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ABSTRACT 
A comparative study of different methods of reconstruction of 

wavelet coefficients is presented. The following are the 

different techniques for the reconstruction of wavelet 

coefficients. To start with, we show how to design and 

construct Daubechies four coefficient wavelet system which 

are orthogonal and compactly supported wavelets. Then we 

outline the multi resolution analysis of wavelets using Mallat 

transform. Multi resolution analysis can be illustrated by the 

decomposition and reconstruction of wavelet system using 

Laplacian Pyramid. To construct wavelet systems with finite 

support and regularity using orthonormal and interpolariting 

units, only multicomponent wavelets are possible. When 

image function is expressed in terms of scaling functions and 

wavelet functions of higher resolution, we need to consider 

only few wavelet coefficients and wavelet coefficients are 

dominant only near edges. The wavelet coefficient near edges 

can be estimated using wavelet transform maxima and 

statistical inference of coefficients using Markov tree model. 

An alternate method is the reconstruction of wavelet 

coefficients using total variation minimisation. If we use 

thresholding, so that when we neglect wavelet coefficients 

having values less than a threshold value there is ringing 

across edges. Hence we propose an improved algorithm of 

reconstruction of wavelet coefficients using zero padding and 

cycle spinning. PSNR of images with wavelet based 

interpolation and denoising by cycle spinning is moderately 

high. 

Keywords 
Wavelets of finite support, multiresolution analysis, 

multicomponent wavelets, cycle spinning, Markov tree model, 

wavelet transform maxima, total variation minimisation. 

1. INTRODUCTION 

Wavelets are a powerful tool for digital image analysis or time 

frequency analysis of image. A wavelet is a small wave, 

which is oscillatory and it contains both the analysing shape 

and the window (a finite support). One can construct wavelets 

ψ such that the dilated and translated family 
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basis of L2(R). Orthogonal wavelets dilated by    carry signal 

variation at resolution     .The construction of these bases is 

related to multiresolution signal approximation.n-refers to the 

translation of signal and j refers to the scale and n refers to 

time location. The wavelet function  tnj ,  has a time 
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dilation parameter which changes the support of ψ in time and 

rescales ψ and changing the translation parameter n makes 

    changes its location. It is observed that small scales 

corresponds to high frequency. Wavelet functions are located 

both in time and frequency, but it cannot be exact localisation 

due to uncertainty principle so instead of exact localisation, 

the function is restricted to wavelet Heisenberg box. The 

localisation measures  
jnx   and 
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represented by rectangles in time frequency plane. These 

rectangles have same, but their sides are stretched and 

contracted by the factor    and
 

  
. All information about the 

transformed signal is preserved when the wavelet transform is 

sampled on certain discrete subset of time frequency plane. 

The values of continuous transform in those points are 

coefficients of a corresponding wavelet basis series expansion. 

The image function is decomposed in terms of orthonormal 

basis function 
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This is a doubly infinite sum over both time index n and scale 

index j and however sum can be made finite with no error 

because in expansion, only few coefficients are dominant. 

Multiresolution analysis allows us to decompose a signal or 

image function into approximation and details. These 

coefficients can be computed using various bank filters or 

Daubechies filters or Laplacian pyramid structure. Consider 

one dimensional image function 
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where  called scaling function and ψ is is called wavelet. 
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function changes with  .  kxj
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functions and wavelet functions obeying the following rules: 

1) Rested properly         for each Zj  where    the 

subspace spanned by scaling functions corresponding to 

resolution j. 
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4) There exists a function θ such that    Zkkt   is a 

Riesz basis of  . The nesting property 1 JJ VV  

implies that the approximation at a resolution     contain 

all necessary informationto compute a finer 

resolution     . Dilating function in    by 2 enlarges the 

detail by 2. 

 

2. CONSTRUCTION OF WAVELET 

SYSTEMS-THE DAUBECHIES FOUR 

COEFFICIENT WAVELET SYSTEM 
 The scaling function  t  is expanded as 
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to uniquely define all scaling functions of given shape, the 

area under the scaling function is normalized to unity i.e. 
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 as  , this equation becomes 2 ka

for the scaling function to be orthogonal to its integer 
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On the expansion coefficients, this yields the condition 
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and llkkaa ,02 2  . These conditions are not sufficient 

to solve the coefficients .For that we require that scaling 

function is exactly represented by polynomial of order up to p 
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We consider the construction of scalar function coefficients. 

To solve the equations (1),(2) and (3) and it is easiest to 

include l=0 in eq (3) and exclude the nonlinear eq  (2) , we get 
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One set of equation is antithesis to the other. If one leads to 

scaling function  x , other leads to  x . Both satisfies 

conditions of normality and orthonormality and representation 

of  linear equation. If  we choose  
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and all other half integer values are zero and it is found that 

the scaling function is zero outside the interval [0,3] i.e. it has 

compact support. 

3. ESTIMATING WAVELET 

COEFFICIENTS BASED ON 

LAPLACIAN PYRAMID 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To reconstruct the digital images, we perform decomposition 

and reconstruction of digitized image by implementing Burt 

Pyramid algorithms. A common characteristic of images is 

that neighbouring pixels are highly correlated. So to design an 

efficient compressed code we use a representation which in 

effect, decorrelate the image pixel. This is achieved through 

predictive and through image pixel. The process of image 

decomposition and reconstruction based Laplacian pyramid is 

shown in the figure 1. 

In this figure 0g  is an image and 1g  is the 

resulting image applying an appropriate Low pass filter and 

down sampling 0g . Prediction error 

upsamplinggL  00 1g , 1g  is itself low pass 

filtered and down sampled to obtain 2g  . 

upsamplinggL  11 2g . By repeating these steps we 

get 132 ..........,........., KLLL where 

upsamplinggL kk 1 1kg .So we get a sequence 

of two dimensional arrays nggg .,........., 10  and prediction 

errors 110 ,......., kLLL .In the above  

implementation each  λ smaller than its predecessor by a 

factor 
 

 
. This image representation called Laplacian pyramid. 

Those low pass filtered images nggg .,........., 10  form a 

Gaussian Pyramid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fFor the reconstruction of decomposed image ,we start with 

ng .Since  there no image 1ng  to serve as prediction image 
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              Fig 1: Laplacian pyramid 
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for ng  ,we choose nn gL  .So we upsample Ln and it to 

Ln-1.Then upsample this and add to Ln-2 and so on. Until the 

level 0 is reached and 0g  is recovered. But our aim is to 

obtain higher resolution image than 0g .Predictive high 

resolution image 

upsamplingLg   11 0g
 

4. MULTI COMPONENT WAVELET 
Wavelet theory is based on the multi resolution analysis. 

Multiresolution analysis is generated by one scaling function 

and dilates and translates of only one wavelet  RL2
form a stable basis of L2(R). If we require short support, 

orthonormal MRA, regular and interpolating basic function, 

above scaling functions and wavelet function formed from a 

single wavelet is not possible. But if we use multicomponent 

wavelet, it is possible to construct scaling functions and 

wavelet functions having the properties of 

regularity,orthonormality, and interpolating nature. Multi 

wavelets are constructed by means of a scaling vectors and 

these scaling vectors satisfy the equations of the form 

   txAt
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2 .Almost all important properties 

of the scaling vector carry over to the resulting multiwavelets,
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In general, r-scaling vectors for the basis of r-multi 

wavelets,ie vectors  T
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Riesz basis of   RL2
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2  with rxr real matrices Bk. By 

applying fourier transform to this equation 
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  k

Zk

k zBzB 




 . Thus it is possible to construct regular, 

orthonormal and interpolating wavelets which have finite 

support if we use multicomponent wavelets. 

5. DETERMINATION OF WAVELET 

COEFFICIENT AND 

RECONSTRUCTION OF WAVELETS 

USING HIDDEN MARKOV TREE 

MODEL 

In statistical image processing, we can have an image x as a 

realization of a random field with joint probability density 

function  xf . We can model local joint statistics of image 

pixels in the spatial domain as Markov random field model. In 

wavelet transform, wavelet coefficient measures the 

differences at different scales of resolution. The portions of 

image which do not vary significantly from scale to scale 

(smooth region) will be expressed by few large values at 

coarse scales. The portions of image that do vary from scale to 

scale are regions around edges and are represented by large 

values at each scale in the wavelet transform. 

               We demand that the following primary properties are 

obeyed by wavelet transform.  

(1) Locality: Each wavelet coefficient represents image 

content local in space and frequency. 

(2) Multiresolution . The wavelet transform represents the 

image at nested set of scales. 

(3) Edge detection : Wavelets act as a local edge detectors. 

The edges in image are represented by large wavelet 

coefficients at corresponding location. 

(4) The wavelet coefficient will have only few significant 

coefficients at smooth regions and wavelet coefficients is 

large only if edges are present within support of wavelet.     

(5) The wavelet coefficient tends to be approximately 

decorrelated. The above primary properties give wavelet 

coefficients of natural image significant statistical structure 

and they are listed as the following secondary properties  (1) 

The wavelet coefficients have peaky heavy tailed marginal 

distribution ,or distribution is non Gaussian.  (2)  Magnitudes 

of the wavelet coefficient of real image decay exponentially 

across scales. The persistence of large/small wavelet 

coefficient magnitude becomes exponentially stronger at finer 

scales. 

           To accommodate the non Gaussian nature of wavelet 

coefficient, we can model the marginal probability density 

function of each coefficient as a Gaussian mixture density 

with a hidden state of a Markov tree. In a Markov process, the 

transition probability depends on its current state and parent 

state. On a hidden Markov tree model we do not know 

explicitly the state of the process. The parent of a particular 

state is the coefficient of the next coarsest scale density before 

it. The probability densities were chosen to be Gaussian with 

means and variance according to the state. The probability 

density function of each wavelet is selected as a Gaussian 

mixture density with a hidden binary state that combines two 

components. One component features large variance and has 

large non zero coefficients with small weights (only few  

coefficients) and the other has small variance with small and 

zero valued  coefficients of large weights (large number of 

coefficients). We associate to each wavelet coefficient θn ,an 

unobserved  hidden state  LSSn ,   , the value of Sn 

determine which of the two component of the mixture, model 

is used to generate Sn 
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i.e.   ),0(| 2

,nsnn NSSf    

  ),(| 2

,nlnn NLSf    

Probability of the states are given by   S

nn PSSp   and 

l

nn PLSp  )(  with the condition 1 L

n

S

n pp . 

Persistence property induces a Markov tree where the state Sn 

of a coefficient θn is affected only by the state SP(n) of its 

parent P(n). Markov  model is completely determined by the 

set of state transition matrices for different coefficient θn at 

wavelet scale Jj 1  , 

    
  

     
   

  
     

     

The persistence property implies that   
    and   

    are 

significantly larger than their complements. The probability 

density for any hidden state can be obtained as  

     
LLL

np

LSS

npn nn
pPpPLSp   . 

The hidden Markov tree model parameters include the 

probabilities for the hidden state  lS pp 11 , ,state transition 

matrix An,the Gaussian distribution variance  2

,

2

, , nSnL   

for each of wavelet coefficients θn. We can make the 

coefficient dependent parameters, equal for all coefficients 

within the scale and the magnitude of coefficients decrease 

exponentially decrease across scales,ie 

L

L
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
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 22
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SjS C
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 22
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 Also we can demand weaker persistence in the coarsest 

scales. Therefore the value of the state transition matrices Aj 

follow a model that strengthen the persistence at finer scale. 

This shows that the probability that LSn  ,given 

  LS nP  is 
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SS
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SCp
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jr

SS
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j
SCp

  2  

These parameters can be estimated by expectation 

maximization algorithm. The expectation maximization 

algorithm is used in the Markov tree model. The algorithm, 

asserts by finding the set of parameters which would most 

likely result in set of observed wavelet coefficients. We would 

take these wavelet coefficients as inputs and produces the 

state transition probabilities with mean and variance for each  

coefficient. We can use a training set and EM (Expectation 

Maximisation) algorithm works by successively iterating 

model parameters until the minimum error is observed. By 

this method we produce HL, LH and HH bands of image. 

Taking the inverse wavelet transform, we get the picture with 

more than twice the resolution. 

     Wavelet coefficient in the finest band in our hidden 

Markov model is done by using the probability distribution 

relation. 

 
k

mC

k
mj

k
C

eP
mC

k

C
,

2

,

2

, 2

1 











 

   where  
k

C  are wavelet 

coefficients at the finest scale, 
k

mC ,  and 
k

mC ,  are obtained 

from the training set. 

   To reconstruct wavelets, we adopt the following steps (i) 

Create a Hidden Markov tree model of the image statistics of 

a similar image (training set). This model will consist of 

transition probability state with certain mean and variance. 

Training set is tied within the scale. We collect information 

about all sign changes occurring in the training set wavelet 

coefficients from parent to child in the Markov tree model  (ii) 

Obtain the wavelet transform of the image to be reconstructed  

(iii) Iterate the EM algorithm for a single iteration using the 

Markov tree found during the training  (iv) Use the 

appropriate equation and determine the wavelet coefficient at 

the finest scale. We can use Gaussian probability distribution 

to randomly generate a value for wavelet coefficients. Use the 

probability sign changes and check the coefficients and make 

the appropriate changes. 

6. RECONSTRUCTION OF WAVELETS 

USING WAVELET TRANSFORM 

EXTREMA EXTRAPOLATION AND 

CYCLE SPINNING 
  We propose an algorithm to extract high frequency 

information so as to sharpen the image by using wavelet 

transform extrema extrapolation. The wavelet transform 

modulus maxima has the sharp variations of a signal and their 

variations characterize the local regularity of the signal. Since 

edges are points where the image intensity has sharp variation. 

By means of canny edge detection method, one can detect a 

two dimensional wavelet transform. The Lipschitz regularity 

of edge points is derived from the wavelet modulus maxima 

across scales. The appropriate wavelet can be reconstructed 

from the wavelet modulus maxima, with no degradation. We 

can detect points of sharp variation of image f(x1,x2) by 

calculating the modulus of its gradient vector
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as  f . A multiscalev version of this vedge detector is 

implemented by smoothing the image function convolution 

kernel θ(x) and we can define the wavelets ψ1 and ψ2  as  
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The wavelet transform  components are proportional to the 

coordinate gradient vector of smoothed by 
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The modulus of this gradient vector is proportional to wavelet 

transform modulus 
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The angle α of wavelet transform vector is  
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An edge point at the scale 
j2  is a point u such that 

 juMf 2, is locally maximum  at u=v when 

 vnUu j



   for  is very small enough. These 

points are called wavelet transform modulus maxima points 

are distributed along curves that corresponds to the boundary 

of the angle. 

     To make the image sharper , we have to effect denoising. 

The basic principle of denoising is to identify and zero out 

wavelet wavelet coefficients of the signal which are most 

likely to contain mostly noise. By preserving significant 

coefficients, the important high pass feature of the signal , 

such as discontinuities including edge can be preserved. 

Denoising by wavelet thresholdings was introduced by 

Donoho and Johnstone(4). Thresholding in fact introduces 

ringing effect near the edges. This ringing effect can be 

minimized by cycle spinning. In cycle spinning, the signal to 

be denoised is translated by various time shifts. Cycle 

spinning makes use of the periodic time invariance of the 

wavelet transform. The wavelet transform is not time invariant 

and consequently if the noisy signal is shifted in time, 

denoised and then shifted back. The cycle spinning estimate is 

the linear average of the estimates  

 

 nx
i^

, 

i=0,1,………….M-1. 

Consider an observed  signal      ndnxny   where 

     is additive noise and         is the wavelet transform. 

Then zeroing out wavelet coefficients, falling below a certain 

threshold then we take wavelet transform 

    nWYAWnx 

 (1
^

, A+ is the diagonal thresholding 

operator that zeroes out wavelet coefficients less than 

threshold. 

   In the proposed algorithm, recursive cycle spinning, we 

generate a sequence of estimates 

^

ex  . The algorithm 

repeatedly cycles through M shifts, using the denoised output 

from one iteration as the input to the next. The algorithm tries 

to converge to fixed point. 

7. RECONSTRUCTION OF WAVELET 

USING TOTAL VARIATION 

MINIMIZATION 
 We suggest a revised algorithm to reconstruct wavelet 

coefficient using a total variation minimization with a view of 

denoising nearly piecewise smooth function presenting sharp 

discontinuities. Total variation minimization model was 

proposed by Rudin, Osher and Fatemi. The image function is 

decomposed into two components  u + v, where u  is the 

cartoon part, v represents the oscillating part- cartoon part 

contains main features of f including sharp edges and 

contours. u is treated as a function of bound variation BV(Ω) 

or its subset SBV(Ω), special functions of bounded variation. 

If we are given the image function f ЄL2 (Ω) where Ω is open 

and bounded domain on R2, for restoration of image or 

recover the appropriate wavelet showing the main features of 

the image including edges, it is enough to separate is from f, 

for that we need solve the following minimization problem. 

   
        

                         

Where BV(Ω) is the space of bounded variation, λ is a 

positive constant.      
Ω

denotes the total variation of f. 

           The minimiser for u is satisfying the Euler Lagrange 

equation associated with the minimizing problem 

      
 

  
     

  

    
  and the residual function v = f – u can 

be expressed as          where    can be represented as  

   
 

  
     

  

    
  , λ being a constant for u Є BV(Ω), its total 

variation       
Ω

is finite and can be expressed as  
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The above total variation follows the condition  

                  Ω bounded and convex region of R2 is 

minimum, subject to the fidelity constraint. 

 u- u  
L

2

  =  ,   being the estimated error level. The 

noise is reduced, while the discontinuities including edges are 

preserved. Although total variation method is relevant in 

regularising piecewise smooth functions, it will introduce an 

artifact like staircase effect. Total variation algorithm tends to 

restore piecewise constant function. 

                      The staircase effect can be minimised by 

replacing the total variation by the regularized functional Jβ 

(u) =   


 22
u dx, where β is a small positive 

constant. Minimising the new functional the staircase effect 

can be eliminated. If β is very small, the staircase effect is 

diffused and noise is diffused. If β is large, discontinuities are 

smoothened. The value of β is suitably chosen as to eliminate 

staircase effect, but retaining all the salient features of the 

image including the edges. 

8. EXPERIMENTAL RESULT AND 

CONCLUSION 

               For digital image analysis, image function is 

decomposed into scaling functions and wavelet functions, i.e. 

f(t)= kj

k jj

kjkj

k

kj

o

oo
dc ,

,

,,,
   where C kjo , =

dttfkjo
)(,

 and d kj , dttfkj )(
,
 . C kjo ,  and d

kj ,  are coefficients of scaling functions and wavelet 

expansions. For easiness of image analysis, the wavelets 

should satisfy regularity, orthonormality, and interpolating 

property in the region of support. We have included different 

formulations of constructions of wavelets with properties. 

These wavelet techniques are suitable for resolution 

enhancement. We suggest revised algorithms for construction 

of wavelets using hidden Markov tree model, wavelet 

transform extreme, cycle spinning with edge modelling and 

total variation minimization denoisity. In fact wavelet 

coefficient gives high frequency information and as such it 

will enhance the resolution of images. The results of 

resolution enhancement using wavelet techniques based on 

Hidden Markov tree model, wavelet transform extreme cycle 

spinny total variable minimization are given. It is found that 

PSNR values of image with these reconstructed wavelets is 

relatively high. 

 

 

 

 

 

 

 

 

Fig 2: 



International Journal of Computer Applications (0975 – 8887) 

Volume 97– No.15, July 2014 

34 

9. REFERENCES 
[1] Mollat S “Multiresolution” approximation and wavelet 

orthonormal bases of Trans American Society Vol 

315(1989) page 68-87. 

[2] Mathew K, Dr. Shibu “Wavelet based technique for super 

resolution images reconstruction “ International Journal 

of Computer application  Vol 33(2011) page 11-17. 

[3]Mallat S “Wavelet tour of signal processing” Newyork 

academy 1998 

[4]Mallat S “A theory for multiresolution signal 

decomposition the wavelet representation” IEEE Trans 

Pattern And Machine Intelligence” Vol 11 pages 674-693 

July 1989 

[5]I. Daubechies “Ten Lectures on wavelet” Newyork SIAM 

1992 

[6]Barrus, R.A. Gopinath and H. Guo “Introduction to 

wavelets and wavelet transform: A primer” Englewood 

Cliffs NJ Prentice Hall 1998 

[7]H.C.Liu , Y.Feng and G.Y. Sun “Wavelet domain image 

super resolution reconstruction based on Image Pyramid 

and cycle spinning “Journal of Physics Conference 

Services 48(2006)  pages 417-421 International 

Symposium of Instrumentation Science and 

Technologies 

[8]J.K.Ronberg, H.Choi and R.G. Bernaut “Bayesian tree 

structured image modeling using wavelet domain hidden 

Markov model” IEEE Trans Image Processing  2008 July 

Pages 1056-1068 

[9]Z. Cvetkovie, M. Vetteri “Discrete time wavelet extreme 

representation” IEEE  Trans on signal processing (1995) 

pages 280-287 

[10] T.N.T Goodman, S.L.LEE “Wavelets of multiplicity” 

Trans. Of American Math Society-342(1994) Pages 307-

324 

[11]Nhat Nayen and Peyman Milanfar “Wavelet Super 

resolution circuit system “ Signal Process Vol .19 Nov 

(2000) Pages 321-338 

[12]Peter J Burt and Edward H Adelson”Laplacian Pyramid as 

a compact Image Code” IEEE Transactions on 

communication Vol.-31 Nov April  1983 Pages 532-540 

[13]Luminita A, Vege and Stanley J.Oscher “Image 

Denoising and decomposition with total variation 

minimization and oscillatory function”Journal of 

Mathematical Imaging and Vision 20 Pages 7-18 ,2004 

[14]Sylvian Durand and Jacquies Froment “Reconstruction of 

wavelet coefficients using total variation minimization “ 

SIAM JSU computer vol 24 No 5 (2003) pages 1754-

1767  

 

 

 

IJCATM : www.ijcaonline.org 


