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ABSTRACT 

This article addresses a novel approach to 3D mission 

planning of UCAVs in constrained environments. To solve 

this NP-hard problem, black hole algorithm (BH) is improved 

by considering stars gravities information. By modelling 

UCAV properties, aerospace constraints and DTM of 

environment, proposed mission planner based on black hole 

optimization algorithm is proposed. Also it provides a 

comparative study for efficiency evaluation of evolutionary 

3D mission planners based on ACO, BA, DE, ES, GA, BH 

and PSO optimization algorithms. Then mission planning task 

of UCAV is performed. Simulations show the advantage of 

proposed gravitational BH mission planner. 
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1. INTRODUCTION 
UCAV is from the family of unmanned aircrafts developed 

for performing reconnaissance missions. Long-range drones 

have an autopilot system for following predesigned waypoints 

and continue motion based on planned mission, when they are 

out of the control of station's communication range. 

Operational UAVs need human control, but operator tasks are 

based on UCAV level of autonomy. However, developments 

of intelligent unmanned flight systems have become a 

growing trend in many research areas. Trajectory planning is a 

vital task in autonomous control processes of UCAV 

navigation, which is responsible for producing optimal 

trajectories from the launching location to the landing station 

considering some known constraints in environment. 

Many tasks should be applied to UCAV control systems for 

providing autonomous navigation. These steps maybe include 

scanning environment, DTM generation and mission 

planning. Mission planning is a complex requirement in the 

autonomous navigation. Its objective is to find an optimal 

flight path in proper time, to UAV be able to accomplish 

several mission tasks. Choosing efficient algorithms for 

solving mission planning problem is an influential task. 

Optimal mission planning relies on optimization technics, so 

it's usually solved offline. Use of UCAVs, which can fly 

autonomously in aerospace environments, is necessary in 

several innovative applications. Reliable safe navigation of 

UCAV in Complex missions has technical challenges and 

UCAV planning is an essential task. Aerospace applications 

of UCAVs require exact maneuvers and optimal decisions and 

robust mission planning algorithms. Complex space around 

UCAV flight trajectory makes the problem NP-hard.  

Based on pervious literatures, trajectory planning problem 

was turned into novel hybrid methodologies based on ICA [1], 

neural network [2], fuzzy logic [3], ACO [4], PSO [5,6], GA 

[7] and the artificial potential field [8]. When we have large 

mission ranges in UCAV flight, trajectory planning will be a 

large scale constrained optimization process. General methods 

on 3D trajectory planning could be used to solve this NP-hard 

problem including A* [9] and D* and rapidly exploring 

Random Trees (RRT) [10] and other is potential fields, 

evolutionary techniques include PSO, GA, ACO and multi-

objective evolutionary algorithms [11,12]. Every method has 

its own robustness in certain aspects that is related to the 

problem complexity. 

The UCAV mission planning in realistic test fields is a well-

known optimization problem, so many algorithms have been 

designed to solve this multi-constrained problem, such as 

differential evolution [13], biogeography-based optimization 

[14,15], genetic algorithm [16], ant colony algorithm [17] and 

its variant [18,19], cuckoo search [20,21], chaotic artificial 

bee colony [22], firefly algorithm [23,24], and intelligent 

water drops optimization [25], also algorithms such as 

immune GA (I-GA) [26],  PSO [27], quantum-behaved PSO 

(Q-PSO) [28] and master-slave parallel vector-evaluated GA 

(MPV-GA) [29] have been applied. 

Black hole algorithm is a swarm intelligence approach 

inspired from the black hole phenomenon [30]. In this paper, 

performance of this algorithm will be improved by 

considering stars gravities information. For this aim, kind of 

gravitational force among stars is defined and the movement 

of stars toward the black hole is adjusted based on computed 

universal gravity during the searching solution space. Then 

this algorithm is applied to the UCAV mission planning 

scheme. 

The structure of the article is as follows. In Section 2 black 

hole Algorithm (BH) is introduced and then Improved BH is 

proposed. Section 3 defines the UCAV mission planning 

problem and section 4 reflects the main results of UCAV 

mission planning in 3D aerospace. Conclusion is at the last 

section. 

2. GRAVITATIONAL BLACK HOLE 

ALGORITHM 

2.1 Black Hole Phenomenon in Cosmology 
The theory of a black hole phenomenon is proposed based 

upon Einstein's general theory of relativity [31]. Black hole is 

expressed as existence of an infinite curvature in space-time 

[32]. Any close enough mass to the center of distortions, can't 

escape from gigantic gravitational field, including light [33]. 

Based on astrophysical explorations, there are many evidences 

that show supermassive stars with finished life cycle will be 

vanished in a form of black holes and make distortion in 
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space-time texture [34]. Black hole has sphere-shaped 

boundary, or 'event horizon', that Inside of this horizon, it's 

impossible to escape from singularity of the central mass. 

Also the Schwarzschild geometry is the space-time geometry 

of empty space enclosing any spherical mass. The most 

remarkable result of this concept (based upon Figure 1) is 

named 'Schwarzschild radius' that is calculated according to 

Eq. (1): 
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Where G is the gravitational constant, M shows the mass of 

black hole, and c donates the speed of light [35]. Curiously, 

Schwarzschild radius can be derived from Newtonian gravity 

and also corpuscular theory of light. 

 

Fig. 1: Penrose diagram of Schwarzschild geometry [36] 

Based upon no-hair theorem, black hole has three independent 

physical characteristics include mass, charge, and also angular 

momentum [37].  

2.2 Black Hole Optimization Algorithm 
This algorithm is a meta-heuristic algorithm introduced by 

Hatamlou [30] and it's based upon simulation of black hole 

formation process in cosmology for solving optimization 

tasks. At this swarm based optimization method, a population 

of solutions that are related to target problem should be 

scattered randomly in the search space. The population-based 

operators evolve the swarm members to find optimal solutions 

of problem. BH evolves the population by moving every star 

in the direction of the black hole, and replacing stars which 

are inside the horizon barrier by newly generated populations. 

Black holes are real candidates of the population. Then, all the 

candidates are assimilated toward the black hole. This 

operation is based on their Current position and a random 

value. The details of the BH optimization methodology are 

presented as follows: 

After initializing step, fitness values of each star is computed 

and the best candidate among the population would be 

selected as black hole and the rest are chosen to be the normal 

stars in search space. Then the black hole start absorbing 

every star that is located in the neighborhood of central 

singularity point and consequently all the stars start moving 

towards the black hole center. In general, these motions 

frequently alternate the locations of stars individual toward 

the best fitness. The assimilation of stars caused by the black 

hole is formulated as Eq. (2):  

     
   (2) 

where xi(t) and xi(t+1) represents the positions of ith star at 

iterations t and t+1, respectively. xBH shows the location of 

black hole in search space, Rand is a random number in the 

interval [0,1] and N is the number of stars. After moving step 

of the algorithm, if the cost value of a star individual was 

lower than the black hole, the position of them should be 

exchanged. During this process, there is a probability of 

crossing with event horizon. At the situation that a candidate 

is vanished into horizon, a new star is randomly born in the 

search space. The radius of Schwarzschild is calculated based 

upon the Eq. (3): 

                                      (3) 

where fBH donates the fitness of black hole, fi shows the 

fitness of ith star and N is the total number of stars. 

2.3 Proposed Black Hole Algorithm 
In general, the standard BH optimization method is adept at 

locating the promising area of global optimal point, but it is 

not relatively superior at exploiting target region. However, 

BH algorithm is weak to perform global search perfectly in 

the big problem spaces. In order to enhance the exploitation of 

BH, a new operator performing local search is introduced to 

form a novel Gravitational black hole (GBH) algorithm. For 

this aim, one can improve the absorption step of BH. In GBH, 

standard BH algorithm is applied to shrink the search area to a 

more promising region, and then absorption operator with 

good exploitation power is used to exploit the narrow region 

intensively to find better solutions with more convergence 

speed.  
 

In this article, BH algorithm is improved based upon star 

gravitational field information as illustrated on Figure 2. For 

this purpose, kind of gravitational force between stars is 

defined and the movement operation of stars toward the black 

hole is simultaneously adjusted during the searching solution 

space. The difference between GBH and BH is that the 

absorption operator is applied to perform local search and 

fine-tune the original BH instead of random walks. Therefore, 

proposed GBH algorithm can fully overcome the lack of the 

exploitation of the BH and resolve the conflict among 

exploration and exploitation effectively. The detailed steps of 

GBH method is described as follows. 
 

 
Fig. 2: Proposed movement operation 

        based on gravitational fields 

There is a swarm with N stars individuals. The position of the 

ith stars (Xi) is defined by Eq. (4): 

                     (4) 

Where stari is the position of ith star and blackholed is the 

position of dth black hole, respectively. At a specific time‘t’, 

absorption charge on star ‘i’ from star ‘j’  is as Eq. (5): 

                 (5) 

where Caj is the absorption power of star j, Cpi is the power 

related to star i, ξ(t0) is initial absorption constant, α and ε are 

values in [0,1], and Dij(t) is defined as distance between two 

stars i and j. to give a stochastic characteristic to BH 

algorithm, final force is randomly weighted sum of the forces 

of individuals as Eq. (6): 
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                              (6) 

where randj is a value in [0,1]. Hence, the acceleration of the 

star i at time t, and in direction dth, is given by Eq. (7). 
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where Cii is the gravity force of ith star, also the next velocity 

of star is considered as follows. Therefore, position and its 

velocity are calculated based on Eq. (8) and Eq. (9). 

                      (8) 

                             (9) 

The costs are updated by the Eq. (10), Eq. (11) and Eq. (12):  
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where fiti(t) shows the fitness value of the star i at time t, and 

weak(t) and strong(t) are based on Eq. 13 and Eq. 14: 

        ( ) ( ), {1,..., }min jstrong t fit t j N                  (13) 

        ( ) ( ), {1,..., }max jweak t fit t j N                  (14) 

3.  UCAV MISSION PLANNING 

PROBLEM 
Unmanned aerial systems should be capable to perform 

strategic missions with considering a variety of objectives. On 

the other hand, there are several conditions for an efficient 

mission planner including: optimality, completeness and 

complexity, which are related to vehicle motion dynamics. 

The extra dimensions of UCAV mission planning problem 

increase computational complexity for the evolutionary 

planner, because the design space is extended. Also Planner 

should be able to solve constrained optimization problems.  In 

this article, designed environment of UCAV is a 3D realistic 

space that provide robust configuration of UCAV trajectories 

considering mission requirements (see Figure 3). In many of 

related works, Bezier curves have used for trajectory 

generations for computing smooth and feasible 3D routs for 

UAVs. Bezier curves are defined by n control points include 

P0 to Pn, where n is called Bezier order .Polynomial form of 

the implemented Bezier curve is expressed as Eq. (15). 

                      (15) 

Regarding the evaluation of one candidate flight trajectories, 

Performance analysis of UCAV trajectory planning is mainly 

based on threat cost and fuel consumption, as in Eq. (16): 

        (1 )threat fuelC kC k C                           (16) 

where k should be in [0,1], which provides certain flexibility 

for balancing between the threat degree and the fuel 

consumption indexes.  

In this problem, we have Restriction conditions that must be 

satisfied during the optimization process. Based on Eq. (17) 

optimal trajectory of the UCAV must satisfy limitation 

constraints include UCAV turning radius ( ), maximum 

flight height ( ), safe distance from terrain surface (

) and escaping from flight prohibited zones (NFZs).  

         (17) 

where  i,i+1 is the angle between the extension of the line  

connecting Bezier points i and i+1,  S is the safe turning angle 

for controlling lateral and vertical accelerations. To avoid 

UCAV from terrain collision, Sd is a safe distance defined by 

control station team, x3
Path is the path curve coordinate, and 

x3
DTM is the terrain point coordinate. AL is for limiting the peak 

height of UCAV.  

It's proposed that UCAV flies with a constant speed, so the 

cost of the fuel consumption, CF, is computed based on the 

length of the UCAV path. CF, in Eq. (18) is explained as the 

additional distance passed if the UCAV takes the alternate 

path compared to the original trajectory. 

                             (18) 

where L0 is computed by summing of all the line segments of 

primary trajectory and l(di) is the control point at dth node on 

the traveled trajectory.  

Modeling of threat sources in UCAV environment is the 

important task in mission planning. There are some 

threatening areas include radars, artilleries and missiles that is 

modeled in the shape of spheres. The probability of detection 

or crashing is proportional to inverse distance from the center 

of threat zones. It's demanded to find optimal trajectories in 

such a 3D aerospace at a proper time. To compute the threat 

avoidance cost, the distance from the UCAV to the threat 

zone should be resolved as expressed in Eq. (19). 

                (19) 

where distance from UCAV position to the threat is Dt, and 

the radius of threat zone is donated by Rt. danger should be 

increased, when UCAV path is closer to the threat center. So 

the approximate formula is expressed in Eq. (20). The cost 

related to any threat is calculated for each trajectory portion. 

Then all segment cost values should be summed and scaled 

according to the number of danger zones. If the UCAV 

trajectory passed out of the threat zone, the segment cost 

values must all be 0, and the total threat cost, Ct, will be 5 

because of the predefined constant value. 

                        (20) 

 

 

Fig. 3: Digital Terrain Model (DTM) as a realistic dataset 

for UCAV flight simulations. 
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4. EXPERIMENTAL RESULTS 
In this section, for evaluating the efficiency of proposed meta-

heuristic algorithm, various experiments are implemented. In 

order to achieve consistent evaluations of CPU times, 

Simulations of proposed GBH mission planner performed in 

the same PC and all the tests were under the same conditions. 

For performance analysis of ACO, BA, DE, ES, GA and PSO 

algorithms, parameters are selected based on Table1. To 

achieve to reliable results, Max-gen parameter of every 

algorithm is assigned to 100. For implementations MATLAB 

R2012a (7.14) environment used on a PC with 2.33 GHz Intel 

Core 2 Duo and 4 GB of RAM memory. It is assumed that the 

mission region has 80km×80 km size in a local reference 

system, UCAV Launching station is (-40 ,40) and the UCAV 

Landing point is Located on (40,-40). Flight altitude of 

UCAV defined within (-20, 20), and (φS,Sd) is (55°,0.06).  

Table 1. Parameter settings of meta-heuristic planners 

Code Parameters 

ACO[4] 

Initial pheromone value s0 = 1E-5, exploration 
constant q0 = 1, local pheromone decay rate ql = 0.4, 
global pheromone decay rate qg = 0.8, pheromone 
update constant Q = 18, visibility sensitivity b = 6, 
pheromone sensitivity s = 1  

BA[38] Loud A = 0.85, scaling e = 0.3 , pulse rate r = 0.6 

DE[39] crossover CR = 0.5, weighting factor F = 0.95 

ES[40] Off-springs k = 20 , standard deviation r = 1 

GA[7] Roulette wheel selection, single point crossover, 

crossover probability of 1, mutation  0.01  

PSO[5] 

Inertial constant = 0.3, social constant of swarm 

interaction = 1, cognitive constant = 1 
 

Comparative study about convergence speed of algorithms is 

performed on GA, PSO and BH and the results are presented 

on Figure 4. In this Figure, cost value of each mission 

planning simulation versus generations is illustrated. The 

average results for 100 correct runs have compared. During 

iterations of near 19 steps, cost value of GBH algorithm 

decreased rapidly. It's obvious that based on the results, GBH 

mission planner can find the optimal solution parameters very 

quickly. Based on Figure 4, apparently, GBH overtakes all 

other optimization methods. For this case, PSO and BH show 

a faster convergence rate initially, but GA and BH should be 

trapped into sub-optimal solutions as the procedure proceeds, 

especially GA, Although PSO performs the second best in 

computing process. 

 

Fig 4: Plot of cost values of planes, related to PSO, GA, 

Improved BH (GBH) and BH. 

Two scenarios are designed to evaluate the efficiency of meta-

heuristics algorithms in UCAV mission simulations. The 

differences between Scenario 1 and 2 are the 3D locations and 

numbers of the ground threats and the initial trajectory 

followed by UCAV. Each scenario cause challenges to the 

mission planner based on the location of threats. By selecting 

more threats in implemented scenario, UCAV must perform a 

complex maneuver to escape from threats and consequently 

the possibility of violating constraints will be increased. For 

results that are presented on Table 2, its subtracted 700 from 

the actual values, i.e., value of 57.351 is transformed value 

generated from the original number 757.351. The results of 

ACO, BA, DE, ES, GA, PSO, BH and GBH  performance 

evaluations for UCAV mission planning problem are 

presented for tow different senarios in Table 2. 

Table 2. Mean normalized optimization results and CPU 

performance time of UCAV mission planners  

  Results Scenario-1 Scenario-2 

  Method Mean(  std) CPU(s) Mean(  std) CPU(s) 

ACO[4] 50.351  4.02 34.5219 27.227  4.94 16.4951 

BA[38] 47.589  4.28 25.7715 19.448  2.01 13.7111 

DE[39] 46.850  3.20 24.4752 21.333  2.82 14.8023 

ES[40] 48.271  4.57 39.8450 25.736  7.11 21.2793 

GA[7] 88.680  8.11 45.1255 39.479  6.02 26.5481 

PSO[5] 51.858  5.16 24.3214 22.884  2.93 18.7741 

BH[30] 59.712  6.35 49.4670 29.582  5.15 17.1120 

GBH 42.552  2.58 23.1491 18.101  1.16 12.9101 

 
Based on these results, GBH provides better results in 

comparision with other meta-heuristic methods. For example, 

in the case of senario-1, GBH in compare with ACO, BA, DE, 

ES, GA, PSO and BH provides results with less standard 

deviation and at least computional CPU time. In senario 2, 

solution quality of the results from BA and DE methods is 

especially superior in comparision with PSO, ES, ACO, BH 

and GA, respectively, but still GBH performs very well and is  

ranked one at computational time and solution qualities. In 

senario-1, Preformation of GBH is superior in comparison 

with other methods, while BA and DE should be ranked as 

second best in the term of std value among other algorithms, 

but fastest methods after GBH are PSO, DE and BA 

respectively. In senario-2, based upon CPU times, GBH 

significantly outperforms the BA, DE, ACO, BH, PSO, ES 

and GA respectively, when multiple executions are made. The 

results of BA, DE show that performances of these methods 

are almost similar. By comparing the results it is concluded 

that feasibility of the BA, PSO and DE is similar, GBH 

overtakes all other approaches and GA have the worst 

performances.  

5. CONCLUSION  
In this article, a novel approach is proposed for planning of 

3D flight missions based on enhanced black hole algorithm. 

An efficient version of black hole methodology has been 

proposed for autonomous UCAV mission management, and 

an efficient improvement is applied to communicate among 

stars and black hole based upon relativity theory principles. 

This approach will improve global convergence speed of 

black hole method while robustness of original algorithm is 

maintained. Then, decision maker can discover any optimal 

mission plan by considering several limitations include threat 

sources and fuel consumptions. 
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This work can enhance the autonomous UCAV’s navigation, 

and guidance in 3D complex realistic missions. The proposed 

method based on BH optimization method has superior 

performances in compression with other well-known methods 

include ACO, BA, DE, ES, GA and PSO. Trajectories are 

computed using Bezier curve which can ascertain the 

generated trajectories for mission are smooth and flyable. 

Proposed method provides valid 3D trajectories with low 

computational complexity. The simulation results indicate that 

this novel GBH mission planner not only can produce safe 3D 

trajectories with more robustness, but also has higher 

convergence speed in comparison with other implemented 

algorithms. 
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