
International Journal of Computer Applications (0975 – 8887)

Volume 96– No.16, June 2014

22

Parallel Lexical Analysis of Multiple Files on Multi-Core

Machines

 Amit Barve Brijendra Kumar Joshi
 Assistant Professor Professor

 CSE- Deptt. VIIT Pune, India MCTE Mhow, India

ABSTRACT
The multi-core machines open new doors to achieve

parallelism in single machine. This new architecture has

influenced every field of computing. Parallel Compilation is

one of the areas that still needs serious research work to fully

exploit the inherent power of the architecture. In this paper a

parallel lexical analysis algorithm is presented that is capable

of doing lexical analysis of more than one source file

simultaneously thereby improving performance.

Keywords

Lexical Analysis, Parallel Lexical Analysis, Flex, Processor

Affinity.

1. INTRODUCTION
Compiler is a complex program that translates source program

written in one language into an equivalent program in target

language. This translation process is often carried out through

number of phases. Lexical analysis, also known as scanning,

is the first and very important phase. The lexical analyzer

reads stream of characters and produces as output a number of

tokens which are consumed by the next phase of the

compilation process i.e. syntax analysis. In addition to

tokenization the lexical analyzer also recognizes instances of

tokens referred to as lexemes. A lexeme is used to uniquely

identify the tokens. For example, suppose two variables of

type int are declared in C language as

int number, position;

then token generated for number and position would be same.

If ID is the token used for variable names then on reading

number and position, the lexical analyzer would generate

token ID. The lexeme corresponds to these two tokens i.e. ID

(for number) and ID (for position) would be “number” and

“position” respectively. Detailed explanation of all the phases

of a compiler are dealt with in excellent texts [1][2][3][4].

Compiler and its phases are mostly written in sequential

manner and for single processor systems. With the advent of

multi-core machines, it is possible that complier and its phases

be parallelized. In this paper we present an approach to

parallelize lexical analysis phase for huge number of files.

2. LEXICAL ANALYSIS
Lexical analysis is the only phase of a compiler which

interacts with the original source code. It reads the sequence

of characters and produces stream of tokens and makes their

entry in a data structure called symbol table. The tokens and

entries in symbol table are further used by the following phase

i.e. syntax analyzer.

 The program which performs lexical analysis is called a

lexical analyzer, lexer or scanner. Figure 1. Shows the overall

process of communication between lexical analyzer and

syntax analyzer. Lesk and Schmidt [5] developed a tool for

generating lexical analyzer from specifications in the form of

regular expressions. Now a days Flex [6] is used for

generating lexical analyzer

 Figure 1. Interaction of Lexical Analyzer with Parser

3. PARALLEL LEXICAL ANALYSIS
In the past, various attempts have been made to perform

parallel lexical analysis. Umarani developed a parallel lexical

analyzer for cell processor architecture [7]. In his approach

the source code was split into fixed sized blocks using

dynamic block splitting algorithm. Daniele and Gregory [8]

compiled the original flex kernel and ran it on each SPEs

(Synergetic Processing Elements) on IBM cell processor.

Mickunas and Shell [9] split lexical analysis process into

scanning and screening. The proposed work suggested that the

scanning of a text can be done by more than one task in

parallel. They have provided only theoretical explanation of

the proposed method.

Barve and Joshi[10] developed a parallel lexical analyzer for

multi-core machines. Their work is based on detection of

parallel constructs in C programs and performing lexical

analysis of each construct on different CPUs, using flex. They

considered for, while, do..while loops, switch..case, if..else

statements as the potentially parallel constructs. They

extended their work of parallel lexical analysis of programs

by identifying the blocks that can be processed in parallel.

The source code was split into number of blocks by

Lexical Analyzer Syntax Analyzer

Symbol Table

Tokens

Get Next token

Source
File

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.16, June 2014

23

identifying pivot locations. Pivot elements considered were

new line character, white space character and various

constructs as mentioned above. The detailed comparison of all

three algorithms can be found in [11].

The past work is limited up to a single file. For large software

like GCC [12], Linux kernel [13], in which thousands of C

files are present these approaches will not be suitable. In this

paper the work is extended so that large numbers of files can

be analyzed for lexical errors.

4. PROCESSOR AFFINITY
The binding of any process to any processor can done in

Linux through setaffinity() function[14][15]. taskset command

can be used to load a program from permanent storage and

bind it to a processor. These two features can be used to

schedule any program/process to any of the available

processors. For example, to bind a process whose pid is 222.

Following command can be used

 taskset – p 1 222

Where p stands for process, 1 represents the CPU number and

222 is the process id of the process. This sets the affinity of

process 222 to CPU 1.

5. SPEEDUP
The parallel methodologies in programming designed to aim

that parallel programs execute faster as compare to sequential.

Speed up is the ration between sequential and parallel

execution time, it can be represented as

The operations performed by a parallel algorithm can be put

into three categories [16]:

a. Operations that must be performed sequentially.

b. Operations that can be performed in parallel.

c. Operations requiring communication among

processors.

In this paper, sequential operations refer to sequential lexical

analysis of all files on single processor whereas operations in

parallel refer to sequential lexical analysis of files distributed

among available processors. Since lexical analyses of files are

independent from one another the communication overhead is

almost negligible. Though communication overhead is present

between master processor distributing tasks and processors

executing these tasks, it is present only when tasks are

distributed and when they finish. It is assumed that the

communication overhead is zero as compared to actual lexical

analyses.

6. PARALLEL LEXICAL ANALYSIS OF

MULTIPLE FILES
For doing parallel lexical analysis of multiple files first we

need to select the folder which has all files of the project.

After selection we need to do lexical analysis of files present

in the folder in parallel. Parallel lexical analysis can be done

by selecting the file and scheduling it to a specific processor.

The algorithm is as follows:

1. Select the source folder.

2. Scan the source folder. While scanning, write the

following information in a file say file.txt

a. Path of files in the package.

b. Size of the files.

3. Open the file.txt in read only mode.

4. For each line written in file.txt do the following in

parallel.

a. Select a file from the folder.

b. Perform lexical analysis on selected file

by assigning processor affinity.

7. EXPERIMENTAL RESULTS
The Experiment based on above algorithm was carried out on

Ubuntu 10.04 LTS on Sony Vaio Core i7 Laptop with 4GB

RAM and Processor Speed 1.73GHz having 8 cores in total.

For testing and appreciable results a huge software is required

therefore GCC 4.0.0 software package was explored and used.

Only C files were considered for the purpose. In total 6318 C

files are present in the package. Minimum file size is 10 bytes

(trivial.c) and maximum is 686.8 KB (parse.c). To get

accurate results and time init process whose pid is 1 was

bound to CPU 0 using setaffinity() and remaining were

exclusively used for parallel lexical analysis. Table 1 shows

time taken in lexical analysis of all C files of GCC. It is clear

that significant amount of time can be saved by the use of this

approach for a large software package. Figure 2 demonstrates

the result pictorially.

Table 2 and Figure 3 show the average speedup achieved by

using the algorithm on the GCC mentioned above. The

speedup is averaged across 10 runs of the algorithm.

Table 1. Time taken in Parallel Lexical Analysis of GCC

4.0.0 package

No of CPUs Time (in Minutes)

1 1.50

2 1.41

3 1.37

4 1.35

5 1.31

6 1.28

7 1.25

Figure 2. Time taken in Parallel Lexical Analysis of GCC

4.0.0 Package

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.16, June 2014

24

Table 2. Speed Up in Lexical Analysis process
Number of CPUs Speed Up

1 1

2 1.06

3 1.09

4 1.11

5 1.14

6 1.17

7 1.25

 Figure 3: Speed Up

8. CONCLUSION
An algorithm for parallel lexical analysis of multiple files

which can use multi-core machines is presented. It is clear

from experiments that substantial amount of time can be

saved in lexical analysis phase by distributing files across

number of CPUs. With the increase in number of processors

the overall time in compilation would definitely be far too less

as compared to all-serial approach. Speedup can be further

investigated if individual files can also be scheduled for

lexical analysis on multiple processors using one of the

approaches explored earlier [10][11].

9. REFERENCES
[1] Alfred V. Aho, Ravi Sethi, Jeffrey D.Ullman; “Principles

of Compiler Design”; Addison Wesley Publication

Company, USA, 1985.

[2] Alfred V. Aho, Ravi Sethi, Jeffrey D.Ullman;

“Compilers: Principles, Techniques and Tools”;Addison

Wesley Publication Company, USA, 1986.

[3] Jean Paul Tremblay,Paul G. Sorenson;”The Theory and

Practice of Compiler Writing”;McGraw-Hill Book

Company USA 1985

[4] David Gries; “Compiler Construction for digital

Computers”; John Wiley & Sons Inc. USA, 1971.

[5] M. E. Lesk, E. Schmidt; “Lex- A Lexical Analyzer

Generator”; Computing Science Technical Report No.

39, Bell Laboratories, Murray Hills, New Jersey, 1975.

[6] http://flex.sourceforge.net/

[7] G. Umarani Shrikant ;”Parallel Lexical Analyzer on the

Cell Processor”; IEEE SSIRI-C 2010; pp. 28-29;2010.

[8] Daniele Paolo Scarpazza, Gregory F. Russell;” High

Performance regular expression scanning on Cell /B.E.

Processor; ICS 2009; pp. 14-25, 2009.

[9] M. D. Mickunas, R. M. Schell; “Parallel Compilation in

a Multiprocessor Environment”; Proceedings of the

annual conference of the ACM, Washington, D.C., USA,

pp. 241–246, 1978.

[10] Amit Barve and Dr. Brijendra Kumar Joshi;”A Parallel

Lexical Analyzer for Multi-core Machine”; Proceeding

of CONSEG-2012,CSI 6th International confernece on

software engineering;pp 319-323;5-7 September 2012

Indore,India.

[11] Amit Barve and Brijendra kumar Joshi, "Parallel lexical

analysis on multi-core machines using divide and

conquer," NUiCONE- 2012 Nirma University

International Conference on Engineering , pp.1,5, 6-8

Dec. 2012. Ahmedabad, India.

[12] gcc.gnu.org/

[13] https://www.kernel.org/

[14] http://www.linuxjournal.com/article/6799.

[15] http://www.cyberciti.biz/tips/setting-processor-affinity-

certain-task-or-process.html

[16] Michael J. Quinn;”Paralle Programming in C with MPI

and OpenMP ”; pp.159-160. Tata McGraw-Hill

Publication, New Delhi 2003.

IJCATM : www.ijcaonline.org

