
International Journal of Computer Applications (0975 – 8887)

Volume 95– No.23, June 2014

4

Comparison of Search based Techniques for Automated

Test Data Generation
Ruchika Malhotra

Department of Software
Engineering

Delhi Technological
University

New Delhi, India - 110042

Chand Anand
Department of Software

Engineering
Delhi Technological

University
New Delhi, India - 110042

Nikita Jain
Department of Software

Engineering
Delhi Technological

University
New Delhi, India - 110042

Apoorva Mittal
Department of Software

Engineering
Delhi Technological

University
New Delhi, India - 110042

ABSTRACT

One of the essential parts of the software development process

is software testing as it ensures the delivery of a good quality

and reliable software. Various techniques and algorithms have

been developed to carry out the testing process. This paper

deals with utility of the nature based algorithms namely Genetic

Algorithm, Ant Colony Optimization algorithm and Artificial

Bee Colony algorithm in automatic generation of optimized test

suite for a given set of programs. The performance of

algorithms is evaluated using various factors such as number of

paths covered, number of iterations, number of test cases

produced and time taken for generation of test suite. The results

of performance analysis concluded that Artificial Bee Colony

algorithm is more efficient as compared to other mentioned

algorithms and can be employed for optimized test suite

generation for various complex programs or software.

General Terms

Measurement, Performance, Experimentation

Keywords

Artificial bee colony (ABC), Ant colony optimization (ACO),

Genetic algorithm (GA), Software testing, Automatic Test Suite

Generation.

1. INTRODUCTION
Software development process is carried out with an aim to

develop high quality reliable software. Among various phases

of the development process, software testing is the most

important phase which consumes about 40-50% of the

resources available for development. A major portion of

software testing[11] involves test data generation as a good test

data set ensures an increased probability of detecting faults. The

automatic test data generation consists of two main steps: - 1)

generation of independent paths from the program graph[11] of

the software under test on which the test criterion is to be

satisfied and 2) generation of an optimized test suite that

ensures maximum path coverage. As the complexity and size of

software increases, software testing has become a challenging

task. In recent years, research in the field of automatic testing is

being encouraged as researchers believe time and cost required

for software testing will be reduced significantly if the testing

process were automated. The development of methods or

techniques in automatic test data generation will appreciably

make the software testing process more efficient and robust.

The population based algorithms are the ones which work on a

set of solutions with the aim of improvising them. Population

based algorithms can be grouped as swarm intelligence based

algorithms[14] and evolutionary algorithms[14]. Swarm

intelligence deals with population of self-organized individuals

who interact with one another and their surroundings. Over the

past decade, application of swarm intelligence based algorithms

for automated test data generation and optimization problems

has been an emerging area of interest. Few examples of swarm

intelligence algorithms are Ant Colony Optimization[6,8,13],

Particle Swarm Optimization[12], Particle Swarm Inspired

Evolutionary Algorithm and Artificial Bee Colony

algorithm[4,7,14]. The other group of population based

algorithm vis-a-vis evolutionary algorithms has proved to be

efficient in finding nearly optimized solutions to various test

problems. Genetic algorithm[3,5,9] is one such algorithm. The

applications of these algorithms have gained popularity

amongst testers for automated test data generation as results

show that these algorithms have outperformed the traditional

methods.

This paper presents the application of three novel algorithms-

ABC, ACO and GA to generate automatic test data. Few

programs that are in frequent use of the researchers are taken

for experimentation purpose. The paper is organized as follows:

Section 2 recapitulates the related work of the study. Section 3

describes the research methodology followed in this study.

Section 4 presents the results interpreted from this study. The

comparison on the basis of performance is evaluated in section

5. Conclusions drawn from the study are presented in section 6.

2. RELATED WORK
Lam et al. discussed the Artificial Bee Colony in detail and

implemented the algorithm on triangle classifier program to

explicate its working. Lam also evaluated the performance of

Artificial Bee Colony algorithm with respect to existing

algorithms such as ACO, GA and Tabu Search and concluded

that ABC was more efficient than other methods.

Ghiduk et al. explained the Genetic Algorithm and empirically

evaluated the efficiency of proposed GA compared to Random

Testing method by running them on few C++ programs. The

results indicated that GA outperformed Random Testing

technique in terms of both path coverage and cost. Similar

results were seen in a study by Girgis who compared GA and

Random Testing by implementing them on 15 small FORTAN

programs. Another study by Ghiduk examined the path

coverage and test suite generated by ACO algorithm by

implementing it on a program using PCTDACO tool. The tool

generated test cases automatically using ACO for different

paths of program.

Dahiya et al. implemented the ABC method for testing purposes

on few real world problems and the results were satisfactory for

small and simple programs but were not significant for

programs having large input domain or paths with equality

based constraints.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.23, June 2014

5

Mao et al. compared three algorithms- GA, ACO and Simulated

Annealing on the basis of three metrics- average coverage,

successful rate and average convergence generation and the

results indicated that ACO performed significantly better than

the other algorithms taken up in the research. This study

compares ACO and GA on the basis of different parameters

namely path coverage, number of iterations and time taken for

test data generation.

Mala et al. demonstrated the efficiency of ABC algorithm in test

suite optimization by implementing it on few academic and

industrial test problems and comparing the results with GA. The

results indicated that ABC outperformed GA.

3. RESEARCH METHODOLOGY
In this section the procedure to generate test suite using the

three algorithms used in the study is described. The procedure

is divided into following stages (i) Independent Path Generation

and (ii) Test Suite Optimization.

3.1 Artificial Bee Colony (ABC)
The steps which are followed for test suite generation using

ABC are:

 Energy sources are produced and initialized for every

employed bee.

REPEAT

 An energy source is selected by every employed bee

from her source list and a neighbour source is

identified, then the nectar amount of the source is

evaluated.

 One of the food sources is selected and evaluated by

every onlooker bee from the information shared by

the employed bees.

 Exhausted energy sources are identified and are

swapped with the new ones spotted by scout bees.

 The best energy source is determined based on nectar

amount and is registered.

UNTIL (requirements are met)

3.2 Ant Colony Optimization (ACO)
The steps which are followed for test suite generation using

ACO are:

 A random path is selected by an ant to reach the goal

state. A pheromone trail is released by the ant on the

traversed path.

REPEAT

 Another ant selects a path from the repository

considering the intensity of the pheromone levels of

paths.

 The ant increases the pheromone intensity by

travelling on a particular path, hence increasing the

probability of the selection of the path for the next

ant.

UNTIL (requirements are met)

3.3 Genetic Algorithm (GA)
The following describes the steps followed in genetic

algorithm:

 Initial population is randomly generated for a

population size.

 Each member of the population is evaluated

according to the parameter of fitness of the member,

which is determined on the basis of path coverage.
REPEAT

 The parents are selected from the population by the

Roulette Wheel Method.

 The offspring is produced using genetic operations :

Crossover and Mutation.

 The new population generated is evaluated using the

fitness parameter.
UNTIL (requirements are met)

4. EXPERIMENTAL EVALUATION AND

RESULT ANALYSIS
This section presents the results obtained from application of

ACO, ABC and GA on few C++ programs for test data

generation and test suite optimization. First, the overview of

each program considered in the study is presented. Then the

comparison analysis of the results obtained after

experimentation is provided.

3.1 Experimental Setup
This section provides the brief description of the programs used

for experiment purpose. 9 such C++ programs have been

selected for automated test data generation and optimization

activity, which are in frequent use of researchers for

experimentation.

• Triangle classifier: The program checks whether the sides of

triangle given as inputs form a triangle or not. If they form a

triangle, then it classifies the triangle as isosceles, equilateral or

scalene.

• Quadratic Equation: The program accepts three inputs and

checks whether they can form a quadratic equation or not. If

they form a quadratic equation, then it also finds the roots of

equation.

• Even-Odd: The program checks whether a number input is

even or odd.

• Largest Number: The program accepts three numbers and

finds the largest number among them.

• Point w.r.t circle: This program accepts the coordinate of a

point in x-y Cartesian plane and also the radius of circle whose

centre is at origin. It then checks whether the point lies inside,

outside or on the boundary of the circle.

• Prime Number: The program checks whether the number

input is prime or not.

• Position of point in x-y Cartesian plane: The program

accepts the coordinates of points and determines the quadrant in

which the point lies.

• Remainder: The program accepts the dividend and divisor

and checks if the remainder is zero or non-zero after division

operation is performed.

• Leap Year: The program checks whether a given year is a

leap year or not.

• Division of Student: The program accepts three inputs as

marks of a student in three different subjects and calculating the

average determines the division of the student from five

possible categories: first division with distinction, first division,

second division, third division or fail.

Table 1 presents the serial number allotted to each program in

the study and also the number of variables and the cyclomatic

complexity of each program.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.23, June 2014

6

Table 1: Programs, number of variables and cyclomatic

complexity

S.No. of

Programs Program Title No. of

Variables
Cyclomatic

Complexity

1 Triangle Classifier 3 8

2 Even-Odd 1 3

3 Quadratic Equation 3 4

4 Largest of three no. 3 3

5
Point lies inside or

outside or on the

circle
3 3

6 Remainder 2 3

7 Marks 3 5

8 Point lies in which

quadrant 2 5

9 Leap Year 1 4

3.2 Result Analysis
Table 2 presents the results obtained after applying path

generation and test suite optimization algorithms of ABC, ACO

and GA methods to the above mentioned programs. The results

are evaluated on the basis of three parameters: - path coverage,

number of iterations and time taken for the execution of

algorithm on a particular program. Path coverage refers to the

percentage of paths covered by the path generation algorithm of

the methods. The number of iterations refers to the number of

times the test suite optimization algorithm of the methods was

run before obtaining the final optimized test suite. Time refers

to the time taken by the method to generate the final result i.e.

the optimized test suite. The result in Table 2 is analyzed using

Figure 1, Figure 2 and Figure 3.

Table 2: Values of the metrics on the application of ABC,

ACO and GA to 9 above programs

 ABC

S.No Path Coverage (%) No. of Iter. Time (s)

1 90 33 0.06

2 100 10 0.004

3 100 4 0.014

4 100 1 0.004

5 100 1 0.002

6 53 20 0.018

7 86 1 0.007

8 66 20 0.25

9 62.5 45 0.201

 ACO

S.No Path Coverage (%) No. of Iter. Time (s)

1 75 18 1.53

2 100 10 1.51

3 50 50 1.52

4 100 11 1.51

5 100 12 1.51

6 100 4 1.52

7 60 3 1.52

8 60 4 1.52

9 75 48 1.52

 GA

S.No Path Coverage (%) No. of Iter. Time (s)

1 58.33 9 2

2 50 2 1

3 28.57 2 2

4 75 3 2

5 75 5 2.66

6 66.66 2 2.25

7 83.33 14 2.9

8 16.66 5 1.8

9 57.14 41 2

Figure 1 presents the comparison of ABC, ACO and GA on the

basis of percentage of path covered. Figure 1 shows that for all

programs except 2, ABC performed better than other two

methods. For program 6 and 9, ACO had better path coverage

than ABC. GA performed poorly for all the programs. Although

in some programs path coverage achieved by ACO and ABC

are same but overall ABC was superior as it covered atleast

70% paths in 8 out of 9 programs.

Figure 1: Comparison on the basis of Path Coverage (%)

Figure 2 depicts the comparison of ABC, ACO and GA on the

basis of time taken for execution of the algorithms. Figure 2

shows that ABC significantly outperformed the other two

methods. ABC generated an optimized test suite in less than 1

second whereas ACO took around 1.5 seconds and GA took

almost more than 2 seconds for the 9 programs considered in

this study.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.23, June 2014

7

Figure 2: Comparison on the basis of time taken for

execution

Figure 3 illustrates the comparison of the three algorithms on

the basis of the third metric: number of iterations. From Figure

3, we observe that for this parameter, the results are most

interesting. GA is seen to have least number of iterations

though it was expected that it will generate higher number of

generations. This anomaly is accounted by the fact that each

generation involves complex selection processes which leads to

greater time consumption for even a single generation. Hence

even though GA has least value for the given parameter always,

it doesn’t lead to better performance in terms of path coverage

and execution time. ABC is shown to achieve final result in

considerably less number of iterations as compared to ACO for

programs 3 to 7. ACO seems to outperform ABC in two

programs i.e. 5 and 8.

Figure 3: Comparison on the basis of No of Iterations

From table 2 and Figure 1, Figure2 and Figure 3, we conclude

that overall performance of ABC in terms of path coverage,

number of iterations needed for execution of algorithm and time

taken for automated optimized test data generation is superior

compared to ACO and GA.

The main reason for ABC to perform faster is the parallel

working behavior of bees i.e. the solutions are obtained through

parallel executions. Moreover in ABC, no overhead is required

for updating pheromone value, unlike ACO algorithm which

takes considerable time in updating pheromone value during

test data generation activity. Furthermore the execution of ACO

is in sequential manner so the solution is selected only at the

end whereas solution is selected in ABC by incremental

process. In case of GA, there is no such feature of memorization

available and also it suffers from a problem of delayed

convergence, which in turn increases the execution time. Thus,

on the whole ABC has reduced space and time complexity in

contrast to ACO and GA.

The performance of GA is affected by increase in mutation rate

as it leads to unstable solutions. Also, local optima problem is

faced by GA approach which is efficiently handled by ABC

method as it implements parallelism. Although ABC is very

efficient and robust for generating optimized solutions but large

domains and increase in number of equality constraints affects

its performance.

5. CONCLUSION AND FUTURE WORK
In this research study, three novel algorithms- Artificial Bee

Colony, Ant Colony Optimization and Genetic Algorithm for

generating test data automatically have been discussed. These

algorithms have been applied to 9 C++ programs and the results

have been evaluated and analyzed to compare the performance

of the above mentioned algorithms. From the experiments and

results, it can be concluded that ABC is the most efficient

optimization algorithm among all the discussed methods due to

the incorporation of parallelism and neighbor and employed

neighbor production mechanism. The performance of ACO

lacked due to the overhead required for updating pheromone

value and its sequential execution. GA suffered from problem

of generating optimal solutions and no memorization.

As future work, the comparative analysis will be extended to

other existing algorithms such as Firefly and Particle Swarm

Algorithm. It is also proposed to expand the applicability of

ABC algorithm for automated test data generation to other large

and complex industrial software. Moreover, the ACO algorithm

can be improvised for generating optimized test suite thus,

enhancing its performance and efficiency. Performance of ABC

can be additionally improved by distributed and parallel

processing approach.

REFERENCES
[1] Michalewicz Z., 1999. Genetic Algorithms + Data

Structures = Evolution Programs. 3rd Edition, Springer.

[2] Srinivas,M. and Patnaik,L.M., 1994. Genetic Algorithms:

a Survey. IEEE Computer.

[3] Lam, S.S.B., Raju,M.L. H.P., Kiran, U., Ch,S. and

Srivastav, P.R.,2012.Automated Generation of

Independent Paths and Test Suite Optimization Using

Artificial Bee Colony. Procedia Engineering 30, 191-200.

[4] Ghiduk, A.S. and Girgis, M.R., 2010.Using Genetic

Algorithms and Dominance Concepts for Generating

Reduced Test Data. Informatica 34.

[5] Ghiduk, A.S, 2010. A New Software Data-Flow Testing

Approach via Ant Colony Algorithms. Universal Journal

of Computer Science and Engineering Technology, 64-72.

[6] Dahiya, S.S. , Chhabra, J.K. and Kumar, S., 2010.

Application of Artificial Bee Colony Algorithm to

Software Testing. 21st Australian Software Engineering

Conference, IEEE

[7] Mao, C., Yu, X. and Chen, J., 2012. Generating Test Data

for Structural Testing Based on Ant Colony Optimization.

12th International Conference on Quality Software

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.23, June 2014

8

[8] Girgis, M.R., 2005. Automatic Test Data Generation for

Data Flow Testing Using a Genetic Algorithm. Journal of

Universal Computer Science, Vol. 11

[9] Mala, D.J. and Mohan, V.,2009. ABC Tester - Artificial

Bee Colony Based Software Test Suite Optimization

Approach. IJSE

[10] Yogesh Singh. Software Testing. Cambridge University

Press.

[11] Trelea, I.C. 2002. The particle swarm optimization

algorithm: convergence analysis and parameter selection.

Information Processing Letters

[12] Colorni, A., Dorigo, M. and Maniezzo, V. Distributed

Optimization by Ant Colonies. European Conference on

Artificial Life, Paris, France.

[13] Karaboga, D. and Basturk, 2007. On the performance of

artificial bee colony (ABC) algorithm. Applied Soft

Computing 8, 687-697

IJCATM : www.ijcaonline.org

