
International Journal of Computer Applications (0975 – 8887)

Volume 95– No.26, June 2014

17

Against the “Hello World”

Leonard J. Mselle

Computer Science
The University of Dodoma

Dodoma, Tanzania

Tabu S. Kondo
Computer Technologies and Applications

The University of Dodoma
Dodoma, Tanzania

ABSTRACT

Computer programming is a “two-way thinking process.” The

programmer must think and implant his/her thought in the

computer in the form of code. In return, the computer must

think like the programmer in the way of output. Compilation

is the only initial accurate way of confirming that the

programmer and the computer are thinking the same way. In

case of novice programmers, the compiler feedback does not

suffice the need. In some cases it is a source of confusion and

despair. To add to this complexity, the way initial

programming is taught and the way programming materials

are presented to learners goes contrary to the “two-way

thinking.” There is a need for another (mediating) language

between the compiler and the novice programmer. In this

paper, the traditional practice of introducing programming

lessons through programs that display a message such as

“Hello World” or any other message is debunked. A new

visualization approach through Memory Transfer Language

(MTL) is proposed. It is proved that MTL is a language to

learn programming whereby students are able to employ

hands-on, minds-on and “two-way-thinking” approach to

develop coding skills.

General Terms

Programming languages, programming materials,

visualization

Keywords
Memory Transfer Language (MTL), program visualization

1. INTRODUCTION
What advocates for greater computing education want are

more introductory classes at earlier grades. That way, they

say, barriers to entry are lower and more students will start

taking the advanced programming classes [1]. There is a move

in advanced economies to make programming a basic subject

just like arithmetic, reading and writing. Scratch is the

language of preference for these early classes due to its

simplicity. However, scratch cannot be used to produce

industrial applications. There is still a need to explore

alternative methods for teaching programming to more

students without deviating from the conventional languages

such as C, C++ and Java.

Programming is a powerful tool for children to learn learning.

Children who engage in programming transfer that kind of

learning to other things [2]. Concerning programming, Van

Someren [3] looked at novices learning Prolog. He came to

the conclusion that those who were successful had a

mechanical understanding of the way the language

implementation worked.

Ziegler and Crews [4] contend that one problem with teaching

programming is the lack of support for learners to experience

program execution (i.e. what the computer is thinking).

Students often do not view a program as a sequence of steps

that must be executed one at a time. Rather, they view

programs as a collection of statements that execute when

necessary (as opposed to sequentially next). Under this

assumption, the exact placement of a statement is irrelevant

for the correct working of the program. Thus, students often

write programs that contain correct statements; but the order

of the statements is incorrect. Since the program execution is

not visible, the student often does not realize that there is a

misconception.

The way programming books and other teaching materials are

presented attest to a general lack of visualization approach. In

order for one to be able to program he/she should be able to

imagine what is taking place in the computer memory (RAM)

for each instruction which is executed [5, 6]. That is, he/she

should be able to answer the question “is the computer

thinking the way I want it to think?” The learner must strive to

understand for each line of code, how the computer is

responding in order to become a competent programmer. In

other words, programming is to understand what is happening

in the RAM as each instruction is executed.

Contrary to the expectation, almost all books and other

literature for beginners in programming start with a program

that displays a message; specifically “Hello World” or “Hello

USA” or something similar. This practice is useless at best

and counterproductive at worst. This is so because it is

completely devoid of thinking. In addition, starting

programming by messaging is devoid of continuity. After

displaying a message in the beginning, novices are switched

to variables, which dominate the entire programming

discourse. This leads to a valid question: “why not start

programming with variables?” The perverse approach in

teaching programming does not stop at “Hello World.” It

continues with the use of verbose approach to explain the

logic of programs.

Although there have been attempts to introduce visualization

as an alternative approach to teach programming, other

methods, broad enough to allow authors of programming

books to use visualization in the entire courses are a very

recent phenomenon which has not been thoroughly tested [5,

6, 7, 8, 9].

2. THE CASE FOR VISUALIZATION BY

 MTL

2.1 Visualization in programming
Among the human senses, visual perception is the most

important (influential) to cognition. Visualization of non-

physical information - financial data, business information,

abstract concepts, computer program execution, relationships

or specifications is a bit challenging. For a concept to be well

and easily understood, visualization, whenever possible, can

be employed. In teaching computer programming, the

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.26, June 2014

18

fundamental question has been how to effectively employ

visualization for beginners.

Rajala et al [10] contend that program visualization is a

research area which studies ways of visually assisting learners

in understanding behavior of programs. Visualization of

programs can be either dynamic or static. Dynamic program

visualization tools visualize execution of programs. They

usually show how the execution of programs progresses by

highlighting parts of the code under execution and by

visualizing changes in variable states.

Various researchers have reported the positive impact of

visualization in teaching programming [10]. However,

visualization approach is not widely popular among

programming instructors. Hundhausen et al [11] state that one

of the main reasons visualizations are not widely used is

because most instructors refuse to use new methods in

teaching. Mselle [8] contends that another reason is that

visualization is not yet an integral part of the way

programming books are written. He argues that most

programming books are written as programming-language

manuals. Books and most materials intended for programming

beginners do not only suffer from visualization malnutrition;

they invariably start out badly with the standard output

program as the one depicted in figure 1.

#include <stdio.h>

int main()

{

cout<< "Hello World!\n";

}
Fig 1: Hello World Sample Code

A "Hello World" program is a computer program that outputs

the message "Hello World" on a display device. Because it is

typically one of the simplest programs possible in most

programming languages, it is by tradition often used to

illustrate to beginners the most basic syntax of a programming

language, or to verify that a language or system is operating

correctly. While small test programs existed since the

development of programmable computers, the tradition of

using the phrase "Hello World!" or “Hello my name” as a text

message was influenced by an example program in the

seminal book “The C Programming Language.” The example

program from that book prints "hello, world" (without capital

letters or exclamation mark), and was inherited from a 1974

Bell Laboratories internal memorandum by Kernighan [12].

However, introducing programming with a messaging goes

contrary to the whole idea of learning programming through

visualization. Specifically it does not allow the learner to learn

learning. It is devoid of a problematic approach. It does not

allow for a successful mechanical understanding of the way

the language implementation works. It lacks support for

learners to experience program execution. It does not enforce

thinking, neither in one way nor two ways. Furthermore,

programming logic of sequence, selection, looping, arrays,

functions and filing has nothing to do with messaging. The

entire logic of program and programming rests on variables.

That means, programming is based on RAM. So, the best way

to start teaching programming is to start with variables as

RAM elements because all programming logic revolves

around variable and the RAM.

2.2 Program visualization by MTL
Visualization through MTL is proposed by Mselle [7, 8, 9].

Figure 2 through 5 depict examples of presenting

programming concepts through visualization by MTL.

The example in figure 2 is a demonstration of the initial code

that is used to teach programming using visualization through

MTL as a departure from messaging approach, the “Hello

World” style. The MTL approach embraces a problematic

situation. It insinuates thinking like a computer. It allows for

the learner to mimic the machine RAM while working it. It

allows the learners to experience program execution line by

line while visualizing a program as a sequence of steps that

must be executed one at a time. MTL approach as opposed to

messaging approach has a continuity effect. Most of basic

programming aspects such as selection, looping, arrays,

functions and file handling are explained in the same fashion.

Figure 3 depicts an example of visualization of arrays under

MTL while figure 4 depicts an example of loop visualization

under Pointers, being among the most complex aspects of

programming are hard to fathom by novices. It is a daunting

and frustrating task for novices to comprehend how addresses

can be stored and how they function. Visualization through

MTL allows novices to relate data storage with address

storage as depicted in figure 5.

As demonstrated by Mselle [5, 6, 7, 8, 9], MTL has

successfully been used to write entire programming books in

visualization mode. Successful mapping of visualization in the

entire programming curricula allows the learners to use the

approach even if the instructor does not use it.

void main() RAM RAM RAM RAM RAM RAM

{ FREE x RESERVED x RESERVED x 4 x 4 x 4

int x, y; FREE FREE y RESERVED y RESERVED y 7 y 11

x=4; FREE FREE FREE FREE FREE FREE

y=7; FREE FREE FREE FREE FREE FREE

y=x+y; RAM before RAM after RAM after RAM after RAM after RAM after

} program execution int x; int y; x=4; y=7; y=x+y;

Fig 2: Visualization of Sequence by MTL

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Display_device
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/The_C_Programming_Language_%28book%29
http://en.wikipedia.org/wiki/Brian_Kernighan
http://en.wikipedia.org/wiki/Hello_world_program#cite_note-ctutorial-1

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.26, June 2014

19

//Program 2

#include <iostream.h>

void main() RAM RAM

{ int z[4]; RESERVED 20 z0

int z[4]; z RESERVED z 11 z1

cin>>z[0]; RESERVED 8 z2

cin>>z[1]; RESERVED 400 z3

z[2]=8; FREE FREE

z[3]=400; FREE FREE

}

Array declaration Data feeding in an array

Execution of line 5 Execution of line 6 to 9

RAM status on execution of int z[4]; RAM status on execution of

cin>>z[0]; cin>>z[1]; z[2]=8;

and z[3]= 400;

Fig 3: Visualization of Arrays by MTL

//program 3 RAM RAM RAM RAM RAM RAM RAM RAM

#include <iostream.h> FREE x RESERVED x 0 x 0 x 0 x 1 x 3 x 3

void main() FREE y RESERVED y 23 y 23 y 23 y 23 y 23 y 23

{ FREE z RESERVED z RESERVED z 23 z 23 z 24 z 26 z 26

 int x,y,z,i; FREE i RESERVED i RESERVED i 0 i 1 i 2 i 3 i 3

 x=0; FREE FREE FREE FREE FREE FREE FREE FREE

 y=23; RAM before RAM after RAM after RAM after RAM after RAM after RAM after RAM at the

 z=x+y; program int x,y,z,i; x=0; y=23; x=0; y=23; {x=x+i; {x=x+i; {x=x+i; end of the

 i=0; run z=x+y; z=x+y; z=x+y; loop

 while (i<3) i++;} i++;} i++;}

 { loop round 1 loop round 2 loop round 3

x=x+i; While(1<3) While(1<3) While(1<3)

z=x+y;

i++;

 }

}

Fig 4: Visualization of Looping by MTL

//Program 4 Hex Hex Hex

#include <iostream> x RESERVED 0A x 6 0A x 12 0A

void main() y RESERVED 1A y 6 1A y 6 1A

{ p RESERVED 2A p 1A 2A p 1A 2A

int x = 6; RESERVED 3A RESERVED 3A RESERVED 3A

int y; FREE 4A FREE 4A FREE 4A

int *p, FREE 5A FREE 5A FREE 5A

y=x; RAM after RAM after RAM after

p=&y; int x, y; and x=6; y=x; and x=x+*p;

x=x+*p; int *p; p=&y;

{

Fig 5: Visualization of Pointers by MTL

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.26, June 2014

20

3. USING MTL WITH PARALLEL

LANGUAGES

In other arrangements, during introductory programming,

instructors attempt to introduce multiple/parallel languages to

emphasize the notion that computers can be made to do the

same thing through different languages. This is a useful

approach to improve learners’ imagination concerning

programming and program logic. Since most of conventional

approaches rely on verbose explanation of program execution,

using a parallel language without visualization approach

amounts to more of a burden to the learners. Visualization

through MTL provides a possibility of discussing program

logic through multiple languages (i.e. C, C++ and Java in

tandem). Figure 6 and 7 demonstrate how MTL can be used to

represent the employment of parallel languages to teach

programming to beginners. The program is meant to perform

branching (if else) and division of two numbers.

C Version C++ Version Java Version

1 //Program 1 1 //Program 1 1 //Program 1

2 #include <io.h> 2 #include <iostream.h> 2 public class sone {

3 3 using namespace std; 3

4 void main() 4 void main() 4 public static void main(String[] args)

5 { 5 { 5 {

6 int x; 6 int x; 6 int x;

7 int y; 7 int y; 7 int y;

8 double z; 8 double z; 8 double z;

9 scanf("%d",&x); 9 cin>>x; 9 x=TextIO.getln();

10 scanf("%d",&y); 10 cin>>y; 10 y=TextIO.getln();

11 if (x>y) 11 if (x>y) 11 if (x>y)

12 z=x/y; 12 z=x/y; 12 z=x/y;

13 else 13 else 13 else

14 z=y/z; 14 z=y/z; 14 z=y/z;

15 println(z); 15 cout<<z<<endl; 15 System.out.println(z);

16 } 16 } 16 }

17 }

Fig 6: A code in Multiple Languages (Selection)

FREE RESERVED x RESERVED x

FREE FREE RESERVED y

FREE FREE FREE

RESERVED x 4 x 4 x

RESERVED y RESERVED y 7 y

z z z

4 x 4 x

7 y --- 7 y

z --- z

Step I Step II: execution of line 6 Step III: execution of line 7

int x; int y;

RAM before variable declaration RAM on variable declarationRAM on variable declaration

Step IV: execution of line 8 Step V: execution of line 9 Step VI: execution of line 10

 double z; scanf("5d",&x);cin>>x; x=TextIO.getint(); scanf("5d",&y);cin>>y; y=TextIO.getint();

RAM after variable declaration RAM on data feeding RAM on data feeding

RESERVED RESERVED RESERVED

Step VI: execution of lines 11 and 12 OR execution of lines 13 and 14

 if (x>y); z=x/y; else z=y/x;

RAM on selection (branch not taken) RAM on selection (branch taken)

RESERVED 1.75

4 > 7? NO 4 < 7 ? YES

Branch not TAKEN (line 12 is skipped) Branch TAKEN

Fig 7: Single MTL Interpretation of the Programs in Multiple Languages in Figure 6

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.26, June 2014

21

4. VISUALIZATION Vs HELLO

WORLD: THE EXPERIMENT AND

RESULTS
Two groups of students (n=63) were subjected to an

experiment whereby group one (n=23) was instructed in the

traditional “Hello World” mode and another group, (n=40)

was instructed using visualization under MTL. These groups

were formed by students through voluntary choice after being

briefed about the experiment. The first four hours were used

for lectures. Latter, both groups were subjected to laboratory

works for 4 hours which were used for writing and debugging

programs. 2 tutorial hours were added to make a total of 10

learning hours. For the MTL group; lectures, tutorials and

laboratory classes were conducted using visualization under

MTL approach. Finally a program to perform addition of two

numbers in two versions as depicted in figure 8 was used in a

quiz to test students understanding. The program in two

versions was written on the board and students were told that

version 2 was a modification of version 1. The question was

whether version 2 would run successfully after being stripped

off all messages. Results are summarized in Table 1.

25 out of 63 students (that is 39.68%) replied that version 2

would not run successfully. Of the 25 students, 88% (i.e. 22

students) were from the first group that had been instructed in

the traditional “Hello World” mode while 12% (i.e. 3

students) were from the visualization group. It can be

concluded that, the use of messages for introducing

programming to the novices is inherently inefficient due to the

fact that 88% of 23 students who had the wrong point of view

were from the group that had been instructed in the traditional

approach.

Version I Version II

#include<iostrream> #include<iostrream>

int x, y; int x, y;

void main() void main()

{ {

cout<<”Enter the value of x"; cin>>x;

cin>>x; cin>>y;

cout<<”Enter the value of y”; }

cin>>y;

}

Fig 8: Quiz codes

Table 1. Results from the test between MTL and Hello

World

Group N Incorrect point of

view

Percentage

Hello

World

23 22 88%

MTL 40 3 12%

Total 63 25 100%

5. CONCLUSION
These results lead to conclusion that early introduction of

messaging in teaching programming is deficient and it might

have a negative impact in cognition. It confirms the

observation by Ziegler and Crews [4] that students often do

not view a program as a sequence of steps that must be

executed one at a time. Rather, they view programs as a

collection of statements that execute when necessary (as

opposed to sequentially next). These results also reinforce the

finding by Van Someren [3] that students who succeed in

programming are those with a mechanical understanding of

the way the language implementation works. It has been

argued that learning programming is a daunting task [5].

These results show that the standard approach used to teach

programming contributes to this difficulty. Animation tools

such as Jeliot3, plan Ani, etc. have recently been proposed

and results from the use of these tools are encouraging [10].

Good and useful as they may be, animations and visualization

using computers do not provide the learner with absolute

power to exercise visualization because they are all computer-

driven. Another handicap of animation tools is their

dependence on digital format which makes it impossible to

use them in paper and pencil context. Animations cannot

translate programs in multiple languages. MTL approach as

demonstrated in this discussion is capable of visually

presenting most of programming aspects both digitally and

non-digitally. MTL allows the learner to learn to think like the

computer from the beginning to the end of introductory

courses. MTL allows the learner to visually verify if what

she/he sees is what she/he intended the machine to do. It

provides a two-way thinking between the programmer and the

machine.

Visualization through MTL has not been extended to other

programming aspect such as library calling, classes, objects,

class overloading and polymorphism. However, MTL

approach covers most aspects which are crucial for early

understanding of programming. Proper grounding on

variables and variable declaration, data feeding, data

processing and programming logic covering sequence,

selection, loops, functions and file handling can be visualized

through MTL as demonstrated in [5, 6, 7, 8, 9].

6. REFERENCES
[1] Benedict, J. H and Du Boulay, B. “Some difficulties of

learning to program”. Journal of Educational Computing

Research. 2(1). 198. 657–73.

[2] Farrell, M. B. 2013. Offerings limited for advanced

courses. Global Staff. [Online]. Available:

http://www.michael.farrell@globe.com

[3] Van Someren, M. W. 1990 What’s wrong?

Understanding beginners’ problems with prolog.

Instructional Science. 19(4/5):256–282.

[4] Ziegler, U. and Crews, T. 1999 “An Integrated

Program Development Tool for Teaching and

Learning How to Program”. Proceedings of the

30th SIGCSE Symposium. pp. 276-280.

[5] Mselle, L. J. 2014 “Embedding a color Scheme in the

Memory Transfer Language (MTL)”. Journal of

software engineering and methodology. Volume 4

number 3. pp. 40-47.
[6] Mselle, L. J. 2014 “Using Memory Transfer Language

(MTL) as a Tool for Program Dry-running”.

International Journal of Computer Applications (0975 –

8887) Volume 85 – No 9. pp. 47-56.

[7] Mselle, L. J. 2010 C++ for Novice Programmers.

Lambert Academic Publishing (LAP). Berlin.

[8] Mselle, L. J. 2011 Java for Novice Programmers.

Lambert Academic Publishing (LAP). Berlin.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.26, June 2014

22

[9] Mselle, L. J. 2011 C for Novice Programmers. Lambert

Academic Publishing (LAP). Berlin.

[10] Rajala et al. 2008 “Feedback factor in instruction”,

Journal of Education Psychology. Vol. 3. No. 4. 45-67.

[11] Hundhausen, D. C., Sande, W. D. and Sande, C. 2009

Computer Programming for Kids and Other Beginners.

Manning Publications Co.

[12] Kernighan, C. B. 1967 Programming in C: A Tutorial –

internal Bell Labs memo.

[13] Spohrer, J. and Soloway, E. 1999 “Studying the Novice

Programmer”. Lawrence Erlbaum Associates. Hillsdale.

New Jersey.

IJCATM : www.ijcaonline.org

