International Journal of Computer Applications (0975 8887)
Volume 97 - No. 3, July 2014

Weighted summarization of Student Feedback using
Sentiment Analysis

Sneha
Department of Information and Communication Technology
Manipal Institute of Technology
Manipal University, Manipal, India

B. Akshatha Bhat
Department of Information and Communication Technology
Manipal Institute of Technology
Manipal University, Manipal, India

Preetham Kumar, Ph.D

HOD, Department of Information and Communication Technology

Manipal Institute of Technology

Manipal University, Manipal, India

ABSTRACT

Every year massive amount of feedback is gathered from students
regarding subjects and its respective faculty. The amount of
time to analyze this data manually is a very tedious and time
consuming. This is where the summarization feature comes into
picture. It extracts important information found in every feedback
document. Automatic summarization based on word frequency
statistics takes comments and weights them to produce word
frequency and then sentence frequency. Also, the sentiment
information in these documents belongs to a wide spectrum
ranging from positive to negative. SentiWordNet assigns sentiment
numerical scores: positive or negative. Thus, providing clues
for sentiment analysis. The spell-checker helps to rectify the
incorrect words for proper implementation of those two concepts.

General Terms:

Edit-distance algorithm, SentiWordNet

Keywords:

Spell-checker, Sentiment Analysis, Text summarization

1. INTRODUCTION

With the increasing popularity of Internet and the diversity
of information obtaining technologies, the amount of quickly
growing information has gone beyond our imagination. People
post comments which can be redundant or uninformative and
that the sheer quantity of comments will quickly grow to an
unmanageable size. Many techniques are present to help users
to find the desired information from large data set quickly and
accurately and automatic summarization is an effective approach
to this problem statement. Automatic summarization is the process
of reducing a text document with a computer program in order
to create a summary that retains the most important points of

the original document. As the problem of information overload
has grown and as the quantity of data has increased, so has
interest in automatic summarization. An example of the use of
summarization technology is search engines such as Google.
Document summarization is another.

At the same time, it is very common today for websites to
allow readers to comment on articles posted on the Internet. These
comment threads usually contain interesting opinions and give
a good indication of the average reader’s sentiment. The rise of
social media such as blogs and social networks has fuelled interest
in sentiment analysis. With the proliferation of reviews, ratings,
recommendations and other forms of on-line expression, on-line
opinion has turned into a kind of virtual currency for businesses
looking to market their products, identify new opportunities and
manage their reputations. As businesses look to automate the
process of filtering out the noise, understanding the conversations,
identifying the relevant content and auctioning it appropriately,
many are now looking to the field of sentiment analysis.

The combination of automatic summarization and Sentiment
analysis is one of the best as it combines the advantages of both the
approaches yielding results highlighting only the important points,
thus making it more compressed and informative at the same time.

Likewise, at the end of every semester, Manipal Institute of
Technology collects ”On-line Student Feedback™ from the students
and faculty regarding different subjects and its concerned lecturers.
This data will be used throughout our research work.

2. LITERATURE SURVEY

2.1 Introduction

A review of existing literature was performed to support the study
undertaken in this research. Quite a few papers have been referred
to identify the problem statement. Also, the techniques adopted

for this research have been evaluated thoroughly to make sure the
research’s expected outcome matches the actual outcome.

Three important modules have been combined to make this
application a success. The ideology behind every module has been
briefly described below.

2.2 Sources for Spell-checker

The spell-checker is an integral part of the application. Now-a-days,
with arising technologies like auto-correct and spelling suggestion,
people are bound to make spelling mistakes. This originated idea
of implementation of a spell-checker.

With the help of on-line sources like blogs and other informative
articles [5], a spell-checker was put together for this application.

The module basically makes use of the concept of edit distance, one
of the most sought-after algorithms in the making of spell-checker.
E.g., Levenshtein distance [1] between “Hello” and “Hallo” is 1,
as we just need to substitute a’ in place of ’e’.

2.3 Sources for Sentiment Analysis

Another important module of this application is Sentiment
Analysis. This topic is very interesting and is one of the hottest
research areas in computer science. With the amount of information
that is shared on social media, forums, blogs, etc, it is easy to see
why we need to automate sentiment analysis: there is simply too
much information to manually process. This is exactly why the
module has been included as well. The information collected from
”On-line Student Feedback™ is huge in size.

An On-line journal titled “Techniques and Applications for
Sentiment Analysis” [2]] was referred for this module. It has briefly
explained the concept of Sentiment Analysis and its different
approaches.

Along with the journal, a paper titled ”Sentiment Analysis-How to
derive Prior polarities from SentiWordNet” [3|] gave more insight to
one of the approaches to Sentiment Analysis. It basically explains
how Sentiment lexicon acquisition approach can be implemented
using a sentiment dictionary called SentiWordNet. Also, certain
blogs provided more information as to how to proceed further with
the implementation of the module.

2.4 Sources for Text Summarization

Text/Automatic Summarization is the last module in this
application. The increasing availability of online information
has necessitated intensive research in the area of automatic text
summarization within the NLP community. This field is observed
as a major future research area with the exponential growth of
information.

There are quite a few approaches to text summarization. One of
the approaches to text summarization is weighted summarization
that comes under extraction based summarization. It has been
described in a paper entitled "Weighted summarization of music
comments” [4] whose mentioned methodology has been applied in
the application.

International Journal of Computer Applications (0975 8887)
Volume 97 - No. 3, July 2014

3. PROBLEM DEFINITION

The problem statement is stated as follows: At the end of every
semester, thousands of students of the Institute contribute to
”On-line Student feedback” by rating and commenting on every
subject and its lecturer. The lecturers also take part in the event.
The feedback thus consists of information from thousands of
students which is nothing less than huge, important and redundant.
Later, the information collected has to be evaluated. The results
yielded by the evaluation process will be used for lecturer and
subject evaluation. Manual evaluation is a very tedious and
time-consuming task and also data to be evaluated is highly
confidential. Hence the task of evaluation cannot be handled by
any employee of the institute.

This paved the way for the development of “Weighted
Summarization of Student feedback using Sentiment Analysis”
application.

The proposed application will have three important modules.
They include:

(1) Spell-checker: The proposed approach [3] is a perfectly naive
approach to create a spell-checker. The accuracy of the
spell-checker can be ranged between 80-90%. Advanced spell
and grammar checkers use the concept of language models to
find the probability that a sentence is correct.

(2) Sentiment Analysis: In this module, the approach used
is Sentiment Lexicon acquisition [2]. It makes use of a
generalised version of SentiWordNet with application specific
words.

(3) Text Summarization: This module will be implemented
using one of extractive based summarization approaches i.e.
Weighted based summarization [4].

4. DESIGN

Design is one of the most important phases of research and is a
graphical representation of a working system. This is the phase of
system designing. It is the most crucial phase in the development
of a system. The logical system design arrived at as a result of
system analysis and is converted into physical system design.

Pertaining to this application, four diagrams have been designed.
They include:

4.1 Use case diagram

In Fig. 1, at first, user interacting with the application uploads
an input file. The accepted file goes through a series of steps i.e.
checking of spelling, checking of polarity, writing into positive
and negative comments only files that are used as input to
summarization section leading to the last step which is display of
output generated by the application that will be visible to the user.

4.2 Activity diagram

In Fig. 2, the correct flow of activities has been mentioned which
involves uploading of input file, checking the spelling, checking the
polarity, text summarization and finally display of output.

4.3 Sequence diagram

The Fig. 3 is sequence diagram of the system. The messages sent
by the user and interactions between the application and the system

for performing different operations using the content of uploaded
input file have been clearly shown.

4.4 Class diagram

In diagram Fig.4, the dependencies of classes on one another and
their relations along with the important variables and methods used
is shown. GUI calls ReadFile class which then makes a call to
Check Spelling, Extract Sentiment and Summarization classes in
the given order. Also, Check Spelling depends on EditDistance
class and Summarization depends on Positive Feedback and
Negative Feedback.

5. IMPLEMENTATION
5.1 Spell-Checker

The spell-checker module has been implemented with an aim
to eliminate spelling errors to a greater extent. One of the
most sought-after algorithms i.e. edit-distance algorithm is the
most important part of this module. Also called as Levenshtein
distance is a string metric for measuring the difference between
two sequences. Levenshtein distance between two words is the
minimum number of single-character edits (insertion, deletion,
substitution) required to change one word into the other.

e.g., Levenshtein distance between “kitten” and sitting” is
3, since the following three edits change one into the other, and
there is no way to do it with fewer than three edits:

—Xkitten— sitten (substitution of ’s” for ”’k’)
—sitten— sittin (substitution of "1’ for ”e”)

—sittin— sitting (insertion of ”’g” at the end)

The algorithm [1]] uses dynamic programming. It solves problem
by combining solutions from sub-problems. It uses bottom up
approach. We compute D(i,j) based on the previously computed
smaller value i.e. compute D(i,j) for all i(0 < ¢ < n) and
j(0 < j < m). Minimum of insertion, deletion and substitution
is [6]

D(i—1,7)+1 -deletion
D(i,j—1)+1 -insertion
D(i,j) =Min{ D(i —1,j —1) +1;ife(i) # y(j)
+0;if2(i) = y(j)
-substitution

5.2 Sentiment Analysis

Sentiment analysis is the process of identifying people’s attitudes
and emotional states from language.

The approach used in this application is Sentiment Lexicon
acquisition [2f]. The method makes use of a generalized version of
SentiWordNet with application specific words which is a dictionary
containing sentiment scores for words. Since this is a generalized
version, no part-of-speech taggers were used to explicitly classify
words based on their part of speech. Using SentiWordNet, the
overall score is computed by extracting the sentiment score of that
word from the dictionary with all possible part-of-speech values.

International Journal of Computer Applications (0975 8887)
Volume 97 - No. 3, July 2014

5.3 Text Summarization

Text Summarization can be defined as the process of identifying
novel information from a collection of texts. Metaphorically, text
mining is the process of mining precious nuggets of ore from a
mountain of otherwise rock.

The module in this application is developed using extraction
based summarization i.e. Weighted based summarization. The
weight represents strength of each keyword. The algorithm used to
develop this module has been briefly mentioned in [4]].

6. RESULT ANALYSIS
6.1 Spell-checker

The accuracy of spell-checker is medium. It could identify incorrect
words like “excelent” with correct word “excellent”. But it failed to
identify words like ”doze”,”d” which is actually the text message
lingo for ”does” and the” respectively. So, for such words we
return the original word itself.

6.2 Sentiment Analysis

Since the data is a generalized version we have modified
the SentiWordNet dictionary as per our application needs. The
words like ”not”, “fun”, “loves”, “jocular”, “lacks”, “dictates”,
“threatens” etc. which were originally not present in the
SentiWordNet were added by us. It helped to better sentiment
classification. But still there are limitations to this module. The
words like “not bad” is actually a positive phrase but it had a

negative score.

6.3 Text Summarization

Frequently occurring words increase the probability of a sentence
to be above threshold value. This helps us to obtain most frequently
commented thoughts.

We have analysed the text summarization module with and
without stop words. Without stop words removal, the value of
maximum frequency was found to be 60.0 for the word “the”.
Whereas with stop words removal, the value of maximum
frequency was 28.0 for the word “’teacher”. Hence, removal of stop
words reduces the size of candidate keywords and hence prevents
distortion of maximum frequency.

6.4 Final analysis

There are few spelling mistakes and most of them are rectified.
Also, the sentiment score has accuracy as expected. We have
analysed three types of files: positive, negative and neutral. The
sentence frequency generally ranges from 0.125 to 3.0. In general,
a properly framed sentence is above 1.0 and small phrases fall
below 1.0. Thus we have adjusted the threshold value to 1.0. So
the accuracy of the application is slightly above medium. Hence
there is scope of improvement.

International Journal of Computer Applications (0975 8887)

Volume 97 - No. 3, July 2014

User

/

System

Upload input file

Check spelling

<<includess

Check polarity

Read polarity files

Summarize text

Display output

Write to two polarity files

Fig. 1. Use case diagram

International Journal of Computer Applications (0975 8887)

Volume 97 - No. 3, July 2014

Start
o

{ System displays

eIror message
e’i'

User uploads
|npu| file

<<Loop=>for all sentences in list

° (System breaks down)
 senlence into words)

e

<<Loop>>for all words ina sentence

!

mlsspellad —5;4

e
replace with]

st substiute
na
Calculate sentiment
sore L

(" System joins the words J
[into sentence

" Calculate overall
sentiment score

(Virite sentence to
\ respective file

g)

g

<<Loop>>for all sentences in list

ﬁ(ystem breaks down \
sentence into words

<<Loop>>for all words In a sentence

.—(Calculate word
| count

|0

(' Remove stop
| words

i

(' Get maximum
frequency

-

T@

|

)
)

<<Loop>>for all words in count list

" Galculate word
frequency

i

e)@

!

<<Loop=>for all sentences in list

._{ Calculate sentence @)
frequency |

(Generation of
\ Output

I

i

Display output)—)@

)

Exit

Fig. 2. Activity diagram

International Journal of Computer Applications (0975 8887)

Volume 97 - No. 3, July 2014

User

N System
Application

1. Select Input file

- 2. Validate Input file

Fig. 3. Sequence diagram

International Journal of Computer Applications (0975 8887)

Volume 97 - No. 3, July 2014

chacks

Gl

+field: file_name

+ method(): action_performed ‘

1 usas

1
ReadFile ‘

+field: lines, words, ‘

+ method(): JoinSentence ‘

9 | 1

|..I'1<§

CheckSpelling

+field: newlistword

+ method(): wordSuggester

1
computes

it

EditDistance
+ field: word.cost

+ method({): computeDistance

axtracts ’
SUMMariZas-
ExtractSentiment
Summarization
+field: dict, _temp, score, word
+field: none

+ method(): extract

usas l I

N

+ methad(): positive_feedback,
negafive_feedback

l uses

PositiveFeedback

maxFrequency

+ method(): none

+ field: wordMap sentenceMap,

1
NE”gatweFeedhack

+field: wordMap sentenceMap,
maxFrequency

+ method(): none

Fig. 4. Class diagram

International Journal of Computer Applications (0975 8887)
Volume 97 - No. 3, July 2014

7. CONCLUSION

At the end of our research, we were able to read a docx file and
spell check it at an acceptable level. Also sentiment analysis was
performed through this research. Lastly, the summary of the input
file was obtained. Hence, the objective of the research has been
successfully accomplished.

8. FUTURE WORK
Future work includes:

(1) Semantic analysis: This technique belongs to Natural
Language processing. It can be applied to find the
semantics between two dissimilar sentences and hence reduce
redundancy.

(2) Sentiment analysis of sarcastic sentences: Many a times, it
happens that people express their opinions with sarcasm which
is quite tricky to be understood very easily. This is another
challenging task.

9. REFERENCES

[1] Levenshtein distance. http://en.wikipedia.org/wiki/
Levenshtein_distance.

[2] R. Feldman. Techniques and Applications for Sentiment
Analysis. http://cacm.acm.org/magazines/2013/4/
162501-techniques-and-applications-for-sentiment-analysis/
fulltext, 2013.

[3] M. Guerini, L. Gatti, and M. Turchi. Sentiment analysis: How
to derive prior polarities from sentiwordnet. September 2013.

[4] W. Hong, S. Jiang, H. Wang, and J. Shi. Weighted-based
summarization of music comments. The 8th International
Conference on Computer Science and education(ICCSE’13),
April 2013.

[5] Aditya Joshi. Simple Spell-Checker in JAVA. http:
//bakedcircuits.wordpress.com/2013/08/10/
simple-spell-checker-in-java/} 2013.

[6] Dan Jurafsky. Minimum Edit Distance. http://web.
stanford.edu/class/cs124/lec/med.pdf, 2014.

http://en.wikipedia.org/wiki/Levenshtein_distance
http://en.wikipedia.org/wiki/Levenshtein_distance
http://cacm.acm.org/magazines/2013/4/162501-techniques-and-applications-for-sentiment-analysis/fulltext
http://cacm.acm.org/magazines/2013/4/162501-techniques-and-applications-for-sentiment-analysis/fulltext
http://cacm.acm.org/magazines/2013/4/162501-techniques-and-applications-for-sentiment-analysis/fulltext
http://bakedcircuits.wordpress.com/2013/08/10/simple-spell-checker-in-java/
http://bakedcircuits.wordpress.com/2013/08/10/simple-spell-checker-in-java/
http://bakedcircuits.wordpress.com/2013/08/10/simple-spell-checker-in-java/
http://web.stanford.edu/class/cs124/lec/med.pdf
http://web.stanford.edu/class/cs124/lec/med.pdf

	Introduction
	Literature Survey
	Introduction
	Sources for Spell-checker
	Sources for Sentiment Analysis
	Sources for Text Summarization

	Problem Definition
	Design
	Use case diagram
	Activity diagram
	Sequence diagram
	Class diagram

	Implementation
	Spell-Checker
	Sentiment Analysis
	Text Summarization

	Result Analysis
	Spell-checker
	Sentiment Analysis
	Text Summarization
	Final analysis

	Conclusion
	Future work
	References

