and error respectively. The simulation results 

can be seen that the proposed controller does not chattering, 

means that the controller can be implemented in the real 

world. (See Fig.7) 

6. CONCLUSION 
In this paper, was introduction a sliding mod control design 

method for stabilization of the satellite attitude chaotic state 

with unknown inputs and uncertainties. Using Lyapunov 

theory, the stability control system is proved. The numerical 

simulation results show that the proposed sliding mode 

controller the system could chaotic attitude motion of 

satellites under unknown inputs and uncertainties converge to 

the unstable equilibrium points. The controller because of not 

large fluctuations can be used in practice. Given the 

importance of the stability of the satellite position requires the 

controller to be suitable and accurate. Important point in this 

article, the unknown inputs and uncertainties, that the 

proposed controller able to reach the equilibrium point 

unstable. 
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