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ABSTRACT

All the necessary water for life on earth originates from rain.
For this reason, it is important to understand the spatial and
temporal patterns of rainfall and their variability in order to
gain knowledge about the balance of water dynamics for
water resources management, and to plan strategies for
solving many problems such as predicting natural hazards
caused by heavy rain. The principal objectives of this paper
are to validate an optimum interpolation method for the
spatial analysis of monthly precipitation in Irag. The root-
mean-square error (RMSE) of the verification stations (the
error of the predicted value at the station location from the
observed value at the station). The mean error (ME) was used
to detect any bias in the estimates. In this paper, we used the
kriging interpolation to estimate the rainfall distribution in
Irag.  Geostatistical  interpolation  techniques  were
implemented in a Geographic Information System (GIS) to
study the spatial variability of monthly TRMM in Iraq using
different models (Spherical, Exponential and Gaussian).
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1. INTRODUCTION

Prediction of spatial attributes has attracted significant
research interest in recent years. It is challenging especially
when spatial data contain errors and missing values.
Geostatistical estimators are used to predict the missing
attribute values from the observed values of known
surrounding data points, a general form of which is referred as
kriging in the field of geographic information system and
remote sensing. A large sampling effort is required to produce
an accurate geostatistical maps and the extraction and analysis
of each sample is often expensive, the effectiveness of a
particular sampling scheme is dependent upon the spatial
variability of the quantity being measured .In this paper, we
used the kriging methods to estimate the rainfall distribution
in Irag. Literatures suggest that there is no single preferred
method of interpolation, and the selection of interpolation
method is usually based on the available data, desired level of
accuracy, and available resources. Kriging is an optimal and
unbiased linear technique for estimation. Compared with the
traditional interpolation methods, it provides the ‘best’
possible estimates of unknown values from sample data [1].
Kriging interpolation method, used here, is one of the most
popular and useful methods to predict unknown values from
data observed at known locations, especially in geo-statistical.
This method produces visually appealing map from
irregularly space data and uses variogram to express trends
suggested in the data [2]. Geostatistical Analyst derives a
surface using the values from the measured locations to
predict values for each location in the landscape.
Geostatistical Analyst provides two groups of interpolation
techniques: deterministic and geostatistical. All methods rely
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on the similarity of nearby sample points to create the surface.
Deterministic techniques use mathematical functions for
interpolation. Geostatistics relies on both statistical and
mathematical methods, which can be used to create surfaces
and assess the uncertainty of the predictions. Geostatistical
Analyst, in addition to providing various interpolation
techniques, also provides many supporting tools. These tools
allow you to explore and gain a better understanding of the
data so that you create the best surfaces based on the available
information [3]. Kriging methods that produce prediction
maps are listed below:

—Ordinary Kriging (OK).
—Simple Kriging (SK).
—Universal Kriging (UK).
—Disjunctive Kriging (DK).

2. DATA SOURCE

The data source used in this study was acquired by the
Tropical Rainfall Measuring Mission (TRMM). The data were
processed by the TRMM Science Data and Information
System (TSDIS) archived and distributed by the Goddard
Distributed Active Archive Center. TRMM is an international
project jointly sponsored by the Japan Aerospace Exploration
Agency (JAXA, previously known as National Space
Development Agency or NASDA) and the U.S. National
Aeronautics and Space Administration (NASA) Office of
Earth Sciences. The data used in this study were processed
using the GESDISC Interactive Online Visualization and
analysis Infrastructure (Giovanni) as part of the NASA's
Goddard Earth Sciences (GES) Data and Information Services
Center (DISC) [4].

3. MATHEMATICAL MODEL
IMPLEMENTATION

The main models are Spherical model, Exponential model and
Gaussian model. The actual process of fitting a model to an
empirical semivariogram is much more of an art than a
science. The selected model influences the prediction of
unknown values, it represents the true spatial distribution of
the variable.
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Where y(h) is semivarogram, Cﬂis the nugget value, (h) is
lag distance, and (a) is the range. The spherical model actually
reaches the specified sill value C, at the specified range (a)
[5]. While the exponential and Gaussian approach the sill
asymptotically, with a representing practical range; the
distance at which the semivariance reaches 95% of the sill
value see fig.1.
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Fig.1: Spherical Model

4. RESULTS AND DISCUSSION

In this paper, the semi-variogram was modeled as Spherical,
Gaussian and Exponential type function. Cross validation
criteria used to assess the best model. Cross validation allows
determining how good model is. The goal should be have
standardized mean prediction errors near to 0, small root mean
square prediction errors, average standard error near root
mean square prediction errors, and standardized root mean
square prediction errors near to 1 [6].

4.1 CASE STUDY 1: Comparison of
Surface Models for March 2003

It is common practice to create many surfaces before one is
identified as “best” and will be final in it. In fig.2, fig.3 and
fig.4 using cross validation criteria to comparing Exponential
model, Gaussian model and Spherical model based TRMM
data for March 2003, it notice the spherical model is the best
from others because minimum mean predicted error.
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Fig.8: Comparison of Exponential Model and Gaussian
Model for case study 3
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From Fig.11,Fig.12 and Fig.13 can be concluded TRMM data
is more accuracy than weather station data because of TRMM

data give more than 679 points per Iraq while weather stations
give small number of points per Iraq.

5. CONCLUSION

This paper has showed that the Spherical model with TRMM
data has a noticeable performance advantage compared to the
Gaussian model and Exponential model with TRMM data in
terms environmental models. The root-mean-square error
(RMSE) of the verification and the mean error (ME) were
used to detect any bias in the estimates. Kriging methods gave
encouraging results when applied to the data rains in Iraq and
achieved high precision of the results predicted. Rainfall
maps generated by the spherical model show the ability to
capture precipitation structure in Iraq.
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