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ABSTRACT 

Extracted features which are obtained from a multiview video 

stream form a special case of a multi-sensor observation 

sequence. If the sensors are not synchronous, the observed 

features of views are not aligned together and this makes 

some difficulties in classification applications. A new 

architecture for hidden Markov model, namely pyramidal 

layered hidden Markov model, is proposed in this paper to 

handle this situation. This is accomplished by means of 

separate decoding in each view stream in bottom layer and 

then fusion of the aligned decoded symbols in top layer. 

Structure and algorithms of the new structure are introduced 

and are then used for human behaviour recognition in 

multiview video sequences. Considering collected information 

from all views of a multiview human action recognition 

system, one expects the recognition rate to increase and some 

problems like occlusion to be rectified. Several experiments 

have been performed in this paper. The experimental results 

show high performance, about 93.8% in average, in multiview 

human behavior recognition, as well as accuracy improvement 

compared to similar methods. The results are also compared 

with other contributions on three different multiview behavior 

datasets.   
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1. INTRODUCTION 
Human action recognition is an active research area in video 

processing and exploitation, in which a sequence of human 

motions in video streams is modelled and classified. As any 

typical classification problem, human action recognition has 

two essential phases: extraction of significant features which 

have good discriminability and training a conform model. 

Recently, many efforts have been made to utilize the benefits 

of using multiview video sequences and perform human 

behavior recognition in multiview scope. A multiview video 

sequence is a combination of two or more video streams, 

which are obtained from multiple cameras arranged around a 

scene in different views capturing the occurred events 

simultaneously. Researchers hope that by means of multiview 

video streams, the performance of recognition system is 

increased and also some problems such as occlusion are 

rectified.  

Data fusion, which is the integration of multiple data from 

different sensors or different related processes and producing 

accurate information from them, can be done in three different 

levels: sensor, feature and decision level. Obviously data 

fusion must be used in one multiview action recognition 

scenario [1]. To perform data fusion in senor level in 

multiview video sequences, the raw imaging data of all views 

must be combined, which in turn needs to find related pixels 

in all views using projective geometry concepts and three 

dimensional scene reconstructions. In the feature level fusion, 

features are extracted from video stream of each view 

independently and then combined to a multi-dimensional 

feature space. The learning and classification are done in this 

new space. At last, in the decision level fusion, feature 

extraction and classifier training are done independently in 

each view and the decisions of all classifiers are combined to 

an ensemble classifier to make the final decision. A new 

architecture is proposed for Hidden Markov Models (HMM) 

in this paper which can classify the observation raised from a 

multiview video stream in the feature level fusion. 

Assuming that feature extraction and selection have been done 

before, a new extension of HMM is proposed which is named 

‘pyramidal layered hidden Markov model (PLHMM)’, for 

classification and recognition of human behavior in multiview 

video streams. After a brief review of current HMM-based 

extensions and their advantages and disadvantages, the 

structure of the model was introduced. The word 'pyramidal' 

was assigned to PLHMM because of its pyramidal structure 

that has been spread in the bottom and aggregated at the top. 

The learning and inference algorithms of PLHMM have been 

explained. It is very important to note that these algorithms 

are a mixture of traditional algorithms available for HMMs, 

which are customized for PLHMM. Therefore, no additional 

difficulties have been arising, unlike the similar proposed 

extensions of HMM.  

After introducing the PLHMM and its algorithms, we test its 

ability to learn and classify human behaviors in multiview 

video sequences as a multi sensor problem in three different 

famous multiview datasets: MuHAVi, IXMAS and 

HumanEvaI. The experiments are designed to specially show 

the high performance of PLHMM in situations where 

incoming information from multiple sensors is not 

synchronized. Also, the best parameters of PLHMM are 

discovered and the final results are compared with other 

works. 

This paper is organized as follows. The next section includes 

a brief review of some of extended architectures of HMM. 

The new PLHMM architecture is introduced in section 3 and 

its learning and decoding algorithms will be described in 

section 4. Experimental results of applying PLHMM on 

multiview human behavior recognition application are 

discussed in section 5, and finally section 6 concludes the 

paper. 
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2. HMM EXTENSIONS 
HMM and its extensions have been widely used in action 

recognition. HMM and its extensions are a particular case of 

temporal or dynamic graphical models (DGMs) [2]. Some 

advantages of DGMs that are relevant to the problem of 

human behavior modelling are: the ability of handling 

incomplete data as well as uncertainty; trainability of them; 

conditional independency encoding; existence of efficient 

algorithms for doing predictive inference; suggestion of a 

framework for combining prior knowledge and data; and 

finally modularity and parallelizability [2].  

All HMM extension models could be transformed into a 

traditional HMM in practice [3]. One of the advantages that 

may be expected from using such models over a large usual 

HMM is that these models are less likely to suffer from over-

fitting, since the individual sub-components are trained 

independently on smaller amounts of data. A consequence of 

this is that a significantly smaller amount of training data is 

required for the LHMM to achieve a performance comparable 

with the HMM.  

A stochastic context-free grammar has been proposed to 

compute the probability of a temporally consistent sequence 

of primitive actions which are recognized by HMMs [4]. An 

entropic-HMM is proposed to segment the observed video 

activities into semantic states [5]. 

The standard Baum–Welch procedure has been extended in 

Hierarchical HMMs (HHMMs) structure [6]. Since the 

original approach is very time consuming, a linear-time 

inference algorithm for HHMMs was introduced [7]. The 

HHMM is also used in some complex behavior recognitions 

such as multi-person activity recognition [8]. 

Embedded HMMs that are extended architectures of HMMs 

are proposed and are used on two-dimensional data such as 

image processing [9]. In such architectures, one HMM models 

one dimension of the data while its state variables correspond 

to the other dimension of the data.  

Layered LHMM is a technique proposed to use learning at 

multiple levels [10]. A learning algorithm is used to determine 

how the outputs of the base classifiers should be combined, so 

this is an example of ensemble classification. This is a more 

sophisticated technique than cross-validation and has been 

shown to reduce the classification error due to the bias in the 

classifiers [2]. Rather than training the models at all levels at 

the same time, the parameters of the HMMs at each level can 

be trained independently; provided that the previous level has 

been already trained, in a bottom-up fashion. The inputs 

(observations) of each level are the classification outputs of 

the previous level. At the lowest level the observations are the 

feature vectors extracted directly from sensor signals. 

A layered structure provides several valuable properties. 

These properties make it feasible to decouple different levels 

of analysis for training and inference. Each level of LHMM is 

trained independently, with different feature vectors and time 

granularities. Once the system has been trained, inference can 

be carried out at any level of the hierarchy. Another advantage 

is that the layers at the bottom of the LHMM, which are more 

sensitive to changes in the environment such as the type of 

sensors and sampling rate can be retrained separately without 

altering the higher layers of the LHMM [2]. 

Several extensions of HMM have also been introduced in the 

past years, such as factorial HMM [11], mixed HMM [12] and 

profile HMM [13]. Many of these extended HMM models are 

also frequently used in human action recognition. More 

complex models, such as Parameterized-HMMs [14], 

Variable-length HMMs [15] and Coupled-HMMs [16-18] 

have been used to recognize more complex activities such as 

the interaction between two people. Many other complex 

Bayesian networks have also been used for the modelling and 

recognition of human activities [19-22]. 

The proposed architecture classifies the observation sequences 

in a bottom-up layered fashion similar to previous model 

LHMM, but the difference is that the PLHMM can receive 

more general asynchronous multi-sensor observation 

sequences. 

3. PLHMM STRUCTURE 
To construct an automatic multiview human behavior 

recognition system, a powerful classifier which can receive 

and operate on multiview video sequences is required. 

Although present classifiers can perform this job anyway, 

using HMM or its extensions such as LHMM and HHMM 

may cause some restrictions on the applicability of the system. 

One of the most important limitations is that the observations 

should be prepared as a matrix in which each column belongs 

to the observation vector in one time slice. In a multiview 

video sequence, the observation vector contains the symbols 

sensed from all cameras. This means that the cameras should 

be synchronized necessarily. However this is not true in most 

multiview human action datasets, which could limit the 

application of the system. 

The output of a typical multi sensor system is demonstrated in 

Figure 1. As it is shown in this figure, one multi-sensor 

sample consists of many symbol sequences, each coming 

from a distinct sensor or different process. It is very important 

to note that the lengths of these sequences are not necessarily 

equal because the sampling rate of the sensors may be 

different. In addition, if the sensors are not synchronized, 

perceived symbols of the sensors in a specific position are not 

related and belong to diverse time instances.  

 

Fig 1: The typical structure of a general multi-sensor 

observation sequence. The dotted lines show the probable 

dependencies in the observation of the sensors. 

 

To perform training and classification in this situation, the 

traditional classifiers like HMM cannot be implemented 

without any consideration. To overcome this problem, 

PLHMM is proposed which can receive the outcomes of 

many sensors simultaneously and after a preliminary 

decoding, warp the sequences together to perform the 

classification in the next step.  

The general architecture of a PLHMM may have many layers 

but in this paper a two-layered PLHMM is introduced. As 

seen in Fig. 2, the lower layer has many groups of HMMs; 

each group will receive its observations from a distinct sensor. 

The fact that PLHMM can receive many observation 

sequences from different sources is the main contribution and 

advantage of it, especially when operating on the outcomes of 

a multi-process system. This is the main difference between 

stream positions 
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PLHMM and LHMM, in which there is just one group of HMMs in each layer. 

 

Fig 2: A PLHMM structure with two layers. It was used as a classifier for multiview human action recognition. 

Each HMM group in the lower layer belongs to one view of 

multiview video sequences. The sequence of the most 

probable states of the winner HMM in each HMM group are 

produced as the output of that group (Fig. 3). As it is shown in 

Fig. 3, the input observation matrix of one HMM group, 

which includes M features in T time instances, formed the 

matrix{Om,t}MT, that is applied to all HMMs. The output of 

this appliance is vector {sw
t}1T, which denotes the most 

probable state string of the winner HMM. The term sw
t stands 

for the most probable state in time t of the winner HMM 

marked by w.  

 

Fig 3: A group of HMMs and their input and output 

structures. 

The decoded state symbols of the lower layer are gathered, 

aligned and fed to the upper layer as the observations of it. 

The details of preparing the output of the lower layer for the 

top layer are described in the next section. The upper layer of 

the PLHMM consists of one group of HMMs. The final 

classification is done in the upper layer. Because of 

supervised learning manner of PLHMM, the number of 

HMMs in all the layers must be the same as the number of 

classes. 

4. PLHMM TRAINING AND 

DECODING ALGORITHMS 
In this section, training and decoding algorithms of the 

mentioned PLHMM are discussed. Fortunately, each part of 

the overall approach is one of the known and common 

algorithms and this helps the authentication of the overall 

algorithm. 

The layered structure of PLHMM imposes a layer fashion in 

the learning and decoding algorithms. The general overview 

of algorithms is: the multi-sensor observation sequences are 

fed to the lower layer first, and after appropriate processing, 

the output of the lower layer is given to the top layer. In the 

learning stage, all layer HMMs are trained bottom-up and the 

parameter sets of them will be estimated. In the classification 

phase, the lower layer extracts some features from the 

observed sequence and passes them to the top layer, which is 

responsible for assigning a class tag to the sample. 

4.1 LEARNING STAGE 
The lower layer of the proposed PLHMM in Fig. 2 receives a 

training sample. Each training sample is a multi-sensor 

observation sequence, consisting of N input observation 

sequences, which are shown in Fig.1 as rows. The observation 

sequence of the ith process is considered as Oi={Of,t}FiTi in 

which Of,t is the f th observation feature in the tth time instant 
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and Fi and Ti stand for the size of the feature vector and time 

duration of the ith process, respectively. Therefore, each 

process may have its own feature numbers and time duration 

and this is a very powerful ability of PLHMM that can receive 

some parallel observation sequences with different vector 

sizes and sampling rates. This ability is available because of 

independent operation of the HMM groups in the lower layer 

of the PLHMM.   

Considering the observation of the ith process in the ith HMM 

group of the lower layer, the traditional algorithms such as 

expectation-maximization can be used as training algorithms 

to estimate the HMM parameter set in each HMM of each 

HMM group of the lower layer directly. First, usage of all 

training samples of class k, λk
i which is the parameter set of 

the kth HMM in the ith group of the bottom layer, is obtained 

by EM algorithm: 

    
              

                      (1) 

In (1) Ok
i denotes all observation sequences of the ith sensor 

which belongs to class k. When all the HMM parameters of 

the lower layer has been estimated, the training samples are 

launched again to the model in order to discover the best 

matched state sequences of HMMs. The Viterbi algorithm is 

used as a decoding algorithm for this purpose. This process is 

done for each view of the lower layer groups: 

    
                   

                  (2) 

In (2) S stands for the sequence of states and Sk
i is the most 

probable state sequence of the kth HMM in the ith group of the 

bottom layer. 

The outcome of the lower layer that is used as the observation 

sequence in the upper layer is a matrix of the form Ŝ={Ŝi,j}NT, 

in which Ŝi,j is the state symbol of the ith HMM group in the 

lower layer in the jth time instant. Also, T is the time length of 

the overall observation sequences after performing the 

warping step which is described below.  

A time warping algorithm is applied to align the length of the 

winning decoded sequences. The dynamic time warping 

(DTW) algorithm can be utilized for this purpose. Suppose 

that Si=[si,1, … , si,Ti]1Ti and Sj=[sj,1, … , sj,Tj]1Tj are two state 

symbol series of lower layer of PLHMM. The DTW algorithm 

[23] finds the matrix P= [pipj] for sequences Si and Sj in 

which pi and pj are T1 vectors of indices of two state symbol 

series, in such a way that the following expression is 

minimized: 

                    
 

 
                             (3) 

In (3) ||.|| is a distance measure which returns similarity 

between the two components of the observation sequences. 

Also, T denotes the total number of steps needed to align two 

observations or the length of warped strings. 

Since the lower layer of PLHMM may have more than two 

HMM groups, the aligning algorithm should be able to receive 

and unify the size of many sequences altogether. T is set to the 

average length of all strings, and then by using (3), short 

strings are stretched and long ones are compressed. 

After these steps, the warped symbol sequences are combined 

to form the Ŝ matrix, as the observation of the top layer: 
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In (4) the ith row is the aligned state symbol sequence of the 

kth HMM of the ith HMM group and the jth column forms an 

observation vector in the jth time instance for the top layer in 

the kthclass.  

When the observation sequence of the upper layer is made, its 

training must be done in the same manner as the bottom layer. 

So, the EM algorithm is used for the training of the top layer 

HMMs. Thus if the input sample belongs to class c, the EM 

algorithm is applied to yielding λc, the parameters of the cth 

HMM of the top layer. Accordingly all PLHMM parameters 

are obtained in the learning algorithm. 

4.2 DECODING STAGE 
To use a PLHMM for a classification or recognition purpose, 

it is needed to estimate the likelihood of generating a multi-

sensor sequence by HMMs in the top and bottom layers of the 

PLHMM. 

Similar to the training algorithm, the evaluation algorithm is 

done in a layered fashion. More precisely, the testing sample 

is given to the lower layer and after decoding, it is passed to 

the top layer to do the final classification. The decoding 

process in the lower layer is done again by Viterbi algorithm. 

This algorithm was run in each ith group of HMMs in the 

lower layer to determine the winner HMM in the ith group as 

well as the most probable state transitions of it. Similar to the 

training algorithm, the decoded strings of the lower layer may 

not have equal lengths, so the warping algorithm has been 

performed to unify their time duration and production. 

Now, the Ŝ matrix, which is the lower layer outcome matrix 

used as the upper layer observation, is passed to all HMMs of 

the top layer and the likelihood of production of it was 

estimated using available simple algorithms such as Viterbi. 

Finally, the class which is assigned to the HMM with the 

highest probability is selected as the winner class and as the 

output of the classifier. 

In the use stage, it is possible that the winner HMMs of all 

HMM groups of the lower layer, do not belong to the same 

class. This means that one or more HMM groups in the lower 

layer mistake the real class of the observation sequences and it 

causes a noisy observation for the top layer. However, if the 

noise is not dominant, the classification in top layer possibly 

corrects it and detects the true class. In the field of multiview 

human behavior recognition, if due to some problems such as 

occlusion, the true behavior is not recognized in some views, 

there is still a possibility that the final decision of PLHMM is 

correct. In fact the whole architecture produces an ensemble 

classifier which confirms the good recognition results of 

multiview human behavior recognition. 

5. EXPERIMENTAL RESULTS 
Various experiments about the proposed PLHMM will be 

discussed in this section. Multiview human action recognition 

is used as a multi-sensor problem to test the performance of 

PLHMM. The body posture graph (BPG) descriptor is used as 

the features or the observations for the recognition purpose. 

The BPG is a posture-based descriptor of body silhouette 

which is generated in three steps: performing a silhouette 

modelling, generating a skeleton-like graph and producing a 

special adjacency matrix for it [24]. This descriptor produces 

a 451 vector of binary features for one frame in each view of 

a multiview behaviour dataset. Observation sequences for one 

view are made by placing these vectors altogether according 

to the time. 
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5.1 EXPERIMENT A 
There are many parameters in a PLHMM that must be defined 

before using it as a classifier. These parameters include: the 

number of layers, the number of HMM groups in each layer, 

the number of HMMs in each group of HMMs and finally the 

number of states of each HMM. According to the PLHMM 

structure descriptions, the number of HMM groups are 

obtained easily. There is just one HMM group in the top layer 

and the number of HMM groups in the lower layer is equal to 

the number of available views of the used dataset. Also, it can 

be inferred that the number of HMMs in each HMM groups of 

top and bottom layers must be the same as the number of 

action classes in the dataset. In this experiment the proper 

number of HMM states in each layer is investigated. 

The MuHAVi multiview behavior dataset [25] was selected to 

test the performance of the proposed PLHMM in this 

experiment. The MuHAVi dataset originally has eight views 

and 17 actions repeated by 7 actors. Each action may be 

broken into primitive actions. The time duration of one action 

in different views may vary and the sequences of views are 

not synchronous. 

To determine the situation in which the best accuracy is 

achieved, many tests with different PLHMM state numbers 

are set up. The recognition results are collected in the Table 1. 

These results show that, the best recognition rate of PLHMM 

in MuHAVi dataset is 93.91%, when each HMM in both 

layers has 6 states.  

Table 1. Accuracy results of multiview human actions 

classification with different state numbers of PLHMM on 

MuHAVi dataset. 

accuracy  
the number of states in each 

HMMs of the bottom layer 

  4 6 8 

the number of 

states in each 

HMMs of the 

top layer 

4 90.97 92.65 91.60 

6 92.44 93.91 93.28 

8 92.44 93.07 92.02 

 

In fact, decoding in lower layer groups results in segmentation 

of the action sequences into some primitive action 

components. In other words, one can presume that the lower 

layer HMMs learns the primitive actions and the top layer 

combines these symbol-coded actions and puts them in a 

meaningful behavior category. 

On the other hand, the small number of states in each layer 

makes the learning process more accurate when little training 

data is available. 

5.2 EXPERIMENT B 
To indicate the better performance of PLHMM against the 

former architecture LHMM and the standard HMM, different 

LHMM and HMM models on MuHAVi dataset is trained. 

According to the results of Table 2, the best recognition rate 

of LHMM is 90.34% and the HMM with 10 state has the best 

accuracy of 89.71% due to the results of Table 3. Noting the 

best accuracies of Table 1, 2 and 3, the first conclusion is that 

the recognition using new architecture was improved 

significantly. This is an expected result, because the PLHMM 

performing separate decoding stages before the final 

recognition in each view of the multiview dataset, which helps 

the better characteristics extraction from each distinct view. In 

other words, the PLHMM performs the classification in each 

view independently and this is the reason why asynchronous 

cameras are not affecting the accuracy results. 

It is important to note that to make it possible to implement 

the multiview behaviour recognition system with LHMM and 

HMM, the observation sequences of all views are manually 

aligned and by combining them one multi-feature observation 

sequence is made. In other words, fusion is made before 

decoding, in comparison with the PLHMM which performed 

it after initial decoding step between two layers. Obviously, 

when the sensors are not synchronous such as in the MuHAVi 

dataset, the learning and classification of such models caused 

some trouble and their accuracy was decreased. The results of 

followed experiment prove this opinion. 

Table 2. Accuracy results of the classification of multiview 

human actions with different state numbers of LHMM. 

Accuracy  
the number of states in each 

HMMs of bottom layer 

  8 10 12 

the number of 

states in each 

HMMs of top 

layer 

6 87.82 89.29 88.24 

8 89.50 90.34 89.71 

10 88.87 89.92 88.45 

 

Table 3. Accuracy results of the classification of multiview 

human actions with different state numbers of standard 

HMM. 

the number of 

states in HMM 
8 9 10 11 12 

Accuracy 86.98 87.82 89.71 88.66 87.82 

 

The second issue is that the best recognition results of LHMM 

occur when it has 10 and 8 states in each HMM of bottom and 

top layers, respectively. Reminded that the learning scheme of 

LHMM is supervised and each layer of it has 10 HMMs, 

concluding that the LHMM has totally 100 and 80 HMM 

states in bottom and top layer, respectively. On the other 

hand, the best model of PLHMM has 60 HMM states in each 

HMM group of both layers in PLHMM. The parallel nature of 

processing in each HMM group of the lower layer prevents 

the learning algorithm to be affected by over-fitting. Also, 

fewer states of the top and bottom layers caused better 

learning with more generalization ability of PLHMM 

compared with LHMM.  

The overall result is that by using PLHMM, not only the 

recognition rate of the system increases, but also a better and 

more accurate training may occur when training samples are 

limited. 

5.3 EXPERIMENT C 
To prove that the proposed architecture is applicable to 

different scenarios, the multiview human action recognition 

was performed on three different datasets. In addition to 

MuHAVi dataset, in this experiment Inria Xmas Motion 

Acquisition Sequences (IXMAS) and HumanEva-I datasets 

are used. The IXMAS dataset contains 11 actions, each 

performed 3 times by 10 actors (5 males / 5 females). The 

acquisition was achieved using 5 cameras [26]. The 

HumanEva-I dataset contains 7 calibrated video sequences (4 

grey scale and 3 colour) that are synchronized with 3D body 
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poses obtained from a motion capture system. The database 

contains 4 subjects performing 6 common actions [27]. 

The high accuracy rate of PLHMM in the last row of Table 4 

shows that the PLHMM has successfully overcome the 

multiview human behavior recognition. Although the 

recognition rate is not the same in three datasets, as a whole 

the result is reliable. Final results of the proposed recognition 

system are compared with the results presented by other 

researchers of these datasets. It is observed that the proposed 

approach succeeds to overcome others' results. 

Table 4. Accuracy results of classification of multiview 

human actions with PLHMM on three different datasets, 

compared with other researchers’ results. 

 
MuHAVi IXMAS 

Human 

EVA I 
(Karthikeyan et al., 

2011) [28] 
88.23 - - 

(Wu et al., 2010)       

[1] 
69.88 - - 

(Weinland et al., 2007) 

[29] 
- 81.27 - 

(Junejo et al., 2008) 

[30] 
- 72.70 - 

(Vitaladevuni et al., 

2008) [31] 
- 87.00 - 

(Weinland et al., 2010) 

[32] 
- 83.50 - 

(Junejo et al., 2011) 

[33] 
- 74.60 - 

(Jingen et al., 2011) 

[34] 
- 82.80 - 

(Ning et al., 2008)   

[35] 
- - 95.00 

our approach 93.91 91.71 95.83 

 

6. CONCLUSION 
A new HMM topology for multiview human action 

recognition was proposed in this paper. The structure of 

PLHMM can receive several observation sequences from 

different sources in parallel and classify them by merging the 

available information, even if they are not synchronized. 

There are some novelties in the structure and algorithms of 

PLHMM. It is a general extension of LHMM which can 

receive multi-sensor observation sequence. The PLHMM 

processes this sequence in parallel and fuses useful 

information of it in feature level. Also, the algorithms of the 

proposed architecture were presented and theorized. These 

algorithms utilized previous algorithms in a layered manner, 

so the verification of the algorithms becomes easy. In the 

proposed training algorithm, the DTW algorithm is used to 

align more than two strings together. The decoding in the 

lower layer helps the PLHMM to successfully detect primitive 

actions in a behavior sequence and improve the performance 

of its classification. Also it causes each HMM to have a few 

states, which in turn leads to a better learning in the lack of 

huge training data. 

Multiview human action recognition problem is chosen as a 

multi sensor problem and the recognition ability of the 

proposed PLHMM on it is tested. Then its best variable 

setting was found. Some experiments are performed to show 

the high performance of PLHMM compared to other 

architectures. The accuracy of PLHMM was also compared to 

other works in three different datasets. It was showed that the 

proposed architecture has overcome many difficulties in 

multiview sensor problem. 
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