
International Journal of Computer Applications (0975 8887)
Volume 97 - No. 21, July 2014

Design and Analysis of Distributed Embedded Systems
using AADL - Application to the Precision Time

Protocol

Mohamed Yassin Chkouri
National School of Applied Sciences

2222 M hannech II
93 000 Tetouan - Morocco

Marius Bozga
Verimag, Centre Equation

2, avenue de Vignate
38610 GIERES - France

ABSTRACT

Prototyping distributed embedded system can be seen as a collec-
tion of many requirements covering many domains. System de-
signers and developers need to describe both functional and non-
functional requirements. Building distributed systems is a very te-
dious task since the application has to be verifiable and analyzable.
Architecture Analysis and Design Language (AADL) provides ad-
equate syntax and semantics to express and support distributed em-
bedded systems.
This paper studies a general methodology for translating AADL
thread component depending on the thread implementation into the
BIP (Behavior Interaction Priority) language and for prototyping
distributed applications using the Precision Time Protocol (PTP)
for building and translating AADL systems into a distributed appli-
cation using network communication protocol. This allows simula-
tion of systems specified in AADL to fully assess system viability,
to refine and to correct the behavior of the system using the BIP
(Behavior Interaction Priority) toolset.

Keywords:
Architecture Analysis and Design Language, Modeling, Dis-
tributed Embedded System, Model Transformation, Simulation,
Validation

1. INTRODUCTION
Building distributed embedded systems requires a stringent
methodology and involves many tightly coupled steps, from early
requirements capture (number of tasks, their interactions, non-
functional attributes) to validation (feasibility of scheduling) down
to implementation and testing. Prototyping distributed applications
can be extremely useful in evaluating a design, and also in under-
standing the effect of different parameters on the performance of
an application.
Designing distributed systems is an extremely complex task and
demands more attention and rigorous methodology. The produced
distributed systems have to conform to many stringent functional
and non-functional requirements from multiple contexts such as

space, avionics, etc. Ensuring all requirements and features be-
comes very hard if the whole system is hand-coded. Thus, the ap-
plication code should preferably be generated automatically from a
verifiable and analyzable model. This facilitates the work of devel-
opers, helps during the stage of code verification and speed up the
development cycle. Besides, constructing a verifiable model from
the application model using model transformation is simpler and
safer than constructing this model from source code.
Architecture Description Languages (ADLs) have been proposed
to support the development process of embedded real-time and dis-
tributed applications. Among the ADLs, AADL [2] is the Archi-
tecture Analysis and Design Language that allows the modeling of
distributed, real-time and embedded systems. AADL was first in-
troduced to model the software and hardware architectures in the
avionics domain. AADL can be seen as a collection of many re-
quirements covering many domains. System designers and devel-
opers need to describe both functional and non-functional require-
ments. These requirements must then be sorted and enforced at the
deployment level. We will present the set of requirements that must
be respected to build distributed systems.
We have shown in previous work [13, 12], how AADL systems can
be automatically translated into BIP [6] (Behavior Interaction Pri-
ority), and analyzed using the BIP toolset. BIP is a language for
the description and composition of components as well as asso-
ciated tools for analyzing models and generating code on a dedi-
cated middleware. The language provides a powerful mechanism
for structuring interactions involving rendezvous and broadcast.
The model construction methodology applied to AADL models
opens the way for enhanced analysis and early error detection by
using BIP verification techniques. Once the model has been gen-
erated, three model checking techniques for verification can be ap-
plied: Model checking by Aldebaran [9], model checking with ob-
server and D-Finder tool [8].
In this paper, we present a general methodology for translating
AADL thread component that represents the most important part
in the AADL architecture depending on the thread implementa-
tion behavior. The result of this study must take into account four
cases: thread without implementation, thread containing a sequence
of subprograms calls, behavior of thread described in the external
file and thread behavior using the annex behavior [1]. We present
also the translation to prototype distributed applications using BIP

1

International Journal of Computer Applications (0975 8887)
Volume 97 - No. 21, July 2014

and network communication protocol. We begin with a model built
by the application designer, who maps its application entities onto
a hardware architecture. Then, we use AADL into BIP tool to gen-
erate BIP model conforming to AADL semantics. Finally, we use
a code generator to generate an executable model for each system
with communication protocol.
To illustrate the translation from distributed AADL systems into
BIP, we use Precision Time Protocol (PTP) as a case study. Based
on our experience, we use the AADL to model PTP and its transla-
tion into BIP. This translation allows the simulation of distributed
systems and the application of formal verification techniques, e.g.,
verification of properties, deadlock detection, etc. Using our tool,
we were able to run, to debug and evaluate the case study in a na-
tive platform (PC) before deploying it on a distributed embedded
platform.
Code generation of distributed embedded applications from models
is not limited to AADL. In fact, distributed and high-integrity sys-
tems are probably the domain which has the most maturity. OCA-
RINA [15] allows model manipulation, generation of formal mod-
els to perform scheduling analysis and generate distributed applica-
tions. OCARINA allows code generation from AADL descriptions
to Ada. PolyORB [18] is a middleware toolset that provides distri-
bution services through standard programming interfaces and com-
munication protocols. However, the generated code from AADL
does not take into account the annex behavior specifications [1].
This paper is organized as follows. Section 2 gives an overview of
AADL. In Section 3, we explain the translation of the thread com-
ponent depending on four cases and how to translate AADL sys-
tems into a distributed application using network communication
protocol. In Section 4, we present a PTP case study and its deploy-
ment into a distributed application. Conclusions close the article in
Section 5.

2. OVERVIEW OF AADL
2.1 Generalities
The SAE Architecture Analysis & Design Language (AADL) [2]
is a textual and graphical language used to design and analyze the
software and hardware architecture of performance-critical real-
time systems. It plays a central role in several projects such as Top-
cased [4], OSATE [3], etc.
A system modeled in AADL consists of application software
mapped to an execution platform. Data, subprograms, threads,
and processes collectively represent application software. They are
called software components. Processor, memory, bus, and device
collectively represent the execution platform. They are called exe-
cution platform components. Execution platform components sup-
port the execution of threads, the storage of data and code, and
the communication between threads. Systems are called composi-
tional components. They permit software and execution platform
components to be organized into hierarchical structures with well-
defined interfaces. Operating systems may be represented either as
properties of the execution platform or can be modeled as software
components.

2.2 AADL Components
2.2.1 Software Components. AADL has the following categories
of software components: subprogram, data, thread and process.
A subprogram component represents an execution entry-point in
the source text. Subprograms can be called from threads and from
other subprograms. These calls are handled sequentially by the
threads. The data component type represents a data type in the

source text that defines a representation and interpretation for in-
stances of data. A thread represents a sequential flow of control that
executes instructions within a binary image produced from source
text. A thread always executes within a process. A scheduler man-
ages the execution of a thread. A process represents a virtual ad-
dress space. Process components are an abstraction of software re-
sponsible for executing threads.

2.2.2 Hardware Components. Execution platform components
represent hardware and software that is capable of scheduling
threads, interfacing with an external environment, and performing
communication for application system connections.
AADL processor components are an abstraction of hardware and
software that is responsible for scheduling and executing threads. In
other words, a processor may include functionality provided by op-
erating systems. A device component represents an execution plat-
form component that interfaces with the external environment. A
device can interact with application software components through
their ports. A bus components are used to describe all kinds of net-
works, buses, etc. A Memory components are used to represent any
storage device: RAM, hard disk, etc.

2.2.3 Systems Component. A system is the toplevel component
of the AADL hierarchy of components. A system component rep-
resents a composite component as an assembly of software and ex-
ecution platform components. All subcomponents of a system are
considered to be contained in that system.

2.3 Connections
A connection is a linkage that represents communication of data
and control between components. This can be the transmission
of control and data between ports of different threads or between
threads and processor or device components. We gave more details
about the connection types and how to translated into BIP in previ-
ous work [11].

2.4 Annex Behavior Specification
Behavior specifications [1] can be attached to AADL model ele-
ments using an annex. The behavioral annex describes a transition
system attached to subprograms and threads. Behavioral specifica-
tions are defined by the following elements:

—State variables section declares typed identifiers. They must be
initialized in the initialization section.

—States section declares automaton states.
—Transitions section defines transitions from a source state to a

destination state. The transition can be guarded with events or
boolean conditions. An action part can be attached to a transition.

3. FROM AADL TO DISTRIBUTED
IMPLEMENTATION USING BIP

3.1 The BIP Component Framework
BIP (Behavior Interaction Priority) is a framework for modeling
heterogeneous real-time components [6]. The BIP framework con-
sists of a language and a toolset including a frontend for editing and
parsing BIP programs and a dedicated platform for model valida-
tion. The platform consists of an Engine and software infrastructure
for executing models. It allows state space exploration and provides
access to model-checking tools of the IF toolset [10] such as Alde-
baran [9], as well as the D-Finder tool [8]. This permits to validate

2

International Journal of Computer Applications (0975 8887)
Volume 97 - No. 21, July 2014

Fig. 1. Generation of the BIP application

BIP models and ensure that they meet properties such as deadlock-
freedom, state invariants and schedulability. The BIP language al-
lows hierarchical construction [14] of composite components from
atomic ones by using connectors and priorities. Several case studies
were carried out such as an MPEG4 encoder [17], TinyOS [7], and
DALA [5].

3.2 Transformation from AADL to BIP
The AADL models are transformed into BIP automatically by us-
ing our AADL to BIP translation tool described in [12, 13]. Fig-
ure 1 shows the generation of an application from an AADL de-
scription that consists of translating AADL constructions by adding
the behavior descriptions to BIP.
The model construction methodology applied to AADL models
opens the way for enhanced analysis and early error detection by
using BIP verification techniques. Once the model has been gen-
erated, three model checking techniques for verification can be ap-
plied:

3.2.1 D-Finder. is an interactive tool for checking deadlock-
freedom for component-based systems by using a static analysis
method. It takes as input BIP programs and applies proof strate-
gies to eliminate potential deadlocks by computing increasingly
stronger deadlocks.

3.2.2 Model checking by Aldebaran. The second technique of
verification is model-checking by using the tool Aldebaran [9]. Ex-
haustive exploration by the BIP exploration engine generates a La-
beled Transition System (LTS) which can be analyzed by model
checking. For example, Aldebaran takes as input the LTS gener-
ated from BIP and checks for deadlock-freedom and other temporal
properties.

3.2.3 Model checking with observers. The third technique of ver-
ification is by using BIP observers to express and check require-
ments. Observers allow us to express in a much simple manner
most safety requirements. We apply this technique to verify some
properties as verification of communication, and verification of
thread deadline.

3.2.4 Simulation & Debugging. In addition to the verification,
we can simulate or test prototype implementations by creating an
executable system. We can use an interactive simulation and de-
bugger to verify each interaction step by step and to know which

Fig. 2. BIP model for thread behavior

state or port is activated. These analysis allow to fully assess system
viability, to refine and to correct the behavior of the system.

3.2.5 Code generator. The code generator takes as input a
model, generated by the parser, and transforms it to a C++ appli-
cation code. The application is an executable model of the original
BIP program. Code is generated for each atomic component, con-
nectors and priorities, i.e., the code is modular and preserves the
structure of the initial model.

3.3 Translation of Thread Component into BIP
In this paper we present the translation of thread component that
represents the principal component in the AADL architecture into
BIP. This translation is the result of our study about this component.
To have a complete translation of the thread component and to be
able to use threads in larger domains, we must take into account
four main cases of the threads implementation :

(1) without the implementation ;
(2) contains a sequence of subprograms calls ;
(3) contains annex behavior specification ;
(4) reference to a C/C++ file containing the behavior description.

The aim of this study about the thread behavior is to define general
rules concerning the BIP code generation from AADL descriptions
and the implementation of descriptions provided by the user.
An AADL thread is modelled in BIP by an atomic component as
shown in Figure 2. The initial state of the thread is HALTED. On an
interaction through port load the thread is initialized. Once initial-
ization is completed the thread enters the READY state, if the thread
is ready for an interaction through the port req exec. Otherwise, it
enters the SUSPENDED state. When the thread is in the SUSPENDED
state it cannot be dispatched for execution.
When in the SUSPENDED state, the thread is waiting for an event
and/or period to be activated depending on the thread dispatch pro-
tocol (periodic, aperiodic, sporadic). In the READY state, a thread is
waiting to be dispatched through an interaction in the port get exec.
When dispatched, it enters the state COMPUTE to make a compu-
tation. Upon successful completion of the computation, the thread
goes to the OUTPUTS state. If there are some out ports to dispatch
the thread returns to the OUTPUTS state. otherwise, it enters the
FINISH state.

3

International Journal of Computer Applications (0975 8887)
Volume 97 - No. 21, July 2014

Fig. 3. Function call for the external file

The thread may be requested to enter its HALTED state through a
port stop after completing the execution of a dispatch. A thread
may also enter the thread HALTED state immediately through an
abort port.
A thread without implementation provides no information about its
internal structure. It is a type that has no implementation, or with
empty behavior. So, they are non computation in the state COM-
PUTE. The translation of the AADL thread into BIP is shown in
Figure 2.

3.3.1 Reference to an external file . In this case, the thread imple-
mentation is described in the external file using C/C++ program-
ming language. The implementation is associated with the thread
using AADL standard properties: Source Name, Source Text and
Source Language as defined in the AADL standard.
The translation into BIP must link with the source code that the
user must provide by matching the parameters. The user must write
the source code implementation as a procedure or a function whose
signature matches as described in AADL. The types of used data
correspond to the types generated from the AADL data component.
Figure 3 shows the translation of this case by replacing the state
Compute in the Figure 2 by this one.
Figure 4 gives an example of AADL thread, called Sunseekerplant,
it takes as input the float type Controllerinput and produce as output
the float type Controllerinput. The implementation of the thread
Sunseekerplant is described in an external C file. It uses a function
user sunseekerplant in the file sunseekerplant.c.

thread Sunseekerplant
features

Controllerinput : in parameter Behavior::float;
Outputfeedback : out parameter Behavior::float;

end Sunseekerplant;

thread implementation Sunseekerplant.Beacon
properties

Source Language ⇒ C;
Source Name ⇒ ” user sunseekerplant ”;
Source Texe ⇒ ” sunseekerplant.c ”;

end Sunseekerplant.Beacon;

Fig. 4. Example of thread using external file as behavior

Figure 5 corresponds to the translation of the AADL thread to
BIP. The link to the external file is described by a function call
by matching the parameters of the thread during a transition from
state COMPUTE to the state OUTPUTS through an interaction.

3.3.2 Using annex behavior specification . The implementation
of thread behavior is described in this case by using the annex be-
havior specification [1]. The translation of AADL thread to BIP
using behavior annex is described in Figure 6. As the figure shows,
the behavior is always connected to the state COMPUTE to allow
it to interact on the port preempt to access on the state RESUME.

atomic type Sunseekerplant Beacon
data float Controllerinput
data float Outputfeedback
export port floatPort call(Controllerinput)
export port floatPort return(Outputfeedback)
// Declaration of the ports
port aadllib.Port compute()
...
// Declaration of the Places
place IDLE
place RETURN
place COMPUTE
...
initial to IDLE
...
on compute

from COMPUTE to OUTPUTS
do

{ #
user sunseekerplant(Controllerinput,
& Outputfeedback);
}

...
end

Fig. 5. Translation of the AADL thread to BIP

Fig. 6. BIP model for annex behavior

3.3.3 Using sequence of subprograms calls . In this case, we con-
sider that the behavior of the thread consists of executing the call
sequence of subprograms. A call to the subprograms in the AADL
thread implementation is modeled in BIP as shown in Figure 7.
This figure shows that the thread calls a subprogram through the
port call, which expresses the call and send of the parameters to the
subprogram and the return port expresses the end of the execution
and the return of the parameters of the subprogram.

3.4 Prototyping Distributed Implementation
Building distributed systems is a very tedious task since the appli-
cation has to be verifiable and statically analyzable. The AADL fits
these two requirements and allows the designer to describe different
aspects of his distributed application (number of processors, num-
ber of threads in each processors, connection between threads...).
We begin with a model built by the application designer, who maps
his application entities onto a hardware architecture. Then, we use
AADL into BIP tool to generate BIP model conforming to AADL
semantics. Finally, this architecture is tested for soundness, any

4

International Journal of Computer Applications (0975 8887)
Volume 97 - No. 21, July 2014

Fig. 7. BIP model for subprograms calls

Fig. 8. Deployment

mismatch in the application is reported by the analysis BIP tool
chain.
AADL is expressive enough to detail the deployment view of the
application: threads, processors, buses, threads on each process;
properties refine the type of tasks (periodicity, priority), and their
associated implementation. We defined our distribution model as
a set of sender/receiver. It is supported by an AADL architectural
model that defines the location of each system and the payload of
the message exchanged as a thread-port name plus possible addi-
tional data.
Figure 8 shows the steps for generating from a distributed AADL
system’s description an executable distributed application as fol-
lows:

(1) Identify each system and a connector’s mapped to the bus.
(2) Generate for each AADL system its corresponding description

in BIP, and for each connector’s mapped to the bus a commu-
nication protocol.

(3) Compile BIP system and generate an executable for each sys-
tem with communication protocol.

(4) Run and debug the distributed application.

Our protocol supports communication between two or more com-
puters. It provides a full-duplex communication channel between

processes that do not necessarily run on the same computer. We
consider channels for data exchange among multiple threads in one
or more processes are managed by the BIP Engine, if processes
are running on one computer. Otherwise, if processes are running
on different computers connected by a network, we use a network
communication protocol. Before sending data through network to a
server, we initially convert into encoded version before being trans-
ported (suitable for network transfer). After receiving data (Server
side), it can be converted back.
Most network communication protocols use the client server
model. These terms refer to the two machines which will be com-
municating with each other. One of the two machines, the client,
connects to the other machine, the server, typically to make a re-
quest for information. Notice that the client needs to know of the
existence of and the address of the server, but the server does not
need to know the address of the client prior to the connection being
established.
Our protocol uses sockets. Sockets are associated with the concept
of network communication in the form of client-server program-
ming; a pair of processes of which one will be a client and one
a server. The client process will send requests to the server. Of
course, when creating a socket, we have to specify the type of com-
munication that will be needed, since different modes of communi-
cation require different protocols.
The generated BIP code provides a framework that will directly call
user code when necessary. This allows a rapid and flexible design
of the distributed system and does not restrict the user implementa-
tions.

4. CASE STUDY
4.1 Precision Time Protocol
The Precision Time Protocol (PTP) [16] is a time-transfer protocol
defined in the IEEE 1588-2002 standard that allows precise syn-
chronization of networks (e.g., Ethernet). The goal of this protocol
is to have a set of slave devices determine the offset between time
measurements on their clocks and time measurements on a master
device.
In the protocol, the master device periodically launches an ex-
change of messages with slave devices to help each slave clock
recompute the offset between its clock and the master’s clock. This
offset will drift with time, and so these periodic exchanges mitigate
the impact of this drift on clock synchronization.
One assumption is that this exchange of messages happens over a
period of time so small that this offset can safely be considered
constant. Another assumption is that the transit time of a message
going from the master to a slave is equal to the transit time of a mes-
sage going from the slave to the master. Finally, it is assumed that
both the master and slave can measure the time they send or receive
a message. The degree to which these assumptions are enforced
in an application regulate the accuracy of the offset measured at a
slave device.
Synchronization messages are passed every two seconds to keep
network resource usage at a minimum. Figure 9 shows the commu-
nication steps between the master and slave as follows :

(1) In the so called Sync-Message, the master sends its current
time to the slave where a time stamp is generated exactly when
the message is received.

(2) The master then sends a follow-up message to the slave with
the exact time when the original sync-message had been sent.
The slave then corrects its local real-time clock to the clock of
the master.

5

International Journal of Computer Applications (0975 8887)
Volume 97 - No. 21, July 2014

Fig. 9. Precision Time Protocol

(3) In order to eliminate the real-time clock delay of the slave due
to the time it took the packet to travel over the network, the
slave sends a so called Delay-request message to the master
and notes the exact sending time.

(4) The master then replies with the time-stamp when the Delay-
request message was received. The slave can then compute the
exact time of the master clock and finalize the synchronization.

(5) Further statistical methods are used to constantly adjust the
real-time clock to correct for any residual fluctuations from the
physical layer, network, repeaters and switches.

4.2 Modeling a Precision Time Protocol using AADL
To model the Precision Time Protocol of Section 4.1 in AADL, we
consider what components the architecture consists of. Taking into
account that each master or slave has a specific function and inter-
face, and uses this interface to communicate, it seems reasonable to
model each part as a separate component.
AADL provides a component category to model the functionality
of a Master and Slave. However, we model each part as thread
component and data component declarations inside System com-
ponent. Threads in this model represent the interface of the Master
and Slave, data components represent formats defined in the proto-
cols (message containing time value). Threads model the services
offeral by each part, i.e., they allow to send and receive messages
from network entities for each period.
As described in Section 4.1, Master sends Sync, Follow Up and
delay resp messages, and receives delay req message. The repre-
sentation of Master thread interface is shown in Figure 4.2.
AADL process components model space partitions in terms of vir-
tual address spaces containing source text that forms complete pro-
grams as defined in the applicable programming language standard,
they must contain at least one thread. The representation of Mas-
ter process interface and connections between thread is shown in
Figure 10.
Along with the structural properties, we modeled behavioral prop-
erties of the PTP. The behavior of the Master thread is modeled by
means of annex behavior specification. Figure 12 shows the part

thread Master
features

Sync : out data port integer;
Follow Up : out data port integer;
Delay Req : in data port integer;
Delay Resp : out data port integer;

properties
Dispatch protocol=>Periodic;
Period => 200ms;

end Master;

Fig. 10. AADL model of Master

process Master
features

Sync : out data port integer;
Follow Up : out data port integer;
Delay Req : in data port integer;
Delay Resp : out data port integer;

end Master;

process implementation Master.impl
subcomponent

M : thread Master;
connections

data port M.Sync->Sync;
data port M.Follow Up->Follow Up;
data port Delay Req->M.Delay Req;
data port M.Delay Resp->Delay Resp;

end Master.impl;

Fig. 11. Software Model of Master

of the behavioral specification of the Master thread, that contains
states and transitions. For each transition the thread can send or re-
ceive the data. The data tm represents the drifting clock, t1 and t4
represents the timestamps.

thread implementation Master.Impl
annex behavior specification {**

states
SYNC : initial state;
FOLLOW : state;
REQ : state;
RESP : state;

transitions
SYNC -[]-> FOLLOW { t1:= tm; Sync!(); };
FOLLOW -[]-> REQ { Follow Up!(t1); };
REQ -[]-> RESP { t4:= tm; Delay Req?(); };
RESP -[]-> SYNC { Delay Resp!(t4); };

**};
end Master.Impl;

Fig. 12. Behavioral Specification of Master

The behavior of the Slave thread is modeled by using the annex be-
havior specification. In Figure 13 we provide a model of the Slave
thread behavior. The data ts represents the drifting clock, t1, t2, t3,
t4 represents the timestamps and o represents the offset.

6

International Journal of Computer Applications (0975 8887)
Volume 97 - No. 21, July 2014

thread implementation Slave.Impl
annex behavior specification {**

states
SYNC : initial state;
FOLLOW : state;
REQ : state;
RESP : state;

transitions
SYNC -[]-> FOLLOW { t2:= ts; Sync?(); };
FOLLOW -[]-> REQ { Follow Up?(t1); };
REQ -[]-> RESP { t3:= t4; Delay Req!(); };
RESP -[]-> SYNC { Delay Resp?(t4);

o := (t2 + t3 - t1 -t4)/2;
ts = ts - o; };

**};
end Slave.Impl;

Fig. 13. Behavioral Specification of Slave

Figure 14 shows the software and hardware view of our case study.
This model gathers typical elements from distributed systems, with
a set of periodic tasks devoted to the processing of incoming orders.
These two entities work at the same rates and should all respect
their deadlines.
The software part represents how the processing is distributed onto
different entities (threads) and gathered as AADL processes to form
partitions. The next step is to map this part onto a physical hard-
ware, so that processor resources can be associated to each process.
The graphical representation of the deployment view of the system
shows the global architecture of the application (number of pro-
cesses and their mapping to hardware components). It indicates that
each process is bound to a specific processor and how the commu-
nication between processors occurs, using different buses. In this
case we use one bus that binds connections.
These two parts are expressed using the same modeling notation.
They can be merged to form the complete system: interacting en-
tities in the software part represent the processing logic of the sys-
tem, whereas the hardware part completes the system deployment
information by allocating resources.
Our PTP case study is built by creating software component and
mapping entities onto a hardware architecture. The flexibility of
AADL allows us to partially define components and use them in
other components. This is very useful during the first steps of pro-
totyping where every detail of the system is not yet clear. Details
can be added to these components either by means of AADL prop-
erties or by component extension, without having to redefine all
other components. PTP can be applied to more than one slave, in
our case we consider one slave to keep the architecture clear.

4.3 Validation
The AADL model of the Precision Time Protocol System is trans-
formed into BIP automatically by using our AADL to BIP transla-
tion tool. The generation of BIP code helps us to rapidly prototype
the PTP case study and make it to a distributed application using
our communication protocol between each partition. The prototype
helped us to analyze the case study in a native platform in order
to easily debug and evaluate it before running it on an embedded
platform.
The separation between software and hardware in AADL allows
the programmer to model all the software parts of his application
and test it with a native platform (generally a PC). If the tests are

Fig. 14. Precision Time Protocol System

AADL BIP
Master Slave

Components 10 6 6
Connectors 12 12 12

Lines of code 200 170 150

Fig. 15. Comparison between AADL & BIP

successful, the same software part can be reused with the actual
hardware AADL.
In the PTP case study, we generate for each AADL partition
mapped to the processor, its corresponding description in BIP, and
for each connection mapped to the bus a network communication
protocol (sender/receiver). We compile BIP partitions and we gen-
erate an executable model. Then, we put every executable in the
native platform (PC). First, we launch a receiver executable and
then the sender executable. When the network protocol communi-
cation is initialized between the sender and receiver, the exchange
of data is started.
Once the executable model has been launched, interactive simula-
tion and debugging is useful for understanding the working of the
distributed application. This helped us to verify each interaction
step by step, to know which state or port is activated, and to see the
value of data received/sender.
Figure 15 summarizes the size of lines of code, number of com-
ponents and connectors in AADL and respectively the BIP code
for the PTP case study. We split the BIP in two parts because we
generate for each Master or Slave components a corresponding BIP
description system.
In addition, we use BIP observer to express and check require-
ments. Observers allow us to express in a much simple manner
most safety requirements. We apply this technique to verify two
properties:

• Thread deadline: If the execution time of a thread exceeds its
deadline the observer moves to an error state.

• Synchronisation between the Master and Slave: we use the BIP
atomic component named Observer as shown in Figure 16 to ver-
ify the communication media. The role of this component is to
control the communication between the Master and Slave com-
ponents. The Observer component contains states to enforce the
synchronization before moving to the next one. The initial state
of the Observer is M SYNC, when the Master thread is ready,
the synchronization can take place through an interaction on the

7

International Journal of Computer Applications (0975 8887)
Volume 97 - No. 21, July 2014

port M Sync. In the state S SYNC, the Observer component are
waiting the synchronization with the Slave thread through an in-
teraction on the port S Sync. For example, if the matser send Fol-
low Up message and send a Delay resp message without receiv-
ing the Delay Req message the Observer moves to an error state.

These analysis allow to fully assess system viability, to refine and
to correct the behavior of a system.

Fig. 16. Observer model in BIP

5. CONCLUSION
Prototyping distributed applications can be extremely useful in
evaluating a design, and also in understanding the effect of differ-
ent parameters on the performance of an application. We selected
the Architecture Analysis and Design Language that provide ade-
quate syntax and semantics to express and support distributed em-
bedded systems. In this paper, we proposed a general methodology
for translating AADL thread component depending on the thread
implementation into the BIP language. We proposed also a general
methodology for prototyping distributed applications using the Pre-
cision Time Protocol (PTP). In addition, we modeled and translated
the case study from AADL into BIP. The executable application is
tested and analyzed for soundness, any mismatch in the application
is reported by the analysis BIP tool chain.
In the future we are working on the real-time clocks. This will al-
low real-time distributed algorithms to be implemented, and timing
properties to be studied.

6. REFERENCES
[1] Annex Behavior Specification SAE AS5506.
[2] SAE. Architecture Analysis & Design Language (stan-

dard SAE AS5506), September 2004, available at
http://www.sae.org.

[3] SEI. Open Source AADL Tool Environment.
http://la.sei.cmu.edu/aadlinfosite/ OpenSourceAADL-
ToolEnvironment.html.

[4] TOPCASED: http://www.topcased.org/.
[5] A. Basu, S. Bensalem, M. Gallien, F. Ingrand, C. Lesire, T.H.

Nguyen, and J. Sifakis. Incremental component-based con-
struction and verification of a robotic system. In Proceedings
of ECAI’08, Patras, Greece, 2008.

[6] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous
real-time components in bip. In Proceedings of SEFM ’06,
Pune, India, pages 3–12. IEEE Computer Society, 2006.

[7] A. Basu, L. Mounier, M. Poulhiès, J. Pulou, and J. Sifakis.
Using bip for modeling and verification of networked systems
– a case study on tinyos-based networks. In Proceedings of
NCA’07, Cambridge, MA USA, pages 257–260, 2007.

[8] S. Bensalem, M. Bozga, J. Sifakis, and T.H. Nguyen. Com-
positional verification for component-based systems and ap-
plication. In Proceedings of ATVA’08, Seoul, South Korea,
2008.

[9] M. Bozga, J-C. Fernandez, A. Kerbrat, and L. Mounier. Proto-
col verification with the aldebaran toolset. STTT, 1:166–183,
1997.

[10] M. Bozga, S. Graf, Il. Ober, Iul. Ober, and J. Sifakis. The if
toolset. In Proceedings of SFM’04, Bertinoro, Italy, volume
3185 of LNCS, pages 237–267.

[11] Mohamed Yassin Chkouri and Marius Bozga. Determinis-
tic data flow communication in aadl. In Proceedings of the
2009 International Conference on Embedded Software and
Systems, ICESS ’09, pages 93–100. IEEE Computer Society,
2009.

[12] M.Y. Chkouri. Modeling of real-time embedded systems using
AADL for the automatic generation of applications formally
verified. PhD thesis, VERIMAG- University Joseph Fourier,
2010.

[13] M.Y. Chkouri, A. Robert, M. Bozga, and J. Sifakis. Translat-
ing AADL into BIP - Application to the Verification of Real-
Time Systems. In Models in Software Engineering: Work-
shops and Symposia at MODELS 2008, Toulouse, France,
September 28 - October 3, 2008., pages 5–19.

[14] J. Sifakis G. Gossler. Composition for component-based
modeling. Science of Computer Programming, 55:161–183,
March 2005.

[15] J. Hugues, B. Zalila, L. Pautet, and F. Kordon. Rapid Pro-
totyping of Distributed Real-Time Embedded Systems Using
the AADL and Ocarina. In Proceedings of the 18th IEEE In-
ternational Workshop on Rapid System Prototyping (RSP’07),
pages 106–112, Porto Alegre, Brazil, May 2007. IEEE Com-
puter Society Press.

[16] Kang Lee and John Eidson. Ieee-1588 standard for a precision
clock synchronization protocol for networked measurement
and control systems. In In 34 th Annual Precise Time and
Time Interval (PTTI) Meeting, pages 98–105, 2002.

[17] M. Poulhiès, J. Pulou, C. Rippert, and J. Sifakis. A methodol-
ogy and supporting tools for the development of component-
based embedded systems. In 13th Monterey Workshop, Paris,
France, volume 4888 of LNCS, pages 75–96, 2006.

[18] T. Vergnaud, J. Hugues, L. Pautet, and F. Kordon. Poly-
ORB: a schizophrenic middleware to build versatile reliable
distributed applications. In Proceedings of the 9th Inter-
national Conference on Reliable Software Techologies Ada-
Europe 2004, volume LNCS 3063, pages 106 – 119, Palma
de Mallorca, Spain, Jun.

8

