
International Journal of Computer Applications (0975 – 8887)

Volume 96– No.25, June 2014

42

Static vs Dynamic Techniques for Selectivity Evaluation

in Distributed Query Optimization

Surbhi Bansal
Research Scholar

Department of Computer
Science and Engineering

 Guru Nanak Dev University,
Amritsar, Punjab

 Rajinder Singh Virk
Assistant Professor

Department of Computer
science and engineering

Guru Nanak Dev University,
Amritsar, Punjab

ABSTRACT

In distributed database query optimization, query optimizers

have traditionally relied upon statically estimated table

cardinalities when evaluating the cost of the query plans.

This paper analyses static vs. dynamic calculation for

selectivity of intermediate relations generated in query

processing. The objective of this research is to overcome the

disadvantages of previously formulated static methods which

are relatively inaccurate in a distributed database

environment. A Dynamic selectivity evaluation tool (DSET)

has been proposed to optimize cost for a distributed database

query processing environment. The results have shown that

dynamic evaluation of selectivity factor of sub query

operation is feasible and can significantly reduced the total

query cost than its static estimation.

Keywords

Distributed database, query optimization, cardinality,

database statistics, selectivity factor, static Model, DSET etc

1. INTRODUCTION
For the past twenty years, Distributed database systems

design and query optimization has been an active studied

area of database system research [1]. Query optimization

refers to the process of ensuring that either the total cost or

the total response time for a query is minimized. Most

modern cost-based optimizers decide between execution

plans by minimizing the estimated cost of executing the

query. A basic technique used in cost estimation is pre-

estimation of Selectivity factor. Optimizers take the

cardinalities of base tables along with their instances at the

leaves of a query tree as an input and then use pre-computed

selectivities of operators in the tree to estimate the cardinality

of the input to operators further up in the tree [2][3]. The

base relations involved in a distributed query may be

fragmented and/or replicated, thereby inducing

communication overhead costs.

2. RELATED WORK
Stratis D. Viglas et al. have proposed shifting from a

cardinality-based approach to a rate-based approach, and give

an optimization framework that aims at maximizing the

output rate of query evaluation plans. This approach can be

applied to cases where the cardinality based approach cannot

be used[2].

Faiza and Yahya have proposed a statistical technique for

estimating the size of the resulting relation obtained by

relational operator by using sample based estimation that

execute the query to be optimized on small samples of real

database and use the results obtained by these trials to

determine cost estimates [4].

Gurvinder Singh et al. have proposed a stochastic model

simulating a Distributed Database environment and shown

benefits of using innovative Genetic Algorithms (GA) for

optimizing the sequence of sub-query operations allocation

over the Network Sites. Also, the effect of varying Genetic

Parameters on Solution’s quality is analyzed [6].

Fan and Mi Xifeng have designed a new algorithm based on

the heuristic optimization that can significantly reduce the

amount of intermediate result data. The basic idea of this

algorithm is based on relational algebra equivalence

transformations to raise the connecting and merging

operations in the query tree [7].

Rajinder singh et al. has highlighted a design of a

probabilistic solution to the operation allocation problem of

Distributed Databases. They highlight the design and

implementation of one such model, Genetic Algorithm for

sub query Allocation (GA_SA), which is modest effort to

stochastically simulate optimization of retrieval transactions

for a distributed database query [8].

William I.Grosky et al .uses an adaptive selectivity

estimation scheme for multidimensional queries which

performs better than non-adaptive methods when the

distribution of the data is not known. This research

overcomes the disadvantages of previously formulated non-

adaptive, static methods which are relatively inaccurate in a

dynamic database [9].

Manik Sharma et al. performed the comparative analysis of

static and dynamic metric for structured programming

environment. With the help of conventional static metrics its

not able to analyze various facts of software’s. It is very

important to understand the dynamic behaviour of the

program or an application in developing new effective

strategies in computer science. This becomes the basis for

working on dynamic metrics in place of traditional static

metrics. [10].

Areerat and Jarernsri have proposed Exhaustive Greedy (EG)

algorithm to optimize intermediate result sizes of join

queries. Most intermediate result sizes of join queries

estimated by the EG algorithm are comparable to the results

estimated by the Exhaustive Search algorithm (ESU)that is

modified to update join graphs [11].

http://link.springer.com/search?facet-author=%22William+I.+Grosky%22

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.25, June 2014

43

Ridhi kapoor has described the selectivity and cost estimates

in query optimization in distributed databases. They have

discussed the various cost formulations to evaluate the cost

of execution plans and then executing the plan with the

minimum cost to the objective function [12].

Carlo et.al has proposed a method for estimating the size of

relational query results. The approach is based on the

estimates of the attribute distinct values. In particular, the

capability of analytic method to estimate selectivity factors

of relational operations is considered. They also presented

some experimental results on real databases which show the

promising performance of analytic approach [13].

3. DISTRIBUTED QUERY

OPTIMIZATION
In distributed query optimization, one of the major

components is generation of sub-query allocation plan. A

complex, high level distributed query is divided into a

sequence of smaller, simpler sub-queries. Original query and

low level query should have the same syntax that is

producing the same results. In order to reduce total cost of

the query, these sub-queries need to be executed on various

different sites of distributed database. The total cost that will

be occurred in processing the query is a good measure of

resource consumption. In a distributed database system, the

total cost includes CPU, I/O and communication cost that

needs to be minimized. An optimizer’s cost model includes

cost functions to predict the cost of operators, statistics, base

data and formulas. The cost is in the terms of execution time,

so a cost function represents the execution time of a query

[1][5]. A good query execution strategy generated by query

optimizer involves three phases. First is to find a search

space which is a set of alternative execution plans for query.

Second is to build a cost model that compares costs of

different execution plans. Finally, it explores a search

strategy to find the best possible execution plan among all

alternative execution plans using cost model [1].

Query optimization provides an immediate way of answering

queries for which the size of answer is of interest in its own

right. The size of the intermediate relations that are produced

during the execution is the main factor affecting the

performance of a query execution strategy [5]. The size of

the intermediate relations is based on the evaluation of

selectivity factor of sub-operations. Selectivity factor tells

number of tuples remains in the resultant relation.

4. SELECTIVITY ESTIMATION OF

SUB-QUERIE OPERATIONS
Selectivity estimation is the main part of query optimization.

The selectivity factor of an operation is the number of tuples

of an operand relation that participate in the result of that

operation. It is denoted by SFOP, where OP represents the

operation. The selection of the plan is usually based on the

cost estimates of alternative plans, which in turn are based on

the selectivity estimates of relational operators. Selectivity

evaluation depends on cardinality of intermediate fragments

generated in the query. The selectivity estimation is based on

statistical information about the base relations and formulas

to estimate the cardinalities of the results of the relational

operations [4]. There is a direct relationship between the

precision of the statistics and the cost of managing them.

4.1 Selectivity formulations
The following formulae for relational operations were used

to evaluate selectivity factor of various sub-query operations

like selection, projection and join as per Ozsu’s Model [1].

Here ‘SF’ and ‘A’ , represents selectivity factor and attribute

respectively, ‘card’ represents cardinality of result and ‘R’

and ‘S’ represent two relations[5].

Table 1. Selectivity formulae

4.2 Database Statistics
The estimation of size of intermediate results of relational

algebra is based on statistical information about the base

relations and formulae to predict the cardinalities of the result

of relational sub operations. Sequence of operations is pre-

fixed before computing cardinality of relations.

No of base relations = 3

No of operations = 9

Site of query=3rd

No of fragments (B1,B2, B3…………F11)=11.

No of sites =3

The size of each tuple of the relation is presumed to be

1KB.Size of the relation is calculated as:

Size of a relation = tuple size * number of tuples in a

relation.

Size of B1, B2 and B3 base relations = 150 KB, 150 KB and

100 Kb respectively.

I/O, CPU and communication coefficients are relative

coefficients.

 I/O speed coefficients = [1, 1.1, 1.2]

 CPU speed coefficients = [1.1, 1, 1]

Communication speed coefficients= [0 20 10; 20 0 30; 30 20

0]

Data allocation matrix represents allocation of 3 base

relations to different sites.’1’ represents that table is allocated

to the site and ‘0’represents absence of table on that

particular site. Replication of data is considered.

S_NO Operations

 Formulae

 1 Selection
 SFs = card(A (R))

 Card(R)

 2 Projection

 SFP = card(πA(R)

 card(R)

 3

 Join

 SFJ = card(R A=B S)

 max(card(R),card(S))

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.25, June 2014

44

Table 2. Data Allocation Matrix

Table5. B3 Relation

4.4 Query

4.3 Database example
These three base relations are created in MS-ACCESS

database. Each table has 5 columns in which S_NO is taken as

a primary key and number of tuples on which query is

executed to evaluate results.

Table 3. B1 Relation

Table4. B2 Relation

S_NO

Product_cod

e

 Book_name

 Subject

Price

151 10000377
Circuit

Theory
Engineering

250

152 10000312 Civil Engg Engineering 360

153 10000512
Commn

skills
Engineering

565

154

.

.

300

10000546

10A00251

Electrical

machines

Electronic

devices

Electrical

Engineering

391

.

.

410

Price (((Subject, Price (Price>180 AND Price<950 (B1)))

XPrice=Price(Subject, Price(Price>230 (B2))))XPrice=Price((

Price(Price>150(B3)))

4.5 Operator Tree Representing

Fragments and Operators
The set of operations (sub-queries) generated in response to a

query can be represented by an operator tree. Leaves of the

tree represents base relations B1, B2 and B3 created in MS-

ACCESS. Nodes of operator tree represent various operations

and lines represent cost (based on size of fragment) of

operation sequence. A site’s Local CPU and I/O costs are

proportional to the size (in bytes) of data processed and

communication costs depend on communication coefficients

between a pair of sites and bytes of blocks moved between the

sites [5].

No of Operations: O1, O2…O9

Last operation is to move the fragment to site of query.

Total no of fragments: B1, B2….F11.

Base relations: B1, B2, B3.

Sites Site S1 Site S2 Site S3

B1 1 1 0

B2 0 1 1

B3 1 0 1

S_NO Product_code

Book_name

 Subject

Price

 301 10A00045
Commn

engg
Engineering

325

302 10000184 Robotics Engineering 400

303 10000261 Eng sem1 English 300

 304

 .

.

400

10C00425

14000569

Discrete

maths

BSC maths

Mathematics

Mathematics

 450

 .

 .

 525

S_NO Product_code Book_name

Subject

Price

1 03C0033 Microbiology Biology 575

2 04000263
Remedial

Biology
Biology

110

3 04000264 Polymers Chemistry 391

4

.

.

150

04000265

10A00344

Applied

Chemistry

Business

Studies

Chemistry

Commerce

400

360

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.25, June 2014

45

5. STATIC MODEL FOR SELECTIVITY

ESTIMATION
Many traditional query processing strategies in distributed

databases are static in nature i.e., cost of the query is

completely determined on the basis of a priori estimates of the

selectivity factor of sub query operations and it remains

unchanged throughout its execution [6]. Due to this, the

cardinality of intermediate fragments is large.

The main task of the pre-existing simulator is to allocate sub

operations to sites based on the database statistics assuming a

set ‘S‘ of data distribution sites, a set ‘R‘ of

relations/fragments stored on those sites[8]. In this simulator,

the following array of selectivity factor of sub-operations of

the query is statically fed to the simulator as an input data file.

Selectivity factor of various sub-query operations = [0.76,

0.76, 0.76, 0.88, 0.88, 0.88, 0.35, 0.22].

For each operation, the size of intermediate fragment is

calculated by use of prefixed selectivity values for those

operations [8].

B1,B2 and B3 are first three fragments on which operations

are applied.

Operation 1:

(Price>180 AND Price<950 (B1))→F4, Tuples: 150 x

0.76(Ps) = 114

 Operation 2:

(Price>230 (B2)) →F5, Tuples: 150 x 0.76(Ps) = 114

 Operation 3:

 (Price>150(B3))→F6, Tuples: 100x 0.76(Ps) = 76

 Operation 4:

(Subject, Price (F4)) →F7, Tuples: 114x 0.88(Pp) = 100

 Operation 5:

 (Subject, Price (F5)) →F8, Tuples: 114 x 0.88(Pp) = 100

 Operation 6:

(Price (F6)) →F9, Tuples: 76 x 0.88(Pp) = 67

 Operation 7:

(F7 F8) (Price=Price) → F10, Tuples: 100x 0.40 (Pj) =

40

 Operation8:

 (F10 F9) (Price=Price) →F11, Tuples: 67x 0.25(Pj) =

17

6. DYNAMIC SELECTIVITY

ESTIMATION
Dynamic selectivity estimation tool (DSET) is a small

proposed simulator which feeds to the main pre-existing

simulator that allocates sub-queries to various sites. The major

aim of the DSET is to evaluate selectivity factor of sub-query

operations at run time that can further estimate the

intermediate fragment sizes of the similar kind of queries and

thus can also reduce the response time of that queries.

Steps involved are:

 This simulator created three base relations B1, B2

and B3 in MS ACCESS, populated them with

instance data. Number of rows are inserted to the

relations in order to calculate size of the base

relations and to perform sub-operations to calculate

cardinality of the resultant relations.

 Then, MATLAB-ACCESS interface is created by using a

connection string in MATLAB.

s=adodbcnstr ('Access',[cd 'path of database']);

cn = adodbcn(s);

 After creating a connection, SQL code is embedded

for selection, projection and join operations and

estimated the size from generated fragments. SQL

code for selection operation and also evaluating

cardinality of the resultant relation and thus

selectivity factor at run time.

x='SELECT * FROM B1 where Price>180 AND Price<950';

F4 = adodbquery (cn, x);

card4=length (F4);

SF4 = card4/B1;

 A matrix is created representing operations executing

on various fragments.’1’ represents particular

operation is applied on fragment and ‘0’ represents

vice versa.

Then selectivity factor for all sub-query operations is used to

evaluate the total cost of the query.

 Total cost of the query = local (I/O and CPU) cost +

communication cost.

IO_cost is calculated as:

Here, io_speed (s) represents I/O speed coefficient of

particular site where operation is performed and ‘i’ represents

particular fragment generated after applying operation. This

I/O cost is calculated for every fragment generated while

executing query. Similarly, CPU_cost is calculated.

unary_io = unary_io + io_spd(s)* frag_size (i);

IO_cost for join operations:

join_io = join_io + io_spd(s)* frag_size(i)+ io_spd(s)*

frag_size(i+1)+ io_spd(s)* frag_size(i)* frag_size(i+1) ;

total_io_cost= (unary_io + join_io);

Communication_cost is calculated as:

js represents site where join operation is performed.

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.25, June 2014

46

commn_cost = commn_cost + frag_size (i) * comm_speed

(site1, js) + frag_size(i+1)* comm_speed(site2,js);

In case of DSET, cardinality is evaluated for intermediate

results of the query by calculating selectivity factor at run

time using selectivity formulae in table1. The overall cost of

the query is directly proportional to the cardinality of the

intermediate results [5]. This approach can evaluate the cost

of the query more accurately.

The fundamental difference from static model was that instead

of feeding input data file giving intermediate fragment sizes,

the operations are implemented in MATLAB/SQL code

created intermediate relations and cardinality of those

relations are used to calculate the selectivity factor of

operations. Then this selectivity is dynamically fed to the

operation allocator main simulator.

6.1 Experimental data
After applying sub-operations (selection, projection and join)

on B1, B2 AND B3 relations mentioned above, sizes of

intermediate relations found to be:

Table 6: Size of intermediate relations

Relations Size(KB)

B1 150

B2 150

B3 100

F4 91

F5 93

F6 63

F7 73

F8 67

F9 50

F10 23

F11 9

Operation 1:

Selectivity factor of selection operation on relation B1

generating fragment F4

SFs (B1) = card (F4)

 Card (B1)

SFs = 91/150 =0.60

 Operation 2:

Selectivity factor of selection operation on relation B2

generating fragment F5

 SFs (B2) = 93/150 =0.62

 Operation 3:

Selectivity factor of selection operation on relation B3

generating fragment F6

SFs (B3) = 63/100 =0.63

 Operation 4:

Selectivity factor of projection operation on fragment F4

generating fragment F7

SFP (F4) = card (π Subject, Price (F4)

 Card (F4)

SFp = 73/114 = 0.80

 Operation 5:

Selectivity factor of projection operation on fragment F5

generating fragment F8

SFp (F5) = 67/114= 0.72

 Operation 6:

Selectivity factor of projection operation on fragment F6

generating fragment F9

SFp (F6) = 50/63= 0.79

Operation 7:

Selectivity factor of join operation on fragments F7 and F8

generating fragment F10

SFJ (F7, F8) = card (F7 Price=Price F8)

 Max (card (F7), card (F8))

 SFJ = 23/max (73, 67) = 0.31

Operation8:

 Selectivity factor of join operation on fragments F10 and F9

generating fragment F11

 SFJ = 9/max (23, 50) = 0.18

7. EXPERIMENTAL RESULTS
It highlights the fact that dynamic selectivity evaluation

tool(DSET) reduces the overall cost of the query by

dynamically calculating the cardinality of intermediate

relations more accurately. It is observed that dynamic model

overcomes the drawbacks of the static method. Experimental

results have shown that evaluation of selectivity factor at run

time is more accurate as compare to the static estimation of

selectivity factor. The result shows a difference of 20%, 14%,

27% approximately.

Selectivity factor of selection operation – decrease by 20%

Selectivity factor of projection operation – decrease by 14%

Selectivity factor of join operation – decrease by 27%

Fig1: Static vs. Dynamic model for selectivity evaluation

8. CONCLUSION
The objective of the experimental work was to analyze the

effect of dynamic method for selectivity evaluation on the

reduction of overall cost of the query. The benefit of using

DSET was that size of intermediate relations evaluated more

accurately than static method. Therefore, it resulted into lesser

cost of sub-query. Finally, when cost of all sub-query

operations on the various sites are added, the benefits

0
0.2
0.4
0.6
0.8

1

Se
le

ct
iv

it
y

 f
ac

to
r

operations

Static Model

Dynamic
Model

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.25, June 2014

47

achieved in the range of fourteen to twenty seven percent for

various sub-operations like selection, projection and join.

9. REFERENCES
[1] M.Tamer ozsu, Patric Valduriez ”Principles of

Distributed Database Systems”, springer, 2010.

[2] Stratis D. Viglas, Jeffrey F. Naughton “Rate-Based

Query Optimization for Streaming Information”, ACM,

2002 .

[3] Danh Le-Phuoc1, Josiane Xavier Parreira, Michael

Hausenblas, Manfred Hauswirth” Continuous Query

Optimization and Evaluation Over Unified Linked

Stream Data and Linked Open Data”,DERI,2010.

[4] Faiza Najjar and Yahya slimani” Cardinality estimation

of distributed join queries”2002.

[5] Surbhi bansal, sofia gupta and Rajinder singh virk,

“Selectivity Evaluation in Distributed Database Query

Operations: Static vs Dynamic techniques”,IJCAIT,2014.

[6] Rajinder Singh, Gurvinder Singh, Varinder Pannu virk,

”A Stochastic Simulation of Optimized Access Strategies

for a Distributed Database Design”, IJSER,

November2011.

[7] Fan Yuanyuan, Mi Xifeng”Distributed database System

Query Optimization Algorithm Research”, IEEE, 2010.

[8] Rajinder Singh, Gurvinder Singh, Varinder Pannu virk”

Optimized Access Strategies for a Distributed Database

Design”, IJDE, 2011.

[9] William I. Grosky, Junping Sun, Farshad Fotouhi

“Dynamic selectivity estimation for multidimensional

queries”,springer, 1993.

[10] Manik Sharma and Dr. Gurdev Singh, “Analysis of

Static and Dynamic Metrics for productivity and Time

Complexity”,IJCA, 2011.

[11] Areerat Trongratsameethong, Jarernsri L. Mitrpanont,”

Exhaustive Greedy Algorithm for Optimizing

Intermediate Result Sizes of JoinQueries”, IEEE, 2009.

[12] Ridhi kapoor,” Cost Estimates & Optimization of

Queries Distributed Databases”, IJERT, June 2013.

[13] Carlo Dell’ Aquilla, Ezio Lefons, Filippo Tangorra,”

Analytic-based Estimation of Query Result Sizes”, 2005.

IJCATM : www.ijcaonline.org

http://link.springer.com/search?facet-author=%22William+I.+Grosky%22
http://link.springer.com/search?facet-author=%22Junping+Sun%22
http://link.springer.com/search?facet-author=%22Farshad+Fotouhi%22

