
International Journal of Computer Applications (0975 – 8887)

Volume 97– No.17, July 2014

42

SFL Algorithm for QoS-based Cloud Service

Composition

Ali Younes

Abdelmalek Essaadi University
Tetouan, Morocco

Mohamed Essaaidi
Abdelmalek Essaadi University

Tetouan, Morocco

Ahmed El Moussaoui
Abdelmalek Essaadi University

Tetouan, Morocco

ABSTRACT

With the advent of cloud service-based applications and

Software as a Service (SaaS), new applications have recently

known an increasing use of service-oriented architecture

(SOA). This model has allowed computer science and

associated industries to build new customized applications, by

using the available and the existing cloud services bridged

together dynamically to form a complex workflow process

with more functionalities. However cloud services with

similar and compatible functionalities may be offered by

multiple providers but may also be offered at different QoS

levels. Hence, to build a composite service with a high QoS, a

decision should be made based on end-to-end QoS. This work

proposes a new approach, for QoS-aware cloud service

composition, which addresses a universal model, with end-to-

end QoS. It also proposes an effective evolutionary method

based on Shuffled Frog Leaping Algorithm (SFLA), which is

satisfying global and local constraints. Therefore, in order to

evaluate the robustness of the proposed approach, we have

evaluated the impact of several parameters that are highly

significant in evolutionary methods, such as the impact of the

population size, number of candidate services per task and

number of criteria. The experimental results show that the

chosen algorithm performs better than the ones based on

Genetic Algorithm (GA).

Keywords

Cloud services composition, QoS optimization, SFLA, GA.

1. INTRODUCTION
With the adoption of service oriented architecture (SOA)

paradigm and the concept of Software as a Service (SaaS),

cloud resources have been encapsulated as “services” in the

form of virtualized resources, which are offered through many

middleware infrastructures in the Internet [1], [2]. Hence, it

has enabled building new dynamic and flexible applications

by invoking and integrating the existing services hosted by

multiple providers to form a complex workflow process with

more functionality. As users require more precise and

accurate results in a short time with a high Quality of Service

(QoS), the QoS factor is used to state the quality of services

by service providers, which refer to the nonfunctional

properties of service, such as price, response time,

availability, reputation, security and so on[3].

However, a single service can provide valuable functionalities

for consumers, but most of the time, a single concrete service

cannot satisfy them individually [1]. In this case, a

composition process is requested to build a new service by

using the available services bridged together that satisfy

consumers’ requirements, called “composite service”.

Therefore, many standards and models [5], [6] such as BPEL

workflow and IA Planner are proposed which provide tools to

design workflows process. A major limitation of these models

is that they take into account only the functional control

dependencies among tasks regardless of others aspects, such

as Quality of Service (QoS).

When cloud infrastructures are used in public, multiple

providers offer virtual resources and services often with

similar and compatible functionality, but may also be offered

at different QoS levels [4]. Therefore, especially in

applications with online service customers, QoS-based service

composition needs to be performed in a short time, and

decision must be made based on end-to-end QoS.

The problem of QoS-based service composition, aims to

choose in each task one service from all candidate services,

hosted by multiple providers that can perform the functional

requirement for this task, and maximizes the overlay utility

value of the composite service. The selection of service from

each task with the highest utility value does not provide a

correct solution, due to the fact that this selection does not

guarantee that all the end-to-end QoS are maximized. Hence,

different combinations from each task need to be considered.

Therefore, this work, suggests a new model for composition

process, which defines a new software component called

“virtual service” that inherits all its parameters (functional and

non-functional) from one single atomic service or from a set

of atomic services, according to functional composition

requirements. Next, in order to address the general case of the

composition, a composition graph with non-identical tasks is

represented which is defined by a composition matrix. Later

on, we are going to scrutinize an approach based on Genetic

Algorithm (GA) proposed in [7], which will be compared to

the proposed approach based on Shuffled Frog Leaping

Algorithm (SFLA).

The paper is organized as follows. Section 2 discusses the

related work in this field. Section 3 gives an overview about

existing composition models, with a focus on different

composition structures and the QoS parameters. Section 4,

describes our model, and gives the QoS computation for

virtual service and composition process. Problem

formulations and descriptions of the algorithms are presented

in section 5. Section 6 shows the experimental evaluation and

the comparison of different algorithms. We end by section 7

giving our conclusions on this work.

2. RELATED WORKS
The number of papers dedicated to this subject reflects a real

vitality on this area of research. Various approaches have been

proposed. Most of them try to improve the existing techniques

used within the framework of web services orchestration like

BPEL workflow or IA Planner [1] [3], [4]. Other methods [9],

[12], [13], focus on semantic similarities between services

parameters but it deal only with aspects of the functional

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.17, July 2014

43

composition. However, other approaches such as [12],[13],

[14], propose the computation of QoS-aware service

composition by considering their similarities on the semantic

level of links, they were focused on computation of QoS-

aware web service composition and different techniques were

proposed to handle the optimization of multi-path

compositions. For example, in [13] an integer programming

(IP) is proposed to solve multi criteria decision making

MCDM problem, whereas method [14] resolves similar

problems by using Fuzzy-MADM technique. In the same line

the work [12] extends the linear programming model to

include local constraints.

Linear programming methods suffer from poor scalability due

to the exponential time of computation. Therefore, heuristic

algorithms are applied to efficiently find a near-to-optimal

solution in a reasonable tradeoff of computation time and

problem size. Hence, the work in [7], proposes a heuristic

technique based on a genetic algorithm to resolve the QoS-

based service composition, which introduces interesting

modifications, whether in crossover, mutation and selection

phases in order to escape from local optimums and to expedite

algorithm to deliver results in a timely manner. Otherwise,

methods [18] and [19], propose a solution based on the

genetic algorithm, within which Tabu search is used to

generate neighbor plans and simulated annealing is applied for

accepting or refusing the neighbor plan. Method [17] proposes

a combination of the ant colony algorithm and the genetic

algorithm, which transforms the problem of selecting optimal

execution path for composite web service into a selection of

the optimal path in the weighted directed acyclic graph. The

work [7] has modeled the problem using the combinatorial

model and the graph model. The combinatorial model defines

the problem as a multidimensional multi-choice 0-1 knapsack

problem (MMKP), and the graph model defines the problem

as a multi-constraint optimal path (MCOP) problem, and then,

proposes two heuristics algorithms to solve the problem.

Others works [6] [19], [20] propose end-to-end QoS

optimization computation assuming that a certain path will be

better executed than others according to the probability of

paths execution. For example method [6], proposes a

universal model coupled with a branch and bound algorithm,

but the convergence of the algorithm is not always possible.

Also, the authors in [9], propose a universal QoS model for

service composition, which develops a flexible constraint

satisfaction framework, and a utility function to build the

objective function, and in turn, propose a branch and bound-

based heuristic algorithm BB4EPS. Whereas, the work in

[16], proposes an approach based on skyline method, which

reduces the number of candidate services to be considered, in

order to effectively select the optimal services for the

composition. Whilst, [23] proposes a non-cooperative game-

based mathematical model to analyze the competitive

relationship between tasks, and an iterative algorithm that

converges to Nash-equilibrium is proposed.

This work proposes a new approach based on a universal

model, with end-to-end QoS, expected to deliver an optimal

solution in a shortest time while at the same time, satisfying

global and local constraints.

3. COMPOSITION MODELS
The composition or the aggregation of services is a process

that involves building new services called “composite

service”, by assembling existing services, offered by multiple

providers, in a workflow process. This process specifies

which services are to be invoked in what order and under

what preconditions. In composition process a “service” can be

“atomic service” or “composite service”. Composition can be

either static or dynamic [6].

A static composition uses atomic services in an unchangeable

way depending on the context of the customer [22]. However,

there are two main approaches for static composition

(orchestration and choreography).

Orchestration: A central coordinator composes a business

process of services and is responsible for invoking them and

forms a workflow. Common industry standard protocols for

service orchestration are:

- XLANG (XML Busines Process Langage) of Microsoft,

- BPML (Business Process Modeling Langage) of BPMI,

- BPEL4WS (Business Process Execution Langage for

Web Services), result of the grouping of IBM, Microsoft

and BEA, also called BPEL or XSBPEL.

Choreography: Equal parties take part in business

collaboration and communicate in a peer-to-peer model. There

is no central coordinator [22]. Instead there is a conversation

definition that determines the interactions between the

participants. Web Services Choreography Description

Language (WSCDL) is the corresponding protocol standard

which exists in theory but has not been adopted widely in the

industry. The common protocols found in the literature for

this type of static composition are:

- WSFL (Web Service Flow Langage) of IBM,

- WSCL(Web Service Conversation Langage) of Hewlett-

Packard,

- WSCI (Web Service Choregraphy Interface) of SUN.

However, this type of composition creates inflexible

applications, sometimes inappropriate with customer

requirements.

Dynamic composition it rather sought in applications with

online service customers, which its transactions should be

posted in real-time. The composition of services cannot be

predefined in advance and will be done at run time also. Most

of works [22] in this area, have generally formulated this issue

as a problem of discovery of the semantic connection between

services. Wherein race is to discover a semantic similarity

between the output parameters of first service and the input

parameters of next ones and most of them are limited to the

functional composition aspects.

3.1 Composition structures in a workflow
Independently of composition model (static or dynamic). The

composition process is in charge of building, in a workflow, a

new composite service, by using atomic services, offered by

multiple providers, and should be connected together by

different composition structures. Figure 1 shows a composite

service example, which demonstrate a brief scenario of a

composition process, which the service is followed by

and in XOR split composition structure (conditional), with

a probability of and respectively, service is followed

by either or in AND split structure (parallel), and

service is followed by in sequential structure, and

may be executed for at most times which represent a loop

structure.

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.17, July 2014

44

Fig 1: Composite service example

Therefore, we represent hereafter the most composition

structures widely considered in literature: Sequential, AND

split (fork), XOR split (conditional), Loop, AND join (Merge)

and XOR join (Trigger) as shown in Figure.2.

Fig 2: Composition structures in a workflow process

3.2 QoS requirement for cloud service
There are several QoS properties defined in standards

ISO8402 [10] and ITU E.800 [11], which refer to the

nonfunctional properties of services, such as price, response

time, availability, reputation, security and so on. They are

used to state the quality of services and marked by service

providers. In this work four QoS properties are considered.

Response Time, Cost, Reliability and Availability, are defined

as follows:

- Response Time (T): is the time interval from when the

service is requested and delivered to the user. It includes

the total processing time of the service.

- Cost (C): is the cost required to be paid by the customer

for the execution of the service. It is considered as an

important parameter because certain cloud services

cannot be accessed without paying for it and also these

Services are costly. The cost of a service is divided in

two parts: cost of transmission of request which is

omitted in practice, and cost of services.

- Reliability (R): is the measurement of the services that

correctly serve the users requests.

- Availability (A): is the probability that the service is

accessible.

4. SYSTEM MODEL
Let’s assume that each cloud service is described in one of the

existing semantic languages, such as WSDL-S (Web Service

Description Language-Semantics), SAWSDL (Semantic

Annotations for WSDL), OWL-S (Web Ontology Language

for Services) or WSMO (Web Service Modeling Ontology)

[5], [6].

Definition.1: A virtual service is an abstract software

component, which behaves as a uniform semantic service in a

given domain and inherits all its parameters (functional and

non-functional) from one atomic service or from a subset of

atomic services that can be connected together by one of the

composition structures such as (Fork, Loop, Conditional,…)

according to functional composition requirements.

For simplification reasons, we will be limited to define the

most important composition structures for commonly

used in the composition standards such as (WS-BPEL

workflow and IA Planner or BPML). Therefore, Figure 3

presents a simple view of generation of which can be

either:

- Identical : represented as a single atomic service,

- Loop : represented as l iteration of one single atomic

service,

- Parallel : represented as a set of atomic service

constructed to be executed at the same time,

- Conditional : Which the compositor chooses, at run

time, one atomic service from a set of atomic services

with a probability p, according to the functional

composition result. Where

Also, each virtual service records the relationship between its

atomic services (composition structure) and performs the

complex computations of its QoS parameters internally. Thus,

we get rid of managing the different possible combinations of

composition.

Fig 3: Generation of VS from concrete cloud services

Additionally, those virtual services are grouped, into multiple

subsets called tasks, according to their functional

composition. Each task is performed by the execution of one

single virtual service.

Definition.2: a task () is represented by a set of virtual

services which is performed by the execution of one single

virtual service that is ranged in this task. denotes

the qualified virtual service which can be selected to

accomplish the task.

Where, , is the number of tasks, ,

 is the number of candidates virtual services arranged in

the task ().

Definition.3: A composition matrix CM is a binary

matrix, constructed according to the functional composition

results, where is the number of composite services is and

is the number of tasks.

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.17, July 2014

45

Where,

If the task () is selected in the composite service

 , then otherwise .

Implicitly, each participates in a composite service it is

marked by
 . Therefore the graph of composition is done as

shown in Figure 4.

Fig 4: Composition graph example with non-identical

tasks

Thus, unlike most of the existing works, which represent the

composition process as a series of super classes (identical

tasks) [5], [7], [8], this graph represents a universal model,

based on a workflow of a series of non identical tasks. Those

are performed by the execution of one virtual service in each

task.

4.1 QoS Computation for a virtual service
This work is interested to make decision in order to select a

composite service with a high QoS. However, there are many

QoS parameters with non-uniform units and ranges

measurement, which can be used to evaluate cloud services.

Also, a QoS parameter may be positive or negative. The

values of positive parameters need to be maximized

(reputation and availability), whereas the values of negative

parameters need to be minimized (execution cost and response

time) [5], [6], [14]. According to these different descriptions,

Table.1 gives the QoS parameters computation for an

individual virtual service according to its structures and

QoS parameters.

Table 1. QoS Parameters Calculation Formulas for a

Virtual Service

Response time,

Execution cost

Identical

Loop

Parallel

(time)

Parallel

 (cost)

Conditional

Reputation,

Availability

Identical

Loop

Parallel

Conditional

Where, is an index of QoS parameters, which can be either

(execution cost, response time, Reputation or Availability).

And is the atomic service selected by , and

 , and is the total number of atomic services in

the system.

 , represents the probability in which is selected in

conditional structure by ,
 , and is the

number of atomic services that ranged in a parallel or

conditional .

4.2 QoS Computation for a composition

process
In order to unify the measurement of different QoS

parameters, the QoS values of need to be

normalized before calculating the comprehensive quality of

the composite service. A Max-Min normalization method is

adopted, eq(1) is applied for positive parameters (reputation

and availability) and eq(2) is applied for negative parameters

(execution cost and response time).

 And

 are, respectively, the minimum and

maximum values of the attribute of all virtual services.

A composition service is represented as “sequence of tasks” ,

implicitly sequence of
). The QoS values of

 are determined by the corresponding QoS values of its

virtual services that compose, which are selected at different

tasks in a sequence model of composition. Therefore, by using

the binary composition matrix presented previously and the

normalized values of
 , table 2 gives the formulas to

calculate QoS parameter values for a candidate composition

service as a sequence of virtual service [6], [8], and [14].

Table 2. Formulas to calculate QoS values of as

sequence of

Execution cost

Response time

Availability

Reputation

Where is the value of the binary composition matrix

which can be 0 or 1, and is the number of tasks that

compose the composite service , .

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.17, July 2014

46

5. APPROACH DESCRIPTION
Evidently, the selection of a virtual service to each task, with

a highest utility value does not provide a correct solution, due

to the fact that this selection does not guarantee that all the

end-to-end QoS are maximized. Hence, different

combinations of virtual services from each task need to be

considered. In effect, finding an optimal concretization of a

composite service is a Non-deterministic Polynomial-time

hard (NP-hard) problem which different strategies can be

adopted.

Therefore, the problem can be modeled by means of a fitness

function and by the global constraints imposed by users and

also by local constraints when choosing the candidate’s virtual

service in each task. However, the fitness function needs to

maximize some QoS parameters (e.g., Reputation,

Availability), while minimizing others (e.g., Response time,

Execution cost).

Suppose there are QoS parameters to be maximized and

QoS parameters to be minimized, the fitness function of a

composite service is defined by a weighted sum method

which can be formulated as:

Where and are the weights for each QoS

parameter, , and

 .

 and are the average and the standard deviation of QoS

values for all composite services.

The mathematical formulations of the QoS-based service

composition are as follows:

In the next subsections, we are going to investigate two

algorithms to find a composite service that maximizes end-to-

end QoS parameters. The first is based on a Genetic

Algorithm (GA) constructed by using the proposed approach

in [8] and the second is an improved algorithm based on

Shuffled Frog Leaping Algorithm (SFLA).

5.1 Genetic Algorithm
In this part we use the GA method proposed in [7]. Besides, in

order to address the general case and to align our model, some

adjustment and parameterization are added to this method.

Thus, each chromosome represents by a composite service

 (a potential solution of our problem). As shown in figure

5, each chromosome is defined by a set of items (tasks),

which are selected according to the binary value of the

composition matrix. Each task, in turn, contains an index to its

set of virtual services, which are candidates also to be selected

to perform this composite service.

Fig.5. Genotype encoding with participating tasks for each

composite service

At first, the virtual services candidates for each task are sorted

according to their local values by using eq (5).

Next step, 20% of all genomes are selected from 20% of best

virtual services that have high local value and 80% is selected

randomly, each chromosome is associated with the fitness

value, which is calculated based on the fitness function

defined by eq(3). Once chromosomes are defined as described

in Figure.5, they reproduced the population by performing

genetic operation such as crossover, selection and mutation,

exactly as presented in [7]. But, unlike what has been stated in

this method, the algorithm was modified so as to find the

values of utmost.

5.2 Shuffled Frog Leaping Algorithm
Shuffled frog leaping algorithm (SFLA), is introduced by

Eusuff and Lansey [15], is a meta-heuristic evolutionary

algorithm, it is inspired from mimicking the behavior of frogs

searching for food placed on separate stones haphazardly

positioned in a pond that has a maximum quantity of food

[22], [23]. SFLA is designed to seek a global optimal solution,

which combines the benefits of a gene-based Memetic

Algorithm (MA) and social behavior-based particle swarm

optimization (PSO).

SFLA is especially used for continuous optimization problem.

Nevertheless, it is adjusted by integrating crossover operations

analogous as in genetic algorithm [7]. The initial population in

SFLA consists of a set of frogs (candidate solutions) that is

partitioned into several groups (memeplexes). In each

memeplex, frogs perform a local search, conduct local

exploration of solution space. After a predefined number of

memetic evolution steps, the information’s are passed

between groups for interchange information’s in the shuffling

process. The local search and the shuffling process are carried

out alternatively until the convergence criterion is satisfied

[15].

Frogs representation is shown in figure 6, which each

individual frog represents a feasible solution (a composite

service), is encoded as a set of sequence of virtual services,

and each memeplex, is represented by group of sequence tasks

which we can performs a local search, and integrates

crossover operation. The crossover operation is performed, in

the same memeplex, according to a randomly selected

position, by combining the former part of a first task with the

latter part of another. Hence, the main parameterization and

adjustment of SFLA is described in figure 7.

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.17, July 2014

47

Fig. 6. Frogs and memeplexes representation

The initial population of SFLA is selected randomly from a

set of composite services
represents a set of frogs. Next, the frogs are sorted in a

descending order according to their fitness function by using

(3). Then, the entire population is divided into various groups,

 memeplexes, each containing frogs, . Each

memeplex performing a local search, within each memeplex,

the individual frogs hold ideas, which can be influenced by

the ideas of other frogs, and evolve through a process of

memetic evolution. In this process, the first frog goes to the

first memeplex, the second frog goes to the second memeplex,

frog goes to the memeplex, and frog

 goes to the first memeplex, and so on.

Within each memeplex (Local search), the frogs with the best

and the worst fitness are identified as and respectively.

Also, the frog with the global best fitness is identified as .

Then, an evolution process (crossover operation) is applied to

improve only the frog with the worst fitness in each cycle.

Accordingly, the position of the frog with the worst fitness is

adjusted as follows:

Change in frog position

New position

Where is a random number between 0 and 1,
 Di Dmin , and Dmax is the maximum allowed change in a

frog’s position. If this process produces a better solution

(frog), it replaces the worst frog. Otherwise, the calculations

in equations (6) and (7) are repeated with respect to the global

best frog (replaces). If no improvement becomes

possible in this latter case, then a new solution is randomly

generated to replace the worst frog with another frog having

any arbitrary fitness. The calculations then continue for a

specific number of evolutionary iterations within each

memeplex.

6. EXPERIMENTAL EVALUATION
To evaluate the efficiency of the proposed methods, we have

accomplished several experiments to test our algorithms, the

simulations were carried out using Java language on a

Pentium 2.70GHz CPU and 4 GB of RAM desktop personal

computer with Windows 7, and all the simulation values are

done at an average of 10 executions.

In each simulation, we initialize the parameters of the

experience. Firstly we generate randomly a number of atomic

services and for each service its QoS attributes value

(response time, cost, availability, and reliability) randomly

also, within a common range for each parameter. Next,

according to the parameters of the simulation, a number of

(VS) is generated belong to their structures (Identical, Loop,

Parallel, Conditional), and assigned to their tasks. Later, the

binary composition matrix is constructed which represent the

participating tasks for each composite service. Finally, we run

our implementation for the both algorithms.

6.1 Success ratio
The purpose of the first experiment was to determine and

ensure that our algorithms are capable of giving results that

represent the optimal solution. We have explicitly added a

series of services that compose a composition process with a

high quality of services. This experience is performed with a

very large population size, and is executed in 10 separating

times, as shown in Figure.8, which demonstrates the goodness

and performance of our methods either for SFLA or GA.

Fig. 8. Success ratio

6.2 Computation time with respect to the

number of tasks (Population size)
In the next experiment, in order to study the performance of

our algorithms, we created sets of randomly generated test

cases, with a varying parameter in each test that influences the

performance of the algorithms. We analyzed the impact of

varying the number of tasks, the number of candidate services

and the number of constraints. Each set of test cases is solved

by comparing the computation time of GA and SFLA.

Fig.9. Computation time vs number of tasks

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.17, July 2014

48

Fig 7: Flowchart of SFLA

The first test was performed with a series of tasks (10, 50,

100, 500, 1000), for each task we have three series of

candidate services (10, 50, 100), the performance comparison

result as shown in Fig.9 demonstrates that the population sizes

have a significant factor on the execution time, thus the SFLA

in all cases, required lower time for the optimization when

compared to GA approximately with a speedup to 36%.

6.3 Computation time with respect to the

number of virtual services
In another separate run, a simulation is performed, by a

varying number of candidate virtual services in which the

number of tasks is (10, 20 and 30) as shown in Figure.10. It is

obvious that the execution time of the two methods increases

when the population size increases and the overall execution

time obtained by SFLA is always lower than GA.

Fig. 10. Computation time vs virtual services per task

Moreover, we noticed that the computation time gap between

GA and SFLA increases linearly with increasing the number

of candidate virtual services, which proves also that the local

search used by SFLA is more efficient than the one used by

GA. This clearly demonstrates the effectiveness of SFLA

compared to GA whether in the local search or in the global

optimization.

6.4 Computation time with respect to the

number QoS constraints
In the third experiment as shown in Figure.11, we measured

the performance of the different methods with respect to the

number of QoS criteria. An expected result with a very

constrained problem is that it is very probale that GA and

FLSA methods will need more and more iteration until a

solution is found.

Fig. 11. Computation time vs number of QoS parameters

According to this simulation results SFLA proves to be

efficient in the area of QoS-aware cloud-service composition,

and it can’t only find an optimal solution, but has also a better

convergence speed. Thus, we deduce that SFLA is more

adapted for QoS-based service composition.

7. CONCLUSION
This paper, addresses the problem of QoS-based cloud service

composition with end-to-end QoS. It suggests a universal

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.17, July 2014

49

composition model which starts by defining an abstract

component that represents the basic and the most important

composition structures commonly used in the service

composition standards. The proposed composition matrix

allows this model to support any type of functional

composition which can represent all possible composition

structures. To find the composite service with an optimal

QoS, two evolutionary-based research methods have been

presented (GA and SFLA). A description of each method has

been presented. Impact of significant parameters in

evolutionary algorithms such as the population size, the

number of candidate services per task and the number criteria

has tested. The experimental results show that the SFLA-

based method in all scenarios performs better than GA either

in term of success rate or in term of computational time.

8. REFERENCES
[1] L. Min, Z. Liang-Jie, and L. Fengyun, "An Insuanrance

Model for Guaranteeing Service Assurance, Integrity and

QoS in Cloud Computing," Proceedings of the 8th IEEE

International Conference Web Services (ICWS 2010),

2010, pp. 584-591.

[2] A. Younes, M. Essaaidi, A. El Moussaoui, A.

Bendahmane, “Grid computing middleware information

systems: Review and synthesis study”, in International

Conference on Multimedia Computing and Systems,

2009. ICMCS '09, 2-4 April 2009.

[3] S. Distefano, A. Puliafito, M. Rak and S. Venticinque,

“QoS Management in Cloud @ Home Infrastructures”,

International Conference on Cyber-Enabled Distributed

Computing and Knowledge Discovery, IEEE (2011).

[4] O. Kayed Qtaish, Z. BtJamaludin, M.Mahmuddin,

“Multi-Path QoS-Aware Service Composition”,

International Journal of Engineering Research and

Applications (IJERA), ISSN: 2248-9622, Vol. 2, Issue 2,

Mar-Apr 2012, pp.1075-1085.

[5] Min Liu, Mingrui Wang, Weiming Shen,Nan Luo,

Junwei Yan, “A quality of service (QoS)-aware

execution plan selection approach for a service

composition process”, Future Generation Computer

Systems, 28 (2012) 1080–1089

[6] Yu, T., Zhang, Y., and Lin, K.-J. 2007. “Efficient

algorithms for Web services selection with end-to-end

QoS constraints”, ACM Trans. Web 1, 1, Article 6 (May

2007),

[7] M. AllamehAmiri, V. Derhami, M. Ghasemzadeh, “QoS-

Based web service composition based on genetic

algorithm”, Journal of AI and Data Mining, Vol. 1, No.2,

2013, 63-73

[8] ISO8402: Quality management and quality assurance

vocabulary, 1994.

[9] ITU-T Recommendation E.800, Terms and Definitions

Related to Quality of Service and Network Performance

Including Dependability, 09/2008.

[10] F. lecue, A. delteil, A. leger, "Optimizing causal link

based Web service composition ", in ECAI, 2008 45-49

[11] HUANG, A.F.M., C.W. LAN, S.J.H. YANG, “An

Optimal Qos-Based Web Service Selection Scheme”,

Systems and Software, Vol 81, (2008), pp. 2079–2090.

[12] A. Younes, M. Essaaid,A. ElMoussaoui, A.

Bendahmane, "A fuzzy MADM approach for grid

services composition," Multimedia Computing and

Systems (ICMCS), 2011 International Conference,

ICMCS.2011

[13] M. Eusuff and K. Lansey, “Optimization of water

distribution network design using the shuffled frog

leaping algorithm,” Journal of Water Resources Planning

and Management, vol. 129, no. 3, pp. 210–225, 2003

[14] M. Alrifai, D. Skoutas, T. Risse, “Selecting skyline

services for QoS-based web service composition”,

in WWW 2010, pp 11-20

[15] Y. Zongkai, S. Chaowang,L. Qingtang, Z. Chengling,“A

Dynamic Web Services Composition Algorithm Based

on the Combination of Ant Colony Algorithm and

Genetic Algorithm”, Journal of Computational

Information Systems, 6:8(2010) 2617-2622.

[16] M. Jaeger and G. Muhl. “QoS-Based Selection of

Services: The Implementation of a Genetic Algorithm”,

In KiVS 2007 Workshop: Service-Oriented Architectures

und Service-Oriented Computing (SOA/SOC), Bern,

Switzerland, pages 359{370, 2007

[17] FERCHICHI, S.E, K. LAABIDI, S. ZIDI, “Genetic

Algorithm and tabu Search for Feature Selection”,

Studies in Informations and Control, Vol. 18, No. 2,

(2009)

[18] R. Wang, C.-H. Chi, and J. Deng, “A Fast Heuristic

Algorithm for the Composite Web Service Selection”,

Advances in Data and Web Management, 5446

(Heidelberg: Springer Berlin 2009) 506-518.

[19] A. Klein, F. Ishikawa, and S. Honiden. “Efficient,

Heuristic Approach with Improved Time Complexityfor

QoS-aware Service Composition”, In IEEE, International

Conference on Web Services (ICWS 2011), pages

436{443, 2011.

[20] Ravi Khadka, Bramhananda Sapkota, Luís Ferreira Pires,

Marten van Sinderen, Slinger Jansen, Model-driven

approach to enterprise interoperability at the technical

service level, Computers in Industry, Volume 64, Issue 8,

October 2013, Pages 951-965.

[21] Xue-hui, YANG Ye, LI Xia ,”Solving TSP with Shuffled

Frog-Leaping Algorithm”, Eighth International

Conference on Intelligent Systems Design and

Applications , ISDA, Kaohsiung, Taiwan, November 26-

28, 2008 (ISBN: 978-0-7695-3382-7).

[22] Antariksha Bhaduri, “A Clonal Selection Based Shuffled

Frog Leaping Algorithm”, 4th Annual IEEE Conference.

International Advance Computing Conference, IACC,

Patiala, India, March 2009 (ISBN: 978-1-4244-2927-1).

[23] Haifeng Li, Qing Z, Xiaoxia Y, Linrong X, “Geo-

information processing service composition for

concurrent tasks: A QoS-aware game theory approach”,

Computers & Geosciences, 47, (2012) 46-56.

IJCATM : www.ijcaonline.org

