
International Journal of Computer Applications (0975 – 8887)

Volume 95– No.26, June 2014

1

Analysis and Verification of Multi-Core Enabled ESL

Model using SystemC and VLang

Dipti Girdhar

School of Engineering and
Technology,

ITM University, Gurgaon, India

Neeraj Sharma
School of Engineering and

Technology,
ITM University, Gurgaon, India

Neeraj Kr. Shukla, Ph.D

School of Engineering and
Technology,

ITM University, Gurgaon, India

ABSTRACT

Today most of the system on chip (Soc) integrate multiple

processing cores, digital signal processors, as well as

dedicated hardware accelerators, etc [1]. This results into

large and complex systems which pose challenges to

conventional design and verification flow. This raises the

need for higher level of abstraction (i.e. Electronics system

level abstraction). This paper discusses how we can make

changes in an existing conventional method of simulation to

achieve really fast high yielding method of verification. The

model is implemented using SystemC and Vlang. The results

demonstrate the impact of enabling multiple simulators for

verification of hardware models.

Keywords
SystemC, Vlang, Multicore, Multithread, ESL

1. INTRODUCTION
Today, designers develop systems that consist of application

specific hardware and software and needs to be developed

synchronously on a persevering schedule. These systems need

to go through a profound verification processes in order to

avert a calamitous collapse of the system in a real world [2].

As we all know that necessity is the mother of invention. In

order to meet the demand of such complex systems in the

market, that too in a short span of time, designers need some

powerful tools on which they can count easily for high

productivity.

Your guess is right. SystemC is one of the languages that have

emerged in respond to inescapable need for a language that

can support an increasing in complexity and productivity of

such electronic systems [3].

Open SystemC initiative was formed in 1990, to make new

design language open to the community and not be

proprietary [9]. SystemC is a language which offers

productivity gains by allowing engineers to synchronously

develop a high level abstraction for both hardware and

software as these would exist on the final systems. High level

abstraction is a methodology that benefits engineers to access

better understanding of intricate processes and communication

among other modules at early stage. This enables better,

earlier verification and overall productivity gains through

reuse of early system models [4].

2. INTRODUCTION TO SYSTEM
SystemC is a C++ class library and Open SystemC initiative

(OSCI) supports TLM 2.0 transaction level modeling.

Here we have considered a simple algorithm of converting a

PNG format file into buffer data using libpng library. Libpng

is a library file that makes apparent the various methods of

modifying the PNG file into other formats. Libpng is a thread

safe, on the condition that all the threads should be using

different instances of the structures and their own image.

Structure png_struct and png_info are the important

structures. Structure png_struct is an internal structure, which

is not used by a user. Whereas png_info structure specifies

the information about the PNG file. The fields of png_info

were set to be directly accessible to the user. But this is a

cause of problem for the applications using dynamically

loaded libraries. Therefore to avoid this problem set and get

functions were developed. The png.h is a indispensable header

file used inside the code when programming with libpng.

One of the features, that libpng library offer, is to handle any

special transfigurations of the image data. Both SystemC and

libpng are C++ libraries which are available for free. Here we

are modeling a multithreaded model for converting the RGB

pixels of any image into grayscale.

Figure 1: Shows the block diagram of the system.

Block A is modeled to take an image with rgb pixels as

inputs. It extracts the information of each pixel and stores into

a buffer. Here we add an additional payload known as generic

payload to form a complete transaction as per the rules of

TLM 2.0. Block A acts as initiator, as it initiates the

transaction. Whereas block B acts as target as it responds to

the transaction. Block B is responsible to read the data that is

stored into the buffer by the block A and further making the

changes in each pixel. Block B is modeled to run a following

algorithm.

Image in png format, containing rgb pixels is fed into block

A. Block A stores the information of the image in a buffer. It

adds a generic payload with the existing stream of data stored

in buffer. Thus initiate the transaction containing details of the

image and acts as initiator. Block B acts as target as it

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.26, June 2014

2

responds to the transaction initiated by the initiator. Once the

transaction reaches the block B through function calls, the

algorithm is followed, shown in Figure 2.

Block B recollects the information through the transaction.

Divide the complete image in eight parts. Since our normal

system consists of four cores, we can examine the

performance of model by actually enabling four simulators

simultaneously. This concept is not easy to understand as

none of the hardware language allows the feature of enabling

multiple simulators for verification purpose. But this is very

essential feature that must be provided to the verification

engineers. This feature is important as it gives the real savor

of multi-core. Recently while comparing different languages

with SystemC, there was a language which proved to be very

pleasing, when it comes to verification. Vlang is the language

which offers a great variety of features for verification

engineers.

Figure 2: Shows the algorithm followed by block B

Vlang is the language which is recently developed by

CoVerify Systems Technology. Unlike the old existing

verification languages, Vlang is an open source verification

language with some special features which will provide a new

horizon for verification and testbench development. Vlang is a

language which proves to be a great help for verification

engineers as it consist of a very simple syntax and inherits

some special features suchlike concept of object oriented

programming, and multicore programming from D language.

This makes it easy for a new developer to use this language.

Even some new verification features and UVM has been

implemented by the Vlang community. In this paper alsowe

would be talking about the interface between the SystemC

(TLM) and Vlang.

3. INTRODUCTION TO TRANSACTION

LEVEL MODELING
Transaction level modeling in SystemC focus more on

communication between processes rather than algorithm [5].

The communication between processes is done by function

calls. It is assume that, some of the processes produce the data

and some of the processes consume that data. While some

processes are responsible for initiating the communication and

other responds.

In TLM 2.0, the transaction is generally passed between

initiator and target. A transaction is nothing but sets of C++

objects which are passed between initiator and target through

function calls [6]. Both initiator and target use socket to send

and receive the transaction respectively [7].

4. INTRODUCTION TO ALGORITHM
There are many algorithm for converting RGB image into

grayscale are available. RGB image is the image containing

the components of pure red, green, blue colour whereas

grayscale image is the image containing only white and black

component. Both RGB and gray values are incoded in a set of

three equal numbers ranging from 0 to 255. For instance,

white is represented as (255,255,255) and black is represented

as (0,0,0). In order to determine grayscale value equivalent to

its RGB value, one needs to calculate the average value of x

by the given formula x = 0.299r + 0.587g + 0.114b.For

instance, grayscale value equivalent to pure red (255,0,0) is

gray (76,76,76).

In this paper work block A is designed using SystemC as

shown in the Figure 1. As mentioned above block.

A is responsible for creating a transaction which will be fed

into a block B. block B is designed using Vlang. This

interface between SystemC and Vlang is at transaction level

rather than signal level.

5. RESULTS
SystemC uses quick threads also known as Q threads as

shown Figure 5. This means that if any multi-threaded

application is written using SystemC, the compiler borrows

one thread from the kernel of the operating system. Further,

imposes all other threads of the application on a single thread

borrowed from the kernel. This multiple threads present inside

SystemC application are executed on the context based

switching [8]. In context based switching, chunks of each

thread are executed, one at a time. In order to perform a

context switching, the scheduler has to save the state and

instructor pointer for the current running task, has to work out

the switching between the tasks and again it has to reload the

CPU state. This also involves the loading and reloading of

memory for data and instructions.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.26, June 2014

3

Figure 5: Shows the effect of running SystemC Application on kernel

Figure 6: Shows the effect of running multi-threaded Vlang Application on kernel

Vlang uses preemptive threads also known as P threads as

shown in Figure 6. This means that when a multi-threaded

application is written using Vlang, the compiler can borrow

more than one thread from the kernel of the operating system.

The maximum number of threads which can be borrowed is

limited by the number of cores CPU. Once the threads are

acquired from the kernel, the application can run its multiple

threads using contact switching. Since block B is designed

using Vlang, this scenario is common with block B. Whereas

Figure 5 describes the scenario of block A.

6. CONCLUSION
In today’s VLSI industry, the higher level of abstraction has

become the necessity. Also, the Amdahl’s law needs to be

followed. Amdahl law states that in order to attain the

maximum speed for the given application, one need to exploit

the maximum number of cores of CPU.

This work revolves around the above mentioned facts. Block

A is designed to form a transaction containing generic

payload using SystemC. Block B is designed to perform the

parallel simulation on the different parts of the image and

converts its RGB components into gray value.

In case of small multi-threaded application, the SystemC

application seems to compile and run faster than Vlang. But in

case of more complex multi-threaded application Vlang seems

to be faster as compared to SystemC. This is due to the fact

that the time required to acquire the multiple threads from the

kernel is more as compared to the time required to acquire the

single thread from the kernel.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.26, June 2014

4

However this paper does not aim to compare the above

mentioned languages with reference to specific figures. This

is due to the following reasons.

First, to compare two languages, we need to work on some

standard real world applications which are written unbiased to

both the languages (such as Ethernet, PCI, etc).

Second, mentioning the figures will violate the License

conditions. No doubt Vlang claims to have better features as

compared to SystemC but as far as single-core is concerned,

the choice may vary from user to user and application to

application. If the user wants to make his design or

Verification IP (VIP) with multi-core enabled feature, Vlang

is more prominent.

7. REFERENCE
[1] C. Schumacher, J.H. Weinstock, R. Leupers, G. Ascheid,

“Legacy SystemC Model Integration into Parallel

SystemC Simultors.” In the proceedings of Parallel and

Distributed Processign Symposium Workshops & PhD

Forum international Conference, Cambridge, pp. 2188 –

2193, 20 – 24 May 2013.

[2] T. Chan, “ A robust multithreaded HDL/ESL simulator

for deep submicron integrated circuit designs,” In the

proceedings of Circuits and Systems Asia Pacific

Conference, Kaohsiung, pp. 416 – 419, 2 – 5 Dec. 2012.

[3] A. Pulka, L. Golly, “Multitask Real-time Systems

modeling in SystemC,” In the proceedings of Signals and

Electroni Systems International Conference, Wroclaw,

pp. 1 – 6, 18 – 21 Sept. 2012

[4] A. Prakash, H.D. Patel, R. Sinha, “ Parallel simulation of

mixed – abstraction SystemC models on GPUs and

multicore CPUs,” In the proceedings of Design

Automation Conference, Sydney, pp. 455 – 460, 30 Jan.

– 2 Feb. 2012.

[5] R.S. Lobato, R. Spolon, M.A. Cavenaghi, R.C. Detomini,

“Using GPU to exploit parallelism on cryptography, ” In

the proceedings of Information Systems and

Technologies Conference, Chaves, pp. 1 – 6, 15 – 18

June 2011.

[6] T. Chan, “Race logic synthesis for a multithreaded

HDL/ESL simulator for Soc designs,” In the proceedings

of Circuits and Systems Asia Pacific Conference, Kuala

Lumpur, pp. 1179 – 1182, 6 – 9 Dec. 2010.

[7] Sen, A., “Mutation Operators for concurrent SystemC

Designs,” In the proceedings of Microprocessor Test and

Verification Conference, Austin, pp. 27 – 31, 7 – 9 Dec.

2009.

[8] S. Sudharsanan, N. Manjikian, “Modeling and simulation

of multicore multithreaded processor architectures in

SystemC,” In the proceedings of Electrical and

Computer Engineering conference, Niagara Falls,

Ontario, pp. 001155 – 001160, 4 – 7 May 2008.

[9] IEEE Standards for standards System CLanguage

Reference Manual, pp.421.

IJCATM : www.ijcaonline.org

