
International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 9, June 2014

36

Supporting Ranking Queries for Search-As-You-Type in

Databases using WIP

Kaushik G. Vaghani
PG-Scholar

Computer Science & Engineering Department
Parul Institute of Technology,GTU

Vadodara,Gujarat,India

Pratik A. Patel
Assistant Professor

Computer Science & Engineering Department
Parul Institute of Technology,GTU

Vadodara,Gujarat,India

ABSTRACT

Most of the search engines in Internet have simplified

keyword-based search concept. The relational database

management systems do not allow keyword-based search

while they offers powerful query languages. Existing search

systems that are based on keyword in relational database

require users to submit a complete query to compute answers.

Often users have limited knowledge about the data, and have

to use a try and see method to modify queries and find the

answers.

Search-as-you-type is a search system that allows the user to

submit the prefix of the keyword and system will compute the

answer as user type keyword character by character for data

stored in a relational database management systems. A main

challenge is how to influence existing database functionalities

to achieve high-performance in searching speed and how to

support ranking queries that provide the most frequently

searched results at top position in computed result. The

proposed technique shows how to use weights of records

stored as an auxiliary tables to increase search performance. I

have proposed solutions for single-keyword queries and

develop a new technique, weighted index-based technique

called WIP-based searching that supports ranking queries for

searching records based on prefix of keywords by using

additional weight table stored as auxiliary table. My main

approach is to push the weight constraints into index-based

techniques. By this new WIP-based technique of search-as-

you-type, query result gives the records based upon frequency

of usage.

Keywords

Search-As-You-Type, Type-ahead Search, Keyword Search,

Databases, SQL, WIP, Ranking Queries

Abbreviations
WIPTables technique – Weighted, Inverted-Index, Prefix

Table technique

1. INTRODUCTION
It has become extremely popular to provide users with

flexible ways to search information over databases as simple

as keyword search like Google search. Now a day, the

relational databases are broadly used by applications from

different areas and different search paradigms needed by

different users. Knowledgeable users, such as database

administrators, need a search paradigm that can provide them

accurate and fully functional accessing abilities. In contrast,

most inexperienced users, as casual Internet users expect to

search databases as easily as possible. In addition, some users,

such as systems analysts, call for new paradigms for search

that influence usability and functionality.

A search-as-you-type system calculates the responses on-the-

fly as a user types in a keyword query character by character. I

study how to support search-as-you-type on data residing in a

relational DBMS using database language, SQL.

Most information systems currently improve user search

experiences by providing immediate feedback as users create

search queries. Many search engines and online search forms

support auto completion, which shows suggested queries or

even answers “on the fly” as a user types in a keyword query

character by character. For example, In Web search interface

at Netflix,1 that permits a user to search for movie details. If a

user types partial keyword “mad,” the search interface shows

movies with a title matching this keyword as a prefix, such as

“Madagascar” and “Mad Men: Season 1”. The instantaneous

answer helps the user not only in formulating the query, but

also in understanding the underlying data[5]. This type of

search is generally called search-as- you-type or type-ahead

search.

2. PROBLEM STATEMENT
In order to provide excellent keyword based search-as-you-

type speed at a minimal time, all information systems needs

diagnostic procedures that are fast, efficient, and accurate. In

addition, the procedures should not be requiring additional

overhead in relational database management systems.

Because most search systems keep their information in a

backend relational Database management system, a question

arises obviously: how to bear search-as-you-type on the data

stored in a DBMS? Some databases already support prefix

search such as Oracle and SQL server, and we might use this

feature to do search-as-you-type. But, all databases do not

provide this quality. Because of this cause, we require new

methods that can be used in all databases.

One approach is to develop a separate application layer on the

database to construct indexes, and implement algorithms for

answering queries. Even this concept has the advantage of

achieving a high performance; its main drawback is it is not

work for ranking queries[5]. A new technique, Search-as-you-

type with weight attribute can support ranking queries for

searching based on prefix of keyword in database systems.

We added weight constraint in previously searched records by

maintaining additional auxiliary table to find frequently

searched records accurately in minimum time. By this

technique, We can reduce the programming efforts to support

search-as-you-type that supports ranking queries. In addition,

the solution that is developed for one database using this

technique is portable to other databases supporting the same

standard.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 9, June 2014

37

3. RELATED WORK
Search based on keyword is a well studied problem in the

world of Internet search engines and text based documents.

There have been many studies on keyword search in relational

databases. Most of them employed tree based

methods[10,12,13]. Other methods[11,14] generated answers

composed of relevant tuples by generating and extending a

candidate network following the primary-foreign-key

relationship. The main objective to develop new techniques is

all about turning intentions into actions in the blink of an eye.

In online retail, having a quick and user-friendly website it

helps to increase sales and conversion rates on merchant

websites[6]. Search-as-you-type is a user-friendly feature

which can reduce the efforts of users to process their queries

by returning the results immediately as users type keyword

character by character.

Keyword Search over relational databases uses DBXplorer[1],

DISCOVER, BANKS[4] system that support keyword search

on relational databases.

A main requirement of search-as-you-type on huge amounts

of relational data is the need of a high interactive speed for

searching. Every keystroke from a user can invoke a query to

the system that needs to calculate the answers within the

milliseconds. Many few techniques have been implemented

for Search-as-you-type for the data stored in the relational

database systems. Recently type-ahead search on relational

databases uses TASTIER approach[2] and another techniques

are by using existing functionality of query engine of database

systems as much as possible and requires additional index

structures stored as auxiliary tables[5].

4. SEARCH-AS-YOU-TYPE FOR NON

RANKING QUERIES

4.1 No-Index Methods
One simple way to support search-as-you-type is to execute a

SQL query that scan every record and checks whether the

record is an answer of the query. There are two methods to do

so :

a. Calling User-Defined Functions (UDFs)
We can add functions into databases to verify whether a

record contains the query keyword.

b. Using the LIKE predicate
Databases provide a LIKE predicate that allow users to

achieve keyword matching. We can use LIKE predicate to

ensure whether a record contains the query keyword.

This two no-index methods do not require additional space in

database but they may not use because they need to scan all

records in database table.

4.2 Index-Based Method
This method uses additional index structure stored as auxiliary

tables to facilitate prefix search. This method can be used in

all databases. A description of the additional auxiliary tables

is as follows:

Inverted-index table: Given a table T with assign unique ids

to the keywords in table T, following their alphabetical order.

Inverted-index table IT with records in the form <kid, rid>,

where kid is the id of the keyword and rid is the id of a record

that contains the keyword.

Prefix table: Given a table T, for all prefixes of keywords in

the table, a prefix table PT with records in the form

<p,lkid,ukid>, where p is a prefix of a keyword, lkid is the

smallest id of those keywords in the table T having p as a

prefix, and ukid is the largest id of those keywords having p

as prefix.

The example of these tables based on records in sample dblp

Table 1 is shown in below Table 2.

Table 1 dblp: A Sample Publication Table (about “Privacy”)

ID Title Authors Booktitle Year

r1 K-Automorphism: A General Framework for Privacy

Preserving Network Publication

Lei Zou, Lei Chen, M. Tamer Ozsu PVLDB 2009

r2 Privacy-Preserving Singular Value Decompositon Shuguo Han, Wee Keong Ng, Philip S. Yu ICDE 2009

r3 Privacy Preservation of Aggregates in Hidden Databases:

Why and How?

Arjun Dasgupta, Nan Zhang, Gautam Das,

Surajit Chaudhuri

SIGMOD 2009

r4 Privacy-Preserving Indexing of Documents on the

Network

Mayank Bawa, Roberto J. Bayardo, Rakesh

Agrawal, Jaideep Vaidya

VLDBJ 2009

r5 On Anti-Corruption Privacy Preserving Publication Yufei Tao, Xiaokui Xiao, Jiexing Li, Donghui

Zhang

ICDE 2008

r6 Preservation of Proximity Privacy in Publishing

Numerical Sensitive Data

Jiexing Li, Yufei Tao, Xiaokui Xiao SIGMOD 2008

r7 Hiding in the Crowd: Privacy Preservation on Evolving

Streams through Correlation Tracking

Feifei Li, Jimeng Sun, Spiros Papadimitriou,

George A. Mihaila, Ioana Stanoi

ICDE 2007

r8 The Boundary Between Privacy and Utility in Data

Publishing

Vibhor Rastogi, Sungho Hong, Dan Suciu VLDB 2007

r9 Privacy Protection in Personalized Search Xuehua Shen, Bin Tan, ChengXiang Zhai SIGIR 2007

r10 Privacy in Database Publishing Alin Deutsch, Yannis Papakonstantinou ICDT 2005

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 9, June 2014

38

Table 2: The inverted index table and prefix table

(a) Keywords (b) Inverted-index Table (c) Prefix Table

For example, The inverted-index table has a tuple <k8,r3>

since keyword k8 (“sigmod”) is in record r3. The prefix table

has a tuple <”sig”,k7,k8> since keyword k7 (“sigir”) is the

minimal id of keywords with a prefix “sig”, and keyword k8

(“sigmod”) is the maximal id of the keywords with a prefix

“sig”. The ids of keywords with prefix “sig” must be in the

range [k7,k8].

Given a partial keyword w, we first get its keyword range

[lkid,ukid] using the prefix table PT, and then find the records

that have a keyword in the range through the inverted-index

table IT as shown in Figure 1. We use the following SQL to

answer the prefix-search query w[5]:

SELECT T.* FROM PT, IT, T

WHERE PT.prefix = “w” AND

PT.ukid >= IT.kid AND PT.lkid <= IT.kid AND

IT.rid = T.rid

Below fig 1 shows that how index based method works to find

the records by using these additional tables.

 Query Keyword
 W
 Prefix lkid ukid

Prefix Table

 kid rid

Inverted

Table

 Table T
 A1 A2 .….. Ai

 …… r1

 …… r2

 …… .
.

 …… rn

Fig 1: Using inverted-index table and prefix table to

support search-as-you-type[5]

This method does not requires to scan whole records in

databases. So execution time for query is very small as

compared to No-index based methods but this method does

not support ranking queries.

5. WIP-BASED SEARCH-AS-YOU-TYPE
To support prefix matching, we showed solutions that use

auxiliary tables as index structures and SQL queries to

support search-as-you-type. There are several open problems

with these solutions to support search-as-you-type using SQL.

However these techniques do not support ranking queries

efficiently.

Ranking queries means when user enters keyword character

by character, system computes the most relevant answers first

based on prefix entered by the user. The records that are most

likely searched by users for particular prefix of keyword have

higher ranks. The top ranking records are then shown to the

users.

For support the ranking queries for search-as-you-type from

relational database I proposed a new technique that add one

additional table, Weight table WT that contains information in

form <rid, weight>, where rid is record id in table T and

weight is the overall rank of the record in table T.

Now when user enter a partial keyword w system first get its

keyword range [lkid,ukid] using the prefix table PT, and then

find the records that have a keyword in the range through the

inverted-index table IT. It then looks up the weight table WT to

get rank. The system then returns top ranked records first

followed by records that have lower ranks. User then selects

the appropriate record from listed records and based on that

weight table is refine to modify the rank of selected record.

We will use the following SQL to answer the prefix-search

query w:

SELECT T.* FROM PT, WT, IT, T

WHERE PT.prefix = “w” AND

PT.ukid >= IT.kid AND PT.lkid <= IT.kid AND

IT.rid = T.rid AND T.rid=WT.rid

ORDER BY WT.weight DESC

kid keyword

k1 icde

k2 icdt

k3 preserving

k4 privacy

k5 publishing

k6 pvldb

k7 sigir

k8 sigmod

k9 vldb

k10 vldbj

… …

 kid rid

K2 r10

K5 r6

K5 r8

K5 r10

K6 r1

K7 r9

K8 r3

k8 r6

k9 r8

k10 r4

… …

prefix lkid ukid

ic k1 k2

p k3 k6

pr k3 k4

pri k4 k4

pu k5 k5

pv k6 k6

pvl k6 k6

sig k7 k8

v k9 k10

vl k9 k10

… … …

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 9, June 2014

39

5.1 WORKFLOW OF WIP APPROACH

Fig 2: Flowchart for proposed Method

A flowchart shown in above figure 2 depicts step by step

procedure for WIP approach of search-as-you-type that is

enhanced technique of index-based method of searching over

databases. First user enters keyword in to the search field of

any system character by character. System will then fire the

query on each key stroke of the user into backend database

and look up the prefix table PT for lower and upper rang of kid

and then find all rid for that kid range from Inverted-index

table IT. Now we have all the rid of those records which

contains keywords with prefix that is entered by user. To

support ranking queries we have added one additional table

Weight table WT in which all records have some particular

rank. By using this rank system will show top ranked records

from result records to the users at higher position followed by

lower ranked records. User will select appropriate record from

the given searched records and based on that weight table is

again refined to increment the rank of that particular record by

one.

5.2 ANALYSE AN WIP APPROACH OF

SEARCH-AS-YOU-TYPE BY EXAMPLE
To understand how the proposed WIP based technique that

supports ranking queries for search-as-you-type is design and

implemented, we gone through following example. Suppose

here we again consider publication table of dblp database that

is shown in Table 1.

Now when user enter a partial keyword ‘Sig’ system first get

its keyword range [lkid,ukid] using the prefix table Pdblp, and

then find the records that have a keyword in the range through

the inverted-index table Idblp. It then looks up the weight table

Wdblp to get rank. The system then returns top weighted

records first followed by records that have lower weight. User

then selects the appropriate record from listed records and

based on that weight table is refine to modify the weight of

selected record and increment its weight by one. The

schematic diagram for this example is shown in below figure

3. Also we have shown the query that is fired into backend

database to find top ranked records with the use of these

auxiliary tables.

User enter keyword

character by character

Look up prefix table PT

for [lkid,ukid]

Look up inverted index table IT

for rid where kid is between lkid

and ukid

Look up weight table WT for

rank of all rid

Shows top ranked records first

from table T

User selects the appropriate

record from listed records

Calculate new rank for selected

record

Refine the Weight table to

modify rank of selected

record

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 9, June 2014

40

 Query Keyword

 ‘SIG’

Prefix lkid ukid

ic k1 k2

p k3 k6

pr k3 k4

pri k4 k4

pu k5 k5

pv k6 k6

pvl k6 k6

sig k7 k8

v k9 k10

vl k9 k10

Prefix Table(Pdblp)

kid rid

k2 r10

k5 r6

k5 r8

k5 r10

k6 r1

k7 r9

k8 r3

k8 r6

k9 r8

k10 r4

Inverted

Table(Idblp)

rid Weight

.

.
.
.

r3 150

.

.
.
.

r6 750

.

.
.
.

r9 200

.

.
.
.

Weight Table (Wdblp)

 ID Title ….

r1

r2

r3

.

.

.

r6

.

.

r9

.

.

 Table (dblp)

Fig 3: WIP Approach - Using weight table to support ranking queries for search-as-you-type

We will use the following SQL to answer the prefix-search

query ‘Sig’:

SELECT dblp.* FROM Pdblp, Wdblp, Idblp, dblp

WHERE Pdblp.prefix = “sig” AND

Pdblp.ukid >= Idblp.kid AND Pdblp.lkid <= Idblp.kid

AND

Idblp.rid = Wdblp.rid AND Wdblp.rid = dblp.rid

ORDER BY Wdblp.weight DESC.
After execution of the above query system will returns records

in order of r6, r9 and r3. This order is based on their weight

that is r6(750), r9(200) and r3(150). So in this way user will

get higher weighted records first in the list.

6. EXPERIMENTAL STUDY
We have implemented existing and proposed methods on one

real dataset zipcode: It includes 42,741 records of zip codes. It

is database of zipcodes of countries of USA.

We implemented the technique in JAVA that demonstrates the

use of my proposed technique for search-as-you-type that uses

weight constraint to support ranking queries. We used

MYSQL as database in the experiments. We will compare

different techniques in below section 6.1. The sample table of

dataset zipcode is shown in below figure 4.

6.1 RESULT ANALYSIS
The result analysis of proposed technique is shown into figure

5 as a graph. We have taken the results for all three techniques

that is LIKE, Index-based and WIP for different prefix of

keywords of dataset ZIPCODE.

rid ZIP City State Country Type

1 00501 HOLTSVILL

E

NY SUFFOLK UNIQUE

2 00544 HOLTSVILL

E

NY SUFFOLK UNIQUE

3 00601 ADJUNTAS PR ADJUNTAS STANDAR

D

4 00602 AGUADA PR AGUADA STANDAR

D

5 00603 AGUADILL

A

PR AGUADILL

A

STANDAR

D

6 00604 AGUADILL

A

PR AGUADILL

A

STANDAR

D

7 00605 AGUADILL

A

PR AGUADILL

A

STANDAR

D

8 00606 MARICAO PR MARICAO STANDAR

D

9 00610 ANASCO PR ANASCO STANDAR

D

10 00611 ANGELES PR UTUADO PO BOX

ONLY

Fig 4: Sample zipcodes table of zipcode dataset

The comparative result analysis for all three techniques is

clearly shown in to below graph. As we can show from graph

that LIKE predicate based technique takes more time than

Index based technique (IPTable) and WIP based technique

because it need to scan all records into database table to find

the answers. The index-based technique and WIP technique

almost takes same time to execute the query. In some cases

WIP based technique takes some milliseconds more time then

Index-based technique but WIP technique gives search result

that is based on records frequency of search as we discussed

in above section.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 9, June 2014

41

Fig 5: Query execution time for different techniques

Fig 6: Average Query execution time for different

techniques

The above figure 6 shows average time to execute queries by

different searching techniques. The difference of query

execution time between IPTable and WIP-based technique is

nearly one to two milliseconds that can be neglected but WIP

technique gives efficient results and supports ranking queries

that index-based technique does not support.

7. CONCUSION AND FUTURE WORK
Various techniques have been studied to support search across

the database and each technique has its own advantage and

limitation. Experiment on large, real data set show that the

existing techniques enable DBMS systems on a commodity

computer to support search-as-you-type on tables with

millions of records have many open problems like supporting

ranking queries. We have studied the problem of supporting

ranking queries using SQL to support search-as-you-type for

data stored in relational databases. We used additional weight

table as auxiliary table in existing technique that allows the

user to get answers which are mostly searched when user type

keyword character by character. A proposed WIP based

Search-as-You-Type approach provides instant answer of

user’s queries on each key stroke of user based on frequency

of search.

In future work, an approach can be done to develop this

technique for multiple tables and to reduce some more time in

execute queries.

8. ACKNOWLEDGMENTS
With the cooperation of my guide, I am highly indebted to

Asst. Prof. Pratik Patel, for his valuable guidance and

supervision regarding this work as well as for providing

necessary information regarding materials.

9. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das, “DBXplorer: A

System for Keyword-Based Search over Relational Data

Bases,” Proc. 18th Int’l Conf. Data Eng. (ICDE ’02), pp.

5-16, 2002.

[2] G. Li, S. Ji, C. Li, and J. Feng, “Efficient Type-Ahead

Search on Relational Data: A Tastier Approach,” Proc.

35th ACM SIGMOD Int’l Conf. Management of Data

(SIGMOD ’09), pp. 695-706, 2009.

[3] Hao Wu. "Search-As-You-Type in Forms: Leveraging

the Usability and the Functionality of Search Paradigm in

Relational Databases." VLDB (PhD Workshop), 36-41.

2010. Accessed February 7, 2012.

[4] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S.

Sudarshan. Keyword searching and browsing in

databases using banks. In ICDE, pages 431–440, 2002.

[5] Guoliang Li, Jianhua Feng, Chen Li, "Supporting Search-

As-You-Type Using SQL in Databases," IEEE

Transactions on Knowledge and Data Engineering, vol.

25, no. 2, pp. 461-475, Feb. 2013

[6] L. Qin, J.X. Yu, and L. Chang, “Keyword Search in Data

Bases: The Power of Rdbms,” Proc. 35th ACM

SIGMOD Int’l Conf. Management of Data (SIGMOD

’09), pp. 681-694, 2009.

[7] Daniel Suelmann, “Keyword-based Search in a

Relational Database” Bachelor’s Thesis, Department of

Information Science Faculty of Arts University of

Groningen August 2009

[8] F. Liu, C.T. Yu, W. Meng, and A. Chowdhury,

“Effective Keyword Search in Relational Data Bases,”

Proc. ACM SIGMOD Int’l Conf. Management of Data

(SIGMOD ’06), pp. 563-574, 2006.

[9] H. Bast and I. Weber, “Type Less, Find More: Fast

Autocompletion Search with a Succinct Index,” Proc.

29th Ann. Int’l ACM SIGIR Conf. Research and

Development in Information Retrieval (SIGIR ’06), pp.

364-371, 2006.

[10] M. Hadjieleftheriou, A. Chandel, N. Koudas, and D.

Srivastava, “Fast Indexes and Algorithms for Set

Similarity Selection Queries,” Proc. IEEE 24th Int’l

Conf. Data Eng. (ICDE ’08), pp. 267-276, 2008.

[11] C. Li, J. Lu, and Y. Lu, “Efficient Merging and Filtering

Algorithms for Approximate String Searches,” Proc.

IEEE 24th Int’l Conf. Data Eng. (ICDE ’08), pp. 257-266,

2008.

10. AUTHOR’S PROFILE
Kaushik Vaghani received the Bachelor of Engineering

degree in Computer Engineering from Sarvajanik College Of

Engineering & Technology under Veer Narmad South Gujarat

University in 2011, Gujarat. During 2011-2012, he worked for

Triz Innovation Pvt Ltd. as a software developer. He is

pursuing Master of Engineering degree in Computer Science

& Engineering from Parul Institute of Technology under

Gujarat Technological University.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Q
u

e
ry

 E
xe

cu
ti

o
n

 T
im

e
 (

Se
c)

Result Analysis

Like IPTable WIPTable

0

0.01

0.02

0.03

0.04

0.05

0.06

Like IPTable WIPTable

A
ve

ra
ge

 E
xe

cu
ti

o
n

 T
im

e
 (

Se
c)

Different Searching Techniques

IJCATM : www.ijcaonline.org

