
International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2013

14

Finite State Machine based VHDL Implementation of a

Median Filter

Prannoy Ghosh
Electronics Dept, VIT

Pune, India

Akash Nebhwani
Electronics Dept, VIT

Pune, India

Shraddha
Dahane

Electronics Dept, VIT
Pune, India

Pranjali
Kolwadkar

Electronics Dept, VIT
Pune, India

ABSTRACT

Digital images are often corrupted by impulsive noise also

called as salt and pepper noise [1]. It occurs in the form of

sharp black or white pixels within the image. An efficient

non-linear filter to reduce such noise is the median filter. The

main advantage being the preserving of edges as compared to

the mean filter. In larger images like satellite images the

median filter algorithm needs larger time for processing. A

vhdl implementation of such filter shows drastic reduction in

processing time. An attempt is made to implement 3X3

median filter on FPGA, using pipeline design and implement

the circuit using the concept of finite state machines.

General Terms

Image processing using vlsi.

Keywords
Impulse noise, Median filter, finite state machine.

1. INTRODUCTION
Image noise is random variation of brightness or color

information in images, and is usually an aspect of electronic
noise[1]. It can be produced by the sensor and circuitry of

a scanner or digital camera. Image noise can also occur in
the unavoidable shot noise of an ideal photon detector. Image

noise is an undesirable by-product of image capture that adds

spurious and extraneous information. Medical Images are very

often corrupted by various types of noise including speckle

noise, salt and pepper noise etc. This corruption of noise is

introduced to the original image during image acquisition and

transmission. Thus it becomes imperative to de-noise the

images for precise data synthesis.

2. MEDIAN FILTER

2.1 Impulse Noise

"Impulsive" noise is sometimes called salt-and-pepper noise

or spike noise[1]. An image containing salt-and-pepper noise

will have dark pixels in bright regions and bright pixels in

dark regions. This type of noise can be caused by analog-to-

digital converter errors, bit errors in transmission, etc. It can

be mostly eliminated by using dark frame subtraction and

interpolating around dark/bright pixels.

2.2 Impulse Noise Reduction

Impulse noise can be drastically reduced by the help of

median filter. The median filter is a nonlinear digital

filtering technique, often used to remove impulse noise[1].

Median filter is used widely in digital image processing since

it preserves edges while removing noise[2]. This is an added

advantage over various other filters such as the mean filter.

2.3 Algorithm Description

The main idea of the median filter is to run through the image

signal pixel by pixel, replacing each entry with the median of

neighbouring entries. The pattern of neighbours is called the

"window", which slides, entry by entry, over the entire image.

The window has an odd number of entries, so that

the median is simple to define: it is just the middle value after

all the entries in the window are sorted numerically[3].

3. PROPOSED METHOD

3.1. Algorithm Implementation Issues

Typically, by far the majority of the computational effort and

time is spent on calculating the median of each window[4].

Because the filter must process every entry in the signal, for

large images, the efficiency of this median calculation is a

critical factor in determining how fast the algorithm can run.

It has been observed that the median filter can be

implemented efficiently using HDL language[5]. This

implementation has shown reduced time complexity. Our

method uses the concept of finite state machines to

implement the median filter .

3.2 VHDL Implementation
An equivalent code is developed using vhdl language. The

image is read as a text file. The text file is array of noise

affected image pixels. It is generated using matlab. The vhdl

code consists of two primary entities which are the sorting and

read/write block as shown below

 Fig 1: mapping of the two main entities

9 pixel values are read by the reading entity and passed to the

sorting entity. After sorting the 9 pixels the middle pixel is

replaced by the median value of the 9 pixels. The new values

are written to output text file by the write entity. This process

continues until the end of image is found. The algorithm is

http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Electronic_noise
http://en.wikipedia.org/wiki/Electronic_noise
http://en.wikipedia.org/wiki/Sensor
http://en.wikipedia.org/wiki/Image_scanner
http://en.wikipedia.org/wiki/Digital_camera
http://en.wikipedia.org/wiki/Shot_noise
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Dark_frame_subtraction
http://en.wikipedia.org/wiki/Digital_filter
http://en.wikipedia.org/wiki/Digital_filter
http://en.wikipedia.org/wiki/Signal_noise
http://en.wikipedia.org/wiki/Median
http://en.wikipedia.org/wiki/Median

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.15, July 2014

15

developed using the concept of finite state machine[4]. The

algorithm is explained using FSM concept in the next section.

3.3 Finite States
A finite-state machine is a useful computational model for

both hardware and certain types of software. It is considered

to be a function that maps states and input to output. The

algorithm proposed here works on the concept of finite state

machine. The input to the machine is given through the test-

bench (reset and synchronous clock). The proposed machine

consists of eight states connected sequentially. These states

communicate with each other in a sequential manner so as to

achieve the desired objective (filtering). These states are Idle,

Delay, Delay1, Delay2, Sort, Assign_out, Stop, WR_disable

respectively. When reset input is given to the machine, system

remains in idle state. On the other hand, it will perform

filtering using parallel processing when a synchronous clock

is given. It reads and extracts nine values from the input text

file and gives it to the Sorting module using Delay, Delay1

and Delay2 states. Sorting is performed in Sort state and the

middle value gets replaced in the Assign_out state.

Simultaneously, the algorithm reads out the next nine values

from the input text file. This parallel implementation reduces

the algorithm execution time. Once all the image entries are

processed the FSM goes to Stop state where it generates a

write enable to the Write block in order to write all the

processed values to the output text file. WR_disable disables

the write enable to the Write Block and goes back to the IDLE

state. The system now waits for the next file input for the

whole operation to repeat.

4. SIMULATION AND SYNTHESIS
The algorithm was simulated using Modelsim 10.3 edition

and synthesized using Xilinx Spartan 3E.

Fig 3: Simulation results

Fig 4: Synthesis results

5. OBSERVATION
Below figure shows the comparison between the noisy image

and the denoised image generated using vhdl.

Fig 2: Denoised image

6. COMPARISONS
Processing time was (calculated using the no. of clocks

required for processing, with clock freq of 10Mhz) in Vhdl

and (Tic-toc function in Matlab).

Parameters MATLAB VHDL

Execution time

3.478 sec

34.7 msec

Hardware

implementation
Not possible Possible

7. CONCLUSION
It can be concluded that though the noise is effectively

reduced both in MATLAB as well as VHDL, the main

advantage of FPGA-based design is the flexibility to exploit

the inherently parallel nature of the FPGA for reducing the

computational time in the hardware implementation of the

median filter algorithm for image processing.

8. FUTURE SCOPE
In future the algorithm can be extended to work on RGB

images and portmapping can be done to allocate RAM

locations for storing pixel values for less I/O buffer usage.

9. REFERENCES
[1] Jayaraman et al. (2009). Digital Image Processing. Tata

McGraw Hill Education. p. 272. ISBN 9781259081439.

[2] E. Arias-Castro and D.L. Donoho, "Does median

filtering truly preserve edges better than linear

filtering?", Annals of Statistics, vol. 37, pp. 1172–2009.

[3] T. Huang, G. Yang, and G. Tang, "A fast two-

dimensional median filtering algorithm", IEEE Trans.

Acoust., Speech, Signal Processing, vol. 27, no. 1,

pp. 13–18, 1979 Tavel, P. 2007 Modeling and Simulation

Design. AK Peters Ltd.

[4] F. M. Waltz , Ralf Hack "Fast, efficient algorithms for

3x3 ranked filters using finite-state machines", SPIE

Conf. on Machine Vision Systems for Inspection VII.

[5] S.Fahmy "Novel fpga-based implementation of median

filters for image processing", IEEE conference on Field

programmable logic and applications 2005.

IJCATM : www.ijcaonline.org

http://books.google.com/books?id=ttNuj2mmt4sC&pg=PA272
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/9781259081439

