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ABSTRACT
As the utilization of multiprocessors system-on-chip (MPSoC)
is becoming ubiquitous, demands for effective allocation and
scheduling techniques are needed more than ever to harness the
power of MPSoCs. An MPSoC is a system consisting of multi-
ple heterogeneous processing cores, memory hierarchies, and com-
munication infrastructure to effectively overcome the power and
clock constraints from single core architectures. MPSoCs provide
the performance demanded by embedded applications especially
real-time multimedia applications. This article presents effective
techniques to partitioning the processing cores and memory budget
in an MPSoC among multiple embedded applications possibly en-
tering the system at different times. The proposed framework will
study the structure of each application and predict the possible re-
duction in schedule time if more processors and/or memory budget
are assigned to this application. The objective is to fairly divide
the resources such that the schedule times for the applications are
minimized. Results on different embedded applications workloads
and under different system resources show the effectiveness of our
techniques that were able to reduce the cycle count by 10.2 % on
average compared to an effective technique in the literature.
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1. INTRODUCTION
Multi-core designs are now considered the trend to overcome the
limiting performance return from single core designs that are fac-
ing serious clock, power, and physical constraints. This trend found
its way in general purpose architectures as well as embedded sys-
tems. The utilization of multiple cores improves the system perfor-
mance through possible task parallelization. This opened the door
to achieve higher performance levels to solve low-end and high-
end computing challenges. Following this trend, multi-processor
System-on-chip (MPSoC) architecture designs are now ubiquitous.
This kind of system usually includes multiple processing cores that
are often heterogeneous, complex interconnected architecture for
input and output components as well as memory hierarchy that usu-
ally spreads between fast on-chip levels of memory to slower large
external memory components. MPSoCs are often viewed as flexi-
ble high performance systems with optimized power consumption.

With the heavy utilization of MPSoCs, the trend of memory perfor-
mance is lagging that of the processors. Hence, in embedded sys-
tems especially those mainly used for real-time computing, mem-
ory types and access speed are often two main research items that
should be addressed to be able to harness the power of MPSoCs.
Memory access latency is considered to be a main obstacle to im-
prove the speed of embedded applications scheduled on such sys-
tems. This problem is even more serious in MPSoC due to the
heavy contention the communication network encounters and due
to the trend of using shared memories in many cases. Execution
time predictability is another critical aspect of memory in systems
utilizing real-time embedded applications. Caches usually fall short
to these real-time requirements as they are hardware-controlled and
hence modeling their exact behaviors for execution time predic-
tion is often not attainable. Hence, many MPSoCs use software-
controlled scratchpad memories (SPMs). Scratchpad memories are
software controlled and therefore they are suitable to accurately
predict the run times of real-time embedded applications. But due
to their limited size in embedded systems, many multi-processors
systems-on-chip use some kind of a memory hierarchy with small
capacity but fast on-chip memories and large capacity slower off-
chip memories. This difference in access latency implies that the
proper allocation of variables to the fast on-chip memory is essen-
tial in reducing the run times of embedded applications utilizing the
MPSoC as often the latency of the off-chip memory is in the range
of 100 times slower than that of the on-chip memory.
Many complex embedded applications consist of multiple concur-
rent real-time tasks [1]. The execution time of a task depends on the
processors it is allocated to as well as the available SPM budget.
Often multiple applications are simultaneously utilizing the MP-
SoC and hence they compete for the available cores and memory
resources. Proper allocation of the system resources among com-
peting embedded applications and effective scheduling techniques
play an essential role in minimizing the execution times of the ap-
plications. This article assumes an MPSoC system with multiple
processing cores, a fast on-chip SPM memory budget and a large
of-chip memory. The system is being utilized by multiple applica-
tions with start times possibly not known a priori. Based on such
system, effective heuristics are presented to fairly divide the system
resources among the embedded applications simultaneously utiliz-
ing the system. Based on the applications currently on the system,
our framework studies the structure of each application provided
through profiling and allocates the resources accordingly. The prob-
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lem of resource partitioning on MPSoCs is an NP-complete prob-
lem [2].
The rest of this article is organized as follows. Section 2 presents
related work. Section 3 presents the architectural model and our ap-
proach. Section 4 presents our effective proposed approach. Section
5 is the results and Section 6 presents the conclusion.

2. RELATED WORK
The problem of allocation and scheduling of embedded applica-
tions on multiple processors has been studied by many research
groups. Benini et al. [3] used integer linear programming and con-
straint programming to solve the problem. Different scheduling al-
gorithms were compared on a set of diverse benchmarks [2]. Also,
an integer linear programming approach was used to solve the hard-
ware/software codesign partitioning problem [4]. A branch and
bound algorithm to solve the hardware/software partitioning prob-
lem with pipelined scheduling was introduced in [5].
Panda et al. [6, 7] published a comprehensive technique to SPMs
allocation on a single processor to reduce the run time through
maximally utilizing the available fast SPM memory. Integer linear
programming approaches to optimally solve the memory allocation
problem for SPMs were presented in [8, 9]. An ILP formulation for
the scratchpad memory allocation was also used in [10] to reduce
the code size. Kuang et al. [11] proposed an integer linear program-
ming solution to partitioning and pipelined scheduling. Angiolini
et al. [12] utilized dynamic programming to effectively solve the
problem of mapping memory locations to SPM locations.
The problem of memory allocation on multi-processor system-on-
chips was studied by many research groups. Data parallelism to
improve performance in a system of homogeneous multiprocessor
systems is mainly the main focus of many of such research. In or-
der to obtain optimal distributed shared memory architecture to re-
duce the memory and data access costs, Meftali et al. [13] used
an optimal integer linear programming formulation. Kandemir et
al. [14] used a compiler based approach to optimize energy and
memory access latency on MPSoCs. In [15], hard real-time utiliza-
tion was improved using a memory-centric scheduling technique.
The scheduling of memory intensive periodic tasks onto real-time
multi-core systems was introduced in [16]. Blagodurov et al. [17]
presented a contention-aware scheduling algorithm on multicore
systems. Vaidya et al. [18] proposed a dynamic scheduling algo-
rithm based on hosting the scheduler on all cores of a multi-core
processor and accesses a shared Task Data Structure (TDS) to pick
up ready-to-execute tasks. Power and energy efficient scheduling
on multicore systems has been studied in [19] and [20].
Suhendra et al. [21] and Salamy [22] studied the problem of inte-
grating task scheduling and memory partitioning among a hetero-
geneous multiprocessor system on chip with scratch pad memory.
Other works [23, 24, 25, 26, 27, 28, 29, 30] have studied issues
related to task scheduling/allocation and memory partitioning on
multiprocessor systems. Xue et al. [31] proposed a dynamic re-
source partitioner for embedded applications in an MPSoC. Their
proposed approach partitions the resources in a manner propor-
tional to the requirements of each application. The system allocates
and deallocates resources as new applications get or leave the sys-
tem. This is the closest approach to what we propose and hence we
compare our results against it.

3. THE ARCHITECTURAL MODEL AND OUR
APPROACH

This article assumes an MPSoC consisting of a set of processing
cores, a limited size on-chip SPM budget, and large off-chip
memory. Applications utilizing the system will compete for the
available resources. Processor cores and SPM budgets will be
allocated among the applications simultaneously using the system.
Our approach will examine the structure of each application in the
system to decide the number of cores as well as the SPM memory
budget to allocate to that application. A simple view of our
architectural model is presented in Figure 1. The example model
consists of three applications with the corresponding processor
cores and memory budget divided among the applications.

 

P1 P2 P3 P7 
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     T3 
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Fig. 1. An example MPSoC with three applications, eight processors, an
SPM budget, off-chip memory, and interconnection bus.

Problem Definition: Given (i) an MPSoC architectural model
with multiple processor cores, on-chip SPM memory, and large
off-chip memory and (ii) a set of applications to be executed at
this system with possibly unknown start times, fairly divide the
processor cores and the SPM budget among all concurrently
executing applications in the system to minimize the execution
times of the applications.

The main question to be addressed in this article is how to fairly
divide the resources among the available embedded applications.
Our approach will examine the nature of each application to allo-
cate resources. Generally speaking, more cores will be allocated
to applications more parallel in nature whereas memory intensive
applications will enjoy a larger memory budget. An application is
of parallel nature if its task dependence graph has the potential of
increased parallelism. Such applications benefit from more cores
as tasks can be run in parallel. On the other side, an application
is memory-intensive in nature if accessing memory is what con-
stitutes the larger percentage of the run time. Clearly, this type of
applications benefits more from a larger SPM memory budget as it
is assumed that accessing the on-chip memory is many times faster
than that of the external memory.
Our proposed system will receive applications of possibly unknown
start times and then a set of information will be extracted by the
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profiler that reflects the nature of each application. The extracted set
of information by the profiler will be used by the proposed resource
partitioner to decide on the amount of resources to allocate to each
application so that the execution times of the applications in the
system are minimized. The resources will be allocated based on the
structure of the applications concurrently using the system. Since
the resources in the system are assumed to be limited, the proper
allocation plays a major role in minimizing the schedule time of
the applications. Once the resources are allocated, a schedule for
each application’s tasks will be produced based on the resources
mapped to this application. This article only studies the allocation
problem and it uses our previously published scheduling heuristic
[22] to construct the schedule. Notice that as an application enters
or leaves our system, the resources will be redistributed to reflect
the current applications in the system and this adds to the dynamic
essence of our proposed solution.
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Fig. 2. Our Proposed Framework.

4. OUR EFFECTIVE PROPOSED APPROACH
Our proposed framework is presented in Figure 2. The system re-
ceives applications possibly at different times. Then the profiler
extracts important information about the application and forwards
them to the resource partitioner that partitions the resources among
the applications. The resource budgets are then sent to the sched-
uler to generate an effective minimum time schedule. This paper is
only concerned with the profiler and the resource partitioner. Our
resource allocation techniques depend on the structure of the appli-
cations utilizing the MPSoC system at the same time. The profiler
will examine the applications and provide the necessary informa-
tion about each application. This information will be used by the
resource partitioner. The profiler part of our proposed approach is
detailed next.

4.1 The Profiler
Once the system receives a new application, the profiler will study
its structure and extract important information that will be sent to
the resource partitioner. One important piece of information is the
task dependence graph (TDG). A task dependence graph is a di-
rected acyclic graph with weighted edges where each task in the
embedded application is represented by a vertex. The profiler will
indentify the main computation blocks. Computation blocks will
be used as the vertices in the construction of the task dependence
graph (TDG). Dependencies between the computation blocks will
be represented as weighted edges between tasks in the TDG with
the weights representing the communication costs. Communication

costs will be estimated from the information about control and data
flow.
The profiler will also extract a set of important information about
the tasks of each application, namely Maxij , Avgij , and Minij .
Minij , Avgij , and Maxij of a task of an embedded application
in a system of p processors represent the computation time for task
Ti on processor Pj if all the SPM budget is assigned to this Pj ,
1/p of the SPM budget is assigned to Pj , and no SPM budget is
assigned to Pj , respectively.
Note that not all these information are necessarily needed by the
resource partitioner to be discussed in the next section but they are
an essential information needed by our scheduler technique in [22].

4.2 The Resource Partitioner
This section provides effective techniques to partition the available
system processor cores and SPM memory among the embedded
applications currently using the system. As mentioned earlier, the
resource partitioner will receive the necessary information about
the applications extracted by the profiler. Based on this informa-
tion, the resource partitioner is supposed to divide the system re-
sources among the applications so that the schedule times for all
the applications are minimized. Since we are assuming a typical
system with limited resources, embedded applications will proba-
bly receive fewer resources than that is optimally needed.
Once the resource partitioner receives a new application, it will ex-
amine the information about its structure and compute an approxi-
mate value that represents its level of parallelism mainly from the
structure of its corresponding task dependence graph. This level
of parallelism will reflect how much this application benefit from
more processor cores. On the other hand, the resource partitioner
will also examine the application to determine how much it can
benefit from a higher SPM budget. This will mainly be reflected
through a computed value called elasticity. The proposed resource
partitioner is made up of two main parts, the SPM partitioner (see
Figure 3), and the processors partitioner (see Figure 5) detailed
next.

4.3 The SPM Partitioner
The SPM partitioner is responsible about partitioning the SPM bud-
get in the system. The limited SPM budget in the MPSoC system
will be partitioned among the embedded applications concurrently
using the system. Due to the limited SPM resources, usually not
all applications variables can fit in the SPM. Therefore proper al-
location of the SPM is essential to reduce the computation time as
accessing the SPM is 100 times faster than accessing the external
memory. Applications will receive an SPM budget based on their
structure. Applications that benefit more from a larger SPM bud-
get will get more SPM compared to applications where more SPM
budget is less beneficial. This added benefit will be reflected in the
elasticity value.
The elasticity value represents the extent an application can benefit
from more SPM budget. Given an application with multiple tasks
and a set of possible processors that might execute each task, the
elasticity of task Ti on processor Pj is a number between 0 and 1
where a higher value implies that the computation time of this task
is amendable to more reduction if more SPM budget is allocated to
processor Pj assigned to run this task. The elasticity value defined
in Equation 1 of task Ti on processor Pj depends on the Curij and
the Minij values. As defined earlier Minij is the run time of task
Ti on processor Pj assuming that all the available SPM budget is
assigned to processor Pj . On the other hand, Curij represents the
run time of task Ti on processor Pj under the current SPM budget

3



International Journal of Computer Applications (0975 8887)
Volume 97 - No. 10, July 2014

assigned to processor Pj . In our case, Curij is calculated based on
partitioning the remaining SPM budget equally over the applica-
tions who have not already received an SPM budget. Based on the
two values Curij and Minij , elasticity reflects the room for im-
provement from more SPM budget. TheCurrij value is a dynamic
value as it depends on the SPM budget distribution among the ap-
plications and hence it lends this dynamic essence to elasticity.

elasticity(Tij) =
Curij −Minij

Curij
(1)

elasticity is then used to define the predicted reduction fraction
PRF of an application that reflects the degree an added SPM can
reduce the computation time of the whole application rather than
individual tasks. More precisely, the PRF of an application is de-
fined in Equation 2 as the average of the elasticity values of all its t
tasks among all the p processors.

PRF (APPi) = 1/p ·
∑
j∈p

∑
Ti∈APPi

elasticity(Tij)

t
(2)

Our proposed heuristic in Figure 3 to partition the available SPM
consists of two main steps. First, it determines the memory re-
quirement of each application from its nature mostly established
by the profiler. Then, it allocates the SPM memory to the applica-
tions based on the nature of each application. The heuristic takes as
input the SPM size (m) and the n applications concurrently using
the system. It starts by creating a list of applications in decreasing
order of their computed PRF values. Based on the structure of the
each application which translates to its data requirement obtained
through the function SPM requested(), our proposed SPM heuristic
finds the total SPM budget needed (SPM ) to satisfy the requested
budget by all the applications. If the available SPM is larger than
the requested SPM budget then each application will simply receive
the memory it requested.
On the other hand, if the available SPM in our system is less
than the requested memory, then the heuristic effectively divide
the memory among the competing embedded applications. This is
mainly done in Lines 12–21 in the heuristic in Figure 3 in which
an application will receive an SPM budget proportional to what it
requested such that an application with higher predicated reduction
factor (PRF ) will receive an SPM budget closer to the requested
budget compared to an application of smaller PRF value. This is
done since PRF of an application reflects the added benefit from
more SPM budget based on the nature of its tasks through the elas-
ticity value defined earlier. The proposed heuristic then updates the
list L, the Min and Curr values of the remaining applications
based on the remaining SPM budget in the system. It also updates
the PRF values.

4.4 The Processing Cores Partitioner
The processing core partitioner will receive information from the
profiler pertaining to the structure of the embedded applications.
The received information will be used to approximate the degree of
parallelism of an application. More parallel application will benefit
more from more processing cores as in this case more tasks can run
in parallel. We define an approximate value to capture the degree of
parallelism (DP) as in Equation 3. A large value of DP implies that
the application holds a higher degree of parallelism compared to a
smaller DP value. The DP value reflects the structure of the appli-
cation mainly through its task dependence graph (TPG). DP reflects
the potential parallelism between different tasks of the embedded
application. Two tasks can run in parallel if they are independent

SPM Partitioner(n, m)

1. L = List applications in the system in decreasing order of PRF
2. SPM =0 and Total PRF = 0
3. For i = 1 to n do:
4. SPM = SPM + SPM requested(i)
5. Total PRF = Total PRF + PRF(i)
6. End For
7. If (SPM≤m)
8. For i = 1 to n
9. SPM received(i) = SPM requested(i)
10. End For
11. Else
12. While L is not empty
13. i = First application in list L.
14. Temp Value = UpperBound(( PRF (i)

Total PRF )* m)
15. SPM received(i) = MIN(SPM requested(i),Temp Value )
16. m = m - SPM received(i)
17. Remove i from L.
18. Recompute the Min and Curr values of the remaining

applications based on the new m value.
19. Find the new PRF and the Total PRF values.
20. Rebuild L.
21. End While

Fig. 3. The proposed SPM partitioning heuristic.

on each other whereas dependent tasks in the TDG are to be run
sequentially. Two tasks (T i, Tj) in the TDG are said to be in-
dependent if there is no path that goes through these two tasks. A
higher number of independent tasks in an application loosely imply
a higher potential for parallelism.
To find the DP value for a given embedded application, first add two
dummy nodes to the TDG, a dummy start node S and a dummy end
node E. From node S add an outgoing edge to all the nodes (tasks)
in the TDG with zero incoming edges. Whereas to node E add an
edge from each node (task) in the TDG with no outgoing edges.
Then the heuristic will find all the paths between S and E. Two
paths are called distinct if they differ in at least one task. Now for
any two distinct paths, say pi and pj , find the pairs (Ti ∈ pi, Tj

∈ pj) such that Ti and Tj are independent and hence can run in
parallel.
The degree of parallelism (DP) defined in Equation 3 consists of
two main parts. The first part, pathsi, is the number of distinct
paths in the TDG corresponding to an embedded application as
explained earlier. Even though a higher number of distinct paths
might reflect a bigger potential for parallelism, it is not a sufficient
metric to reflect the parallelism in a TDG and hence the second
component in Equation 3

DP (APPi) = pathsi +
pairsi
pathsi

(3)

The second part of the DP definition captures the fact that two more
balanced paths will benefit more from two processors compared to
two unbalanced paths. To clarify this point, consider the simple
TDG examples in Figure 4. These two example TDGs represent
two applications with the same number of tasks and the same num-
ber of distinct paths. Now assume that two processors are allocated
to each TDG. For the unbalanced TDG in Figure 4-(a), if processor
2 is mapped to Task T6 then this processor is no more needed after
the execution of T6 as all other tasks in the TDG are dependent.
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Table 1. List of pairs of
independent tasks.

Unbalanced TDG Balanced TDG
(1, 6) (1, 4)
(2, 6) (1, 5)
(3, 6) (1, 6)
(4, 6) (2, 4)
(5, 6) (2, 5)
NA (2, 6)
NA (3, 4)
NA (3, 5)
NA (3, 6)

However, in the case of the balanced TDG in Figure 4-(b), the two
processors can be maximally utilized to run the tasks in parallel
with minimum idle times. To reflect that the embedded application
corresponding to Figure 4-(b) has higher potential for parallelism
compared to that in Figure 4-(a), the second part, pairs

paths
, of our DP

definition is next introduced and explained.

 

T1 T2 T3 T4 T5 

T6 

T1 T2 T3 

T4 T5 T6 

(b) 

(a) 

Fig. 4. (a) An unbalanced TDG. (b) A balanced TDG

The pairs value in Equation 3 is defined as the number of task pairs
that can be executed in parallel. The pairs for the example TDGs in
Figure 4 are listed in Table 1. The first column in the table list such
pairs corresponding to the unbalanced TDG in Figure 4-(a) whereas
the pairs corresponding to the balanced TDG in Figure 4-(b) are
listed in Column 2. Based on the values in Table 1, the DP value
for the unbalanced TDG computes as 2 + 5/2 = 4.5 whereas the
DP value for the balanced TDG is 2 + 9/2 = 6.5. Now assume that
the two embedded applications corresponding to the two TDGs in
Figure 4 are to be executed on a system with 3 available processor
cores. Based on the computed DP values, our processor resource
partitioner heuristic detailed later on, will assign two processors to
the balanced TDG and 1 processor to the unbalanced TDG which
is an efficient allocation under the stated scenario.
Please note that even though the pairs term represents the number
of independent pairs of tasks, it is in no way means that all of those
tasks can run in parallel. To explain this point, assume a simple
TDG with the following pairs of tasks between two paths pi and
pj : (Ti ∈ pi, Tj ∈ pj), (T1, T3), (T1, T4), and (T1, T5). What this
tells us is that task T1 that belongs to path pi can run in parallel
with either of the tasks T3, T4 or T5. Although the pairs value will
be equal to the number of such pairs, only one such pair can run
in parallel since T3, T4, and T5 belong to the same path pj . This
simple example shows that the pairs value does not represent the
number of pairs that run in parallel but rather the potential for such
parallelism that is reflected by the degree the paths in the TDG are
balanced.
Our effective heuristic to processor partitioner presented in Figure
5 tries to divide the available processing cores in our system fairly
among the available competing embedded applications in the sys-
tem to reduce the schedule times. This will be achieved by allocat-
ing to each application a number of processors that is proportional
to the DP value and the number of distinct paths. The heuristic takes
as input the number of processing cores (p) in the system as well

Processor Partitioner(n, p)

1. Path = 0 and Path DP = 0
2. For i = 1 to n
3. DP(i) = Compute DP(i)
4. End For
5. L = List the applications in decreasing order of (1 + α DP(i)) *
path(i)
6. For i = 1 to n
7. Path = Path + path(i)
8. Path DP = Path DP + (1 + α DP(i)) * path(i)
9. End For
10. If (Path ≤ p)
11. For i = 1 to n
12. Processor received(i) = path(i)
13. End For
14. Else
15. While L not empty
16. i = First application in L.
17. Temp Value = UpperBound((1 + α DP(i)) *
path(i)/Path DP * p)
18. Processor received(i)= MIN(path(i),Temp Value )
19. Update: Path DP = Path DP - (1 + α DP(i)) * path(i)
20. p = p - Processor received(i)
21. Remove i from L.
22. End While

Fig. 5. The proposed processor partitioning heuristic.

as the number of concurrently running applications (n) with their
profile data extracted by the profiler. First, the heuristic will sort the
applications in Line (5) in the decreasing order of their parallelism
potential. The expression in Line (5) produces better results than
simply using the DP value to sort the applications in the system.
This is mainly due to the fact that the DP value is an exaggeration of
the tasks that can actually run in parallel and hence the refinement
in Line (5). Our proposed heuristic will then store the total number
of requested processors by all the applications in the system in the
term Path. Since it is not easy to come up with the exact value for
the optimal number of cores for an application, our heuristic uses
the number of distinct paths as an approximation for the number of
cores. If the available number of cores is larger than the requested
cores by the applications, then each application will simply receive
the number of cores it requested.
On the other hand, if the number of available processing cores
in our system is less than the requested cores, then it will effec-
tively divide the available cores among the competing embedded
applications. This is mainly done in lines (15–22) where compet-
ing applications will receive cores in a way such that applications
with higher DP values will be allocated number of processing cores
closer to what they requested. A good value for α in the process-
ing heuristic in Figure 5 is 0.1 which is found through fine tuning.
Please note that from the way DP and paths are defined and the way
the proposed heuristic is set up, two applications with the same
number of paths might receive different number of cores. This is
mainly due to the fact the DP is defined not only to depend on the
number of paths but the number of independent pairs of tasks that
loosely reflect how balanced the TDG is. As mentioned earlier, this
is an effective utilization of the processing cores in the system as
a more balanced TDG implies that the cores can be better utilized
compared to less balanced TDGs where in such case cores might
exhibit more idle times.
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Run Time Partitioner(n, p)

1. ∀ applications already in the system:
2. Reconstruct their TDG including only unscheduled tasks.
3. Processor Partitioner(n, p);
4. SPM Partitioner(n, m);

Fig. 6. Our run time partitioning heuristic.

Our processor allocation heuristic works also for a heterogeneous
set of computing cores in an SoC. Based on the structure of each ap-
plication and its requirements, the partitioner will decide on which
kind of processing cores to allocate to each application.

4.5 Run Time Resource Allocation/Deallocation
The proposed heuristics can be used under different scenarios. The
first scenario is a system with multiple embedded applications that
get to the system at the same time. The second scenario is a system
with multiple embedded applications with known start times but
not necessarily equal start times. The third scenario is to use our
techniques at run time where applications can get to the system at
different times with no prior knowledge about the start times. The
proposed heuristics are fast enough that online allocation during
run time is possible. Under this scenario, the resources will be al-
located or deallocated based on what applications are utilizing the
system. When an application gets to the system, the heuristics will
be called to perform a new resource allocation based on the new set
of embedded applications. The same happens when an application
leaves the system as in this situation the resources previously allo-
cated to this application are free and they can be allocated to other
applications if needed. Our run time heuristic in Figure 6 is called
any time a new application gets or leaves the system. Although run
time allocation and scheduling is always a harder problem, our pro-
posed heuristics can be effectively used in such situation if needed.
This is mainly because our proposed allocation and deallocation
can be performed very fast by our heuristics and thus they are suit-
able for this situation.
However, the scheduler should be designed carefully as how to be-
have when some resources of an application need to get deallo-
cated. We will not go into details as how this might be handled as
the scheduler part is beyond the scope of this article. However, we
will summarize the proposed approach to this scenario. Due to this
possible deallocation, some memory budget allocated to an appli-
cation may need to be allocated to another application. First, if a
new application gets into the system, the resource partitioner will
be invoked based on the new set of applications currently using the
system. If the memory budget m derived from our memory parti-
tioner is greater than the currently available memory budget that is
not used by any other application, some of the memory budget will
be freed from other applications to meet the new requirements. To
prevent any data loss, task preemption is not allowed. That is, a task
of an application that is required to give part of its memory will run
into completion before this deallocation occurs. In order to deter-
mine which parts of the SPM memory budget are best candidates
to deallocate, our techniques keeps track of the frequency memory
locations are used during execution and least recently used (LRU)
ones will top the candidates list for deallocation.

Table 2. Characteristics of our benchmarks.
Benchmark # of variables # of tasks Total Var size (Kbytes)

Lame 128 4 294.83
Osdemo 46 7 78.64
Enhance 44 6 7192.35

Cjpeg 20 5 690.31

5. EXPERIMENTS
5.1 Benchmarks and Set up
In this section, the resource partitioning techniques are tested to
show the effectiveness of the proposed work. Real life embedded
applications are used from different benchmark suites including
[25], Mediabench and MiBench, [30, 32]. The benchmarks used
are enhance, lame, osdemo, and cjpeg with their characteristics
presented in Table 2
Our profiler will examine each embedded application and extract
the necessary information to be used by the resource partitioner as
detailed earlier. The profiler will first identify the main computation
blocks (tasks) which will translate to the nodes in the task depen-
dence graph (TDG). The profiler will also study the dependencies
between different blocks based on the control/data flow informa-
tion and add the appropriate edges to the TDG. This control/data
flow information to estimate the communication costs will be rep-
resented by the weights of the edges in the TDG. An instrumented
version of the architectural simulation tool Simplescalar was used
to get some of the profile information. Simplescalar is utilized to
find the computation time of an application on a certain processor
under a specific memory budget. In addition to the TDG and the
computation time of tasks on different processors, the profiler will
extract important information like theMin andCur values and the
size of the variables with their frequency of appearance in a task.

5.2 Results
There are not many techniques in the literature that can compare
directly to our dynamic technique to resource partitioning among
multiple applications in the system. The closest to what we are do-
ing is the technique presented in [31]. Hence, we implemented the
following two techniques and performed our experiments and com-
pared the results:

—[31]: This is the approach presented in [31]. In this approach,
the authors divide the available resources carefully among the
applications to reduce the run time.

—Ours: Our approach detailed in this paper to fairly divide the
available resources among competing applications in the system.

Our resource allocation techniques for memory and processing
cores are implemented and tested under different scenarios to show
their effectiveness. As mentioned earlier, we compare our approach
to the effective technique in [31]. Testing our techniques is not an
easy task as this article assumes that applications can get into the
system at random times in contrast to predefined times. Our tech-
niques will adapt to the number of applications in the system and
their structure. Once an application enters or leaves our system, the
resource partitioner will be called to allocate/deallocate resources
based on the new set of applications in the system as explained
earlier.
To get actual run times of the applications, our effective scheduler
published in [22] is utilized. The scheduler is based on memory-
aware scheduling where the step of partitioning the memory budget

6
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Table 3. System’s assumed resources for different workloads.
Workload Combination (# Processors, SPM Budget)

(Lame, Osdemo) (3, 24KB), (4, 12KB) & (6, 64KB)
(Lame, Cjpeg) (3, 64KB), (4, 32KB) & (6, 256KB)

(Lame, Osdemo, Cjpeg) (4, 256kB), (6, 128KB) & (10, 512KB)
(Lame, Enhance, Cjpeg, Osdemo) (4, 2MB), (8, 2MB) & (10, 4MB)

assigned to an application among the processor cores allocated to
that application is integrated with the scheduling step. It was shown
in [22] that this integrated approach improves over the traditional
decoupled approaches that treat memory partitioning and schedul-
ing as two independent tasks. This is mainly due to the fact that
the appropriate configuration of a processor’s scratch pad memory
depends on the tasks scheduled on that processor.
To test the proposed resource partitioning heuristics, MPSoC sys-
tems under different workloads from the pool of the following em-
bedded applications are utilized: Lame, Cjpeg, Osdemo, and
Enhance. The systems were tested under the following work-
loads: (Lame, Osdemo), (Lame, Cjpeg), (Lame, Osdemo,
Cjpeg) and (Lame,Enhance,Cjpeg,Osdemo). Each workload
in a system was tested under different scenarios of arrival times to
imitate a real life system where application can get to the system
at any time and the resource partitioner is required to provide the
necessary allocation/deallocation based on the application concur-
rently utilizing the system. Based on the applications in the work-
loads, our approach is tested in systems with different processing
and memory budgets. The choice of system resources for a set of
embedded applications is essential to test our proposed approach as
too little or too many resources may not reflect the effectiveness of
our techniques. Based on the nature of each embedded application,
we came up with the system resources scenarios in Table 3 to ef-
fectively test the techniques for different workloads. The off-chip
memory size is assumed to be unlimited, that is, it can hold all the
data variables needed by the embedded application.
The results from our techniques and those in [31] for workloads:
(Lame, Osdemo), (Lame, Cjpeg),(Lame, Osdemo, Cjpeg)
and (Lame, Enhance, Cjpeg, Osdemo) are presented in Figure
7, 8, 9, and 10, respectively. The results represent the average cy-
cle count of multiple runs for each workload with different start
times under each set of system resources. Our techniques were
able to reduce the cycle count in all cases compared to that in in
[31] with a reduction range of 7 % to 16 % with an average cy-
cle count reduction of 10.2 %. These results show the effectiveness
of our techniques that effectively allocated the resources for differ-
ent combinations of embedded applications under different system
resources under different scenarios of arrival times and order of ar-
rivals. Note in Figure 8 the importance of the memory requirement
of an application on the results. The cycle count went up from 3 to
4 processors since the memory budget was reduced by 32KB that
resulted in adverse effect on the run time of the Lame application
as the run time of Lame is heavily reduced with memory budget
close to 32 KB compared to that of 8 KB as shown in our scheduler
results in [22]. This does not show in Figure 7 since the cycle count
is dominated by that of Osdemo.
One of the main reasons for our improvements over those in [31]
is that our techniques allocate the resources based on a deep anal-
ysis of the structure of each application reflected partially in the
elasticity, PRF , and DP values.

6. CONCLUSION
This article presents effective techniques to resource partitioning
among multiple applications on a multiprocessor system-on-chip.
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Our techniques effectively divide the processor cores and the mem-
ory budget among competing applications based on the structure
of each application. Applications are assumed to enter or leave the
system at different times. Results on real life benchmarks show the
effectiveness of our framework.
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