
International Journal of Computer Applications (0975 – 8887)

Volume 95– No.7, June 2014

1

Novel Approach for Arabic Spell-Checker: Based on

Radix Search Tree

Rasha AL-Tarawneh
Al-Balqa’ Applied University
Aqaba University College

Department of Applied Science
Aqaba-Jordan

Hatem S. A. Hamatta
Al-Balqa’ Applied University
Aqaba University College

Department of Applied Science
Aqaba-Jordan

Hasan Muiadi
Al-Balqa’ Applied University
Prince Abdullah Bin Ghazi

Faculty of IT
Dept. of Computer Science

ABSTRACT

The main aim of this study is to develop a spell-checker

system for Arabic language. This is done by investigating the

viability of applying the radix search tree approach. Through

this scientific research several shrubs that represent Arabic

characters will be built through serialized tracking of

characters word where it can be added to the dictionary and

with a special mark in the node that contains the last

characters from each word; on other side during searching

process, every word can be tracked character by character

according suitable path inside its shrub, Accordingly, correct

word can be recognized if and only if searching process

locates some leaves during the traverse of the shrub.

Otherwise, the word will be considered incorrect.

General Terms

Your general terms must be any term which can be used for

general classification of the submitted material such as Pattern

Recognition, Security, Algorithms et. al.

Keywords

Spell-Checker, Radix Search Tree, Computational Linguistic

1. INTRODUCTION
As it is known Arabic language is considered as one of the

oldest language in the world, it has played an important role in

the shared history of all Arabs and gained a high level of

interest by more than one billion muslims to read and

understand the message of Qur'an Islam's Holy book [8]. So

the Arabs must bring their research and their interest in it to

get computers performs useful tasks and operations such as

processing of text.

The use of computer is spreading rapidly in the Arab world.

Many computer software packages and applications have been

available; but they are restricted to other languages. Arabic

language suffers from the absent of its own software

packages. For this reason, we aim in this study to develop a

spell checker system for Arabic language which belongs to

the area of computational linguistics as a part of artificial

intelligence (AI)[2] which concerns about the construction of

computer programs to process words and texts in natural

language.

These days, applied computational linguistic systems are

widely used in business and scientific domains for many

purposes. Some of the most important ones among them is the

spell-checker. The spell-checker system is an integral part of

modern word processors, search engines, email client, and

electronic dictionary [7]. Such system is useful for many

people such as: students, business people, and professional

writers [5]. The main objective of the spell-checker system is

to flag words in a text that may not be spelled correctly [7].

This flagging process is done at the word level without

considering the text context [1].

2. RELATED WORK
At the level of free software and to the borders of 2006, there

was no free and functional Arab spelling checkers. Despite the

many Arab attempts related directly or indirectly with the

ArabEyes institution, the most important attempts are for the

brothers Mohammad Zubair in the "Dua'alyi" Program, and

Mohamed Samir in the "Baghdad" program. The delays in

getting support for the "Dhad Language" in free softwares in

general, and the lack of spelling checker, refer in mainly to

distinguished software and linguistic characteristics, and it

refers also to the rare competency and weak interest in free

softwares at the levels of the region, the economics and at the

university levels. At the end, the solution came through the

gate of free softwares which are: the "Hunspell" spelling

checkers adopted by the project Open Office program

"Aspell". The two programs are developed for Latin

languages, but with the addition of the support property

"Unicode" & the Bidirectional property, they become suitable

for support other languages than Latin [4].

2.1 Muaidi and Al-tarawneh Spell-Checker
Hasan Muaidi and Rasha Al-tarawneh attempted to develop a

simple spell-checker for arabic language based on N-Gram

scores. Several matrices are built to present the combination

of the connected Arabic letters word. Each matrix deals with

each word within the text separately and extracts the 2-gram

set for it, that may have 1,0 or 2 according to the connection

between the letters. Then it examines the value for each item

in the 2-gram set. When the corresponding value for the item

is zero then the spell-checker will consider the tested word as

a wrong word otherwise the next corresponding value is

checked until it reaches to the final value of last two letters[1].

2.2 Zerrouki-Balla Spell-Checker
Zerrouki and Balla concerned in Arabic language so they tried

to add infixes and support circumcises with ignoring diacritics

to open source spell-checkers Aspell and Hunspell [10].

2.3 Shaalan Spell-Checker
Due to the rich morphology and complex Arabic language,

this makes a challenges for implementing an automatic spell-

checker [9]. Shaalan et. al., attempt to developing an Arabic

spelling checker program for solving this challenges and to

recognize common spelling errors for standard Arabic and

Egyptian dialects.

They have implemented the Arabic spelling checker tool

using SICStus Prolog on IBM PC. The interface is built using

Microsoft Visual Basic.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.7, June 2014

2

The first step in spelling correction is the detection of an error,

there are two possibilities:

1. The misspelled word is an isolated word (Non-word).

2. The misspelled word is a valid word . (As writing < لنا >

instead of < مال >).

2.4 Haddad-Yaseen Spell Checker
Bassem Haddad and Mustafa Yaseen [3] proposed a hybrid

model for spell-checking and correcting of Arabic words,

based on semi-isolated word recognition. In their work, the

error of Arabic word is classified into three types;

typographic, cognitive and phonetic errors. Each one of these

error types is categorized into a single error or multi error.

3. METHODOLOGY
Arabic Corpus

One of the main challenges for the researchers and the

developers tools for the Arabic language is the absence of

public free corpus\footnote{This is for the best of our

Knowledge.}. The corpus which is used in this research study

is adapted from Muaidi PhD thesis1. This corpus (hereafter

refer to as Muaidi Corpus) is implemented and compiled in

2005-2008 during the Muaidi’s PhD study at De Montfort

University in UK [6].

The following items highlight the features of Muaidi Corpus:

1. The Muaidi Corpus consists of 848,779 Arabic words

(including redundant words) written in Modern Standard

Arabic (MSA).

2. The words cover a wide range of knowledge subjects.

3. The minimum word’s length in this corpus is 1; while the

maximum word’s length is 25.

4. The total number of words which have a length greater

than or equal 4 and less than or equal 12 is 596,916,

about 101,987 of them are word-types.

5. The Muaidi Corpus is an annotated corpus in which the

words in this corpus have morphological features such as

roots, stems, affixes and part-of-speech tags.

In summary, the corpus which is used in the current study

consists of 101,987 word-types. These words are used to train

and test the Radix tree technique.

3.1 Developed Radix Tree
By radix tree approach 28 trees are built, each tree presents

one Arabic letter. The trees are built by keeping a track of

word’s letters, and a special mark in the node which contains

the last letter of the word. The search operator is executed by

tracking the word letters using appropriate path in the right

tree of the 28 trees; if the word finished and the tracking

reached to the node with a special mark then this word is

considered as a correct word otherwise it is considered as

incorrect word.

The spell-checker based on the radix tree is composed of two

phases:

First, Building the radix trees phase.

1
 Dr. Hasan Muaidi, AL-Balqa’ Applied University.

As it is mentioned the final tokens should be prepared to be

stored in the trees. The process is applied by tracing the

following steps:

1. After being connected with the corpus, each token is

taken individually.

2. Each token is split into separate letters.

3. Each letter is taken individually to be stored in a tree

according of it’s order in the token, so the first letter is

stored as a root, while the second letter is stored as a

child of the same root at level one in the tree, also the

third letter is stored as a child of the previous letter

node... and so on.

Consequently, through storing process the root may be created

by some of tokens which are shared with the same first letter

of current token, in this case it will not be stored another time,

but it is going to the second letter in the token and search for it

in the children of the root, if does not exist it will be stored;

else it will be going to the third letter, and continue until reach

to the final letter in the token where a node must be store a

final letter with a special mark.

The following example clearly shows how to build the radix

tree from the tiny corpus in Figure 1.

Fig 1: Tiny Corpus Token Inputs

The first token is < أقلام > which is split into five letters and is

stored in the initial tree as it is shown in Figure 2-a. The next

token is < أحمد >, the first letter has been stored already from

the previous token, so the next letter is checked in the children

of root node, as it is shown in Figure 2-b. Since it is not stored

in the tree it will be added as a child of the root node and

continue stores the rest letters. The third token is < أحمر >, the

first three letters have been stored in the previous two tokens

so they will not be stored another time, only the last letter of it

will be added to the tree, as it is shown in Figure 2-c. The

letter (ر) is assigned as an extra attribute which is (*) to

indicate that this letter is the last one in the token.

Fig 2: Initial Tree for First Three Tokens

When the process reaches to the Arabic word < بسملة > , then

a new tree should be created and value of the root node is the

letter (ب) as shown in Figure 3-a, then stores < باب/بائع >, in

the same tree as it is shown in Figure 3-b and 3-c. A new two

trees are created with roots (ت/ي) respectively to store the rest

of tokens.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.7, June 2014

3

Fig 3: Initial Tree for Second Three Tokens

Second, Spell-Checking Phase

After generating the radix trees for all the words in the corpus,

the tested text is entered in the text box. Each word is

processed separately and the process of spelling is executed

once the button of < التدقيق الاملائي > is clicked, The incorrect

words are colored by red while the correct words are black.

The spelling process is executed as follows:

1. The first letter of the tested word is extracted in

order to determine the suitable radix search tree.

This first letter is the root node of the tree.

2. The second letter is examined to check whether it is

one of the children of the root, if it is not, the tested

word is considered as incorrect word and coloring

by red. Otherwise the same checking process is

continued for the rest letters until it reaches to the

last letter.

3. The last letter node is checked against the (*)

attribute. If it has this attribute, then the tested word

is considered as a correct word otherwise, it is

considered as incorrect word and colored by red.

Example

Suppose a tiny corpus is entered in the text-box as shown in

Figure 4. The first token is < ,it is split into five letters ,< أقلام

the first letter is compared with all the root values in the

generated trees. The roots have the keys (أ In the .(ي , ت , ب ,

case of the current example, the tree with the root key (أ) is

processed see Figure 2-a.

The second letter is taken and search on it over the children of

the same root, if it is existed in the children then the third

letter is taken; else the token will be colored by red, in this

case the letter (ق) is stored in the tree so the searching

process is continued in the same track until it is reached to the

final letter which must has the (*) attribute and it is satisfied

in this token so the word < is considered as correct < أقلام

word.

Fig: 4 Spell-Checker Inputs Using Radix Tree

The second token is <) it begins with the letter ,< تاجر so ,(ت

the checking process is stabled in the tree in Figure 5-b which

has a root node with (value. The first 3 letters are existed (ت

in the tree, but the last letter does not exist in the tree so this

word is colored by red.

Fig 5: Initial Tree for Third two Tokens

The third token is < the search tree should has a root ,< أحمد

with (أ) value, so the checking process is stabled in the tree

in Figure 2-c. All the letters of this word are existed in tree but

the last one is stored without the (*) attribute since it is not in

the tiny corpus; so this token is colored by red. The result of

this example is shown in Figure 6.

Fig 6: The Result of Spell-Checker Using Radix tree

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.7, June 2014

4

So the words in this method have a red color in two possible

cases:

 It is a correct Arabic word, but it is not stored in the

tree.

 It is already an incorrect Arabic word.

4. EXPERIMENTAL RESULTS
Two stages are presented to test the results and measure the

system performance.

4.1 The Training Stage
As mentioned, the size of Muaidi Corpus consists of 101,987

words. These words are considered as a dataset to train and to

test the performance of the developed spell-checker. This

dataset is divided into two unequal parts, bulk part (70%)

which is used as a training dataset for the training stage and

the remaining part (30%) is taken as a testing dataset for the

testing stage.

The training stage depends on training set to train the

developed Radix tree spell-checker. While the testing stage

depends on testing set to evaluate the performance of the

developed Radix tree spell-checker. The training dataset

consists of 71,390 Arabic words. While the testing dataset

consists of 30,597 Arabic words. The evaluation process is

done on an Intel core 2 dual processor with a speed 1.80 GHz.

The RAM capacity is 1,016 GB and the operating system is

WINDOWS XP.

The methodology of evaluation the current research study is

organized as follows:

(1) The training dataset is used to build the radix trees.

(2) To assure the ability of learning, the training dataset

is used to train the radix tree technique.

(3) Testing dataset (which is unseen data) is used to

check the performance of the spell-checker.

(4) The words which are considered as incorrect words

from the previous step are reentered to the system.

(5) The performance of the spell-checker is recomputed

again.

(6) The implemented evaluation methodology for the

developed spell-checker is based on the ability of it

to successfully spell the correct Arabic words.

The developed radix tree technique is correctly spelled 100%

of the words in the training dataset. Table 1 summarizes the

evaluation of the results in the training dataset. While Figure 7

demonstrates these results in a column format chart.

Table 1. The Evaluation of Results in Training Dataset

(Radix tree Approach)

Number of words 71.390

Number of correctly words 71.390

Number of colored words 0.0

Success rate 100%

Fig 7: The Evaluation of the Training Dataset for Radix

Tree Approach

4.2 The Testing Stage
In testing stage a hidden dataset (testing dataset) is used to

indicate the accuracy of the developed spell-checker system.

As mentioned before the testing dataset consists of 30,597

Arabic words. To test the performance of the radix tree

technique, the accuracy is calculated using the success rate

measure SR. This measure compatible for the developed spell-

checker with checking the error words and colored them.

Success rate measure is calculated as shown in Equation 1.

SR =

 100% (1)

Where:

SR = The success rate.

CW = The number of correctly words.

N = The size of the testing dataset.

The experiment is performed on the developed spell-checker

system using the testing dataset and the success rate is

obtained 24.24%. Table 2 summarizes the evaluation of the

results in the testing dataset. While Figure 8 illustrates these

results in a column format.

Table 2 The Evaluation of Results in Testing Dataset

(Radix tree Approach)

Number of words 30,579

Number of correctly words 07,471

Number of colored words 23,126

Success rate 24.24%

Fig 8 The Evaluation of the Testing Dataset for Radix

Tree

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.7, June 2014

5

4.3 Causes of the Errors
The difference in the accuracy between the two stages

(training and testing) is refers to the number of words in each

dataset. When the size of the dataset is increased the accuracy

will be increased spontaneously; and the system has the

ability to recognize a great number of words and

automatically the error rate is decreased.

4.4 Discussion of the results
The developed spell-checker system accuracy reached 100\%,

using the training dataset. While the accuracy of the

developed system reached to 24.24% using the testing dataset.

This difference back to the variant between build data and test

data; which means that the testing data is unseen from the

system, so if we use the testing dataset in rebuilding and retest

them again using this dataset, the accuracy will jump

tremendously. It jumps from 24.24% to 100% . Table 3 clears

this while Figure 9 illustrates these results in a columns

format.

Table 3 The Evaluation of Results When Rebuild Testing

Dataset (Radix Tree Approach)

Number of words 30,579

Number of correctly words 07,471

Number of colored words 23,126

Success rate 24.24%

Fig 9 The Difference between the Results Before and After

Add Unseen Data(Radix Tree Approach)

The above discussion is clarified that the accuracy is mainly

depends on the number of words in the corpus, so to increase

the accuracy of the developed spell-checker the number of

words should be increased. The overall accuracy of the

developed spell-checker based on radix search tree approach

is reached to 100% using the whole data in Muaidi corpus

dataset. Table 4 summarizes all these results.

Table 4 The Overall Evaluation of Results (Radix Search Tree Approach)

 Training Data
Testing Before

Rebuild

Testing After

Rebuild
All Data

Number of words 71,390 30,597 30,597 101,987

Number of correctly words 71,390 7,471 30,597 101,987

Number of colored words 0 23,126 0 0

Success rate 100% 24.24% 100% 100%

Execution time (all data) - - - 1,020,000 ms

Execution time (one Word) - - - 10.00 ms

5. CONCLUSION
After developing a spell-checker using radix search tree

technique. It is trained using training dataset and the accuracy

is calculated for the developed spell-checker accordingly.

Thus, the overall accuracy almost reached to 100% ; it

provides a high accuracy. The above evidences are sufficient

to make sure that the radix search tree could be used

efficiently to build a spell-checker for Arabic language. The

future scope will convey to find new techniques that can keep

spell-checker as highly efficient and accurate as possible.

6. REFERENCES
[1] H Muaidi and R Al-Tarawneh. Towards Arabic spell-

checker based on n-grams scores. International Journal of

Computer Applications, 53(03):5, September 2012.

[2] Anna Feldman. Computational Linguistics: Models,

Resources, Applications. ISBN, 2004.

[3] B. Haddad and M Yaseen. Detection and correction of

non-words in arabic: A hybrid approach. International

Journal of Computer Processing of Oriental Languages,

30, 2007.

[4] Mohammed kabbani. The arabic spell-checker dictionary

from ayaspell project. Technical report, Prix special des

troisiemes rencontres africaines du Logiciel Libre, 2008.

[5] S.K Kataria and Sons. The Design and Analysis of

Algorithms. N. Upadhyay, 2008.

[6] Muaidi.Hasan. Extraction Of Arabic Word Roots: An

Approach Based on Computational Model and Multi-

Backpropagation Neural Networks PhD thesis, De

Montfort University - UK, 2008.

[7] H Satori, M Harti, and N Chenfour. Arabic speech

recognition system using cmu-sphinx4. CoRR

0704.2201, 2007.

[8] Zeina Seikaly. The arabic language: The glue that binds

the arab world. AMIDEAST, 2007.

[9] S. Khaled, A. Amin, and G. AbdAllah. Towards

automatic spell checking for arabic. In Language

Engineering, 2003.

[10] T. Zerrouki and A. Balla, Implementation of infixes and

circumfixes in the spellcheckers. In Proceedings of the

Second International Conference on Arabic Language

Resources and Tools, 2009.

IJCATM : www.ijcaonline.org

