
International Journal of Computer Applications (0975 – 8887)

Volume 95– No.22, June 2014

21

Develepment of Real Time Application Platform for Linux
Kernel with Preempt-RT

V.Deepti
Dept. of ECM

K L UNIVERSITY
Guntur (Dt), India

K.Mahender
Scientist

Defence Research & Development
Organisation (DRDO), India

N.Venkatram
Professor

Dept. of ECM
K L UNIVERSITY, India

ABSTRACT
The On board computer (OBC) of an aerospace vehicle

carries out control, guidance and navigation operations during

the flight. It consists of a processor and IO board to execute

the real time embedded software and to read input data from

other subsystems & send commands to control system. In the

specific system, the Power-PC 7410 based processor board is

used and the IO board supports four UART, two Ethernet,

four Arinc channels, two MIL-1553 nodes eight ADC’s, eight

DAC channels. It consists of 128MB SD-RAM, 8MB boot

flash, and 64MB user flash. The OBC has to execute the

control and guidance software which is bounded by hard real-

time constraints. To achieve the hard real time constraints of

the OBC, the Linux kernel is patched with the PREEMPT-RT

and ported on to it. The customization of real time Linux

kernel for PowerPC-7410 based hardware, and application

development on the same platform using kernel primitives are

presented in this paper. The software requires an extensive use

of the kernel primitives like THREADS, TIMERS,

SEMAPHORES, MUTEXES, SIGNALS, and PIPES etc.

Application modules demonstrating the apt usage of the

kernel primitives for real time application development have

been created. These application modules will be used in the

development of the Real-time-embedded flight software for

the onboard computer of an aerospace vehicle.

Keywords
PREEMPT-RT, On Board Computer, MPC-7410, threads,

semaphores, mutexes, pipes.

1. INTRODUCTION
The kernel is an intermediate layer between the hardware and

the software. Its purpose is to pass application requests to the

hardware and to act as a low-level driver to address the

devices and components of the system. Generally Linux

kernel is non real-time system. These systems have no hard

guarantees and are able to utilize optimization strategies

conflicting to real-time requirements. To make the Linux

kernel as real-time operating systems the existing Linux

kernel is patched with the Preempt-RT. The PREEMPT-RT

having the following features [1]:

a. System time is a managed resource. Timing resources

are managed with the highest possible level of precision.

b. Guaranteed worst-case scheduling jitter. If a task needs

to be happening within a certain deviation, it is

guaranteed to occur.

c. Guaranteed maximum interrupt response time. As with

scheduling latency, interrupts are guaranteed to be

acknowledged and handled within a certain window.

d. No real-time event is ever missed. This is important.

Under no circumstances will a scheduled task not be run

on time, an interrupt be missed or any other event the

real-time code is interested in.

e. System response is load-independent. Execution of real-

time tasks is guaranteed to fall within the worst case

value range, regardless of the system load factor.

Usage of a patched Linux kernel with real time utilities is

required for achieving the timing constraints specified for the

application. Most of the avionic subsystems of any aerospace

vehicle are bounded by hard real-time constraints and this

necessitates the usage of an RTOS in the process of

application development. The growth of Linux kernel in

embedded software development is incredibly high, because

of its convenient and efficiency in development. The kernel is

designed to maximize the CPU throughput, instead of

achieving the real-time responsiveness. There are various

ways to utilize the Linux kernel for real-time applications.

The PREEMPT-RT is one of the way in adding real-time

capability to the Linux kernel. Here, in this application, the

preempt-rt patched Linux kernel is used to develop real-time

application for the onboard computer of an aerospace vehicle.

As part of this work, set of real-time applications are

developed to demonstrate the usage of the kernel primitives in

the preemp-rt patched kernel environment; which will be used

in the development of the real-time embedded software for the

OBC.

2. REAL TIME SYSTEMS
Real-time systems can be defined as those systems that

respond to external events in a timely fashion [2]. Responding

to external events includes recognizing when an event occurs,

performing the required processing as a result of the event,

and outputting the necessary results within a given time

constraint. Real-time systems can be classified into two types.

First one is hard real-time systems. A hard real-time system is

a real-time system that must meet its deadlines with a near-

zero degree of flexibility. The deadlines must be met, or

catastrophes occur. The cost of such catastrophe is extremely

high and can involve human lives.

The differences between hard real-time systems and soft real-

time systems are the degree of tolerance of missed deadlines.

For hard real-time systems, the level of tolerance for a missed

deadline is extremely small or zero tolerance. The weapon

systems, aerospace vehicle’s control and guidance systems are

examples for hard real-time systems. Second one is soft real-

time systems. A soft real-time system is a real-time system

that must meet its deadlines but with a degree of flexibility. In

a soft real-time system, a missed deadline does not result in

system failure, but costs can rise in proportion to the delay,

depending on the application. For soft real-time systems, the

level of tolerance is non-zero. DVD player is example of soft

real-time system.

3. RT-PREEMPT PATCH
The standard Linux kernel only meets soft real-time

requirements: it provides basic POSIX operations for user

space time handling but has no guarantees for hard timing

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.22, June 2014

22

deadlines. With Ingo Molnar's Real-time Preemption patch

and Thomas Gleixner's generic clock event layer with high

resolution support, the kernel gains hard real-time capabilities

[3]. The RT-Preempt patch converts Linux into a fully

preemptible kernel.

3.1 Purpose of Preempt-Rt
The reasons for the design of PREEMPT-RT can be

understood by examining the working of the standard Linux

kernel. The kernel uses scheduling algorithms and assigns

priority to each task for providing good average performances

or throughput. Thus the kernel has the ability to suspend any

user level task, once that task has outrun the time slice allotted

to it by the CPU. These scheduling algorithms along with

device drivers, uninterruptible system calls, and the use of

interrupt disabling and virtual memory operations are sources

of unpredictability. A real-time kernel should be able to

guarantee the timing requirements of the processes under it.

The PREEMPT-RT kernel accomplishes real-time

performances by removing such sources of unpredictability as

discussed above. We can consider the PREEMPT-RT kernel

as sitting between the standard Linux kernel and the hardware.

The user can achieve correct timing for the processes by

deciding on the scheduling algorithms, priorities, frequency of

execution etc. The PREEMPT-RT kernel assigns lowest

priority to the standard Linux kernel. Thus the user task will

be executed in real-time.

The actual real-time performance is obtained by intercepting

all hardware interrupts. Only for those interrupts that are

related to the PREEMPT-RT, the appropriate interrupt service

routine is run. All other interrupts are held and passed to the

Linux kernel as software interrupts when the PREEMPT-RT

kernel is idle and then the standard Linux kernel runs. The

PREEMPT-RT executive is itself non preemptible. Real-time

tasks are privileged, and they do not use virtual memory.

Real-time tasks are written as special Linux modules that can

be dynamically loaded into memory. The initialization code

for real-time tasks initializes the real-time task structure and

informs PREEMPT-RT kernel of its deadline, period, and

release time constraints.

3.2 Differences between Preemptive Kernel

and Non Preemptive Kernel
Asynchronous events are handled by Interrupt Service

Routine (ISRs) [4]. An ISR can make a higher priority task

ready to run, but the ISR always returns to the interrupted

task. The new higher priority task will gain control of the

CPU only when the current task gives up the CPU. Non pre-

emptive kernel uses the non pre-emptive scheduling. Non-Pre-

emptive scheduling is a process enters the state of running; the

state of that process is not deleted from the scheduler until it

finishes its service time. Advantages of non pre-emptive

scheduling are simple and robust. Disadvantages of non pre-

emptive scheduling are they are not very responsive and a

higher priority task that has been made ready to run may have

to wait a long time to run, because the current task must give

up the CPU when it is ready. (Figure 1) shows execution of a

task in a non pre-emptive kernel.

(1) A low priority task is executing but gets interrupted.

(2) If interrupts are enabled, the CPU vectors (i.e. jumps)

to the Interrupt Service Routine (ISR).

(3) The ISR handles the event and makes a higher priority

task ready-to-run.

(4) Upon completion of the ISR, a Return from Interrupt

instruction is executed and the CPU returns to the

interrupted task.

(5) The task code resumes at the instruction following the

interrupted instruction.

(6) When the task code completes, it calls a service

provided by the kernel to relinquish the CPU to

another task.

(7) The new higher priority task then executes to handle

the event signalled by the ISR.

Fig 1: Execution of a task in a non pre-emptive kernel

In pre-emptive kernel the highest priority task ready to run is

always given control of the CPU. If an ISR makes a higher

priority task ready, when the ISR completes, the interrupted

task is suspended and the new higher priority task is resumed.

Preemptive kernel uses the preemptive scheduling. The pre-

emptive scheduling is prioritized [9], [10]. The benefit of a

pre-emptive kernel is the system is more responsive and the

execution of a task is deterministic. A high-priority task gain

control of the CPU instantly when it is ready (if no resource-

locking is done). ISR might not return to the interrupted task it

might return a high priority task which is ready. Concurrency

among tasks exists. As a result, synchronization mechanisms

[semaphores] must be adopted to prevent from corrupting

shared resources. (Figure 2) shows execution of a task in a

preemptive kernel.

(1) A low priority task is executing but interrupted.

(2) If interrupts are enabled, the CPU vectors (jumps) to the

Interrupt Service Routine (ISR).

(3) The ISR handles the event and makes a higher priority

task ready to run. Upon completion of the ISR, a service

provided by the kernel is invoked.

(4) After completion of the ISR, high priority task is

executed.

(5) This function knows that a more important task has been

made ready to run, and thus, instead of returning to the

interrupted task, the kernel performs a context switch

and executes the code of the more important task. When

the more important task is done, another function that

the kernel provides is called to put the task to sleep

waiting for the event to occur.

High Priority Task

(7)

Low Priority Task

ISR makes the high

priority task ready

ISR

Low priority task

relinquishes the

CPU

(2)

(4)

(6)

(3)

(1)

(5)

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.22, June 2014

23

(6) After completion of high priority task the kernel goes to

the low priority task

(7) The kernel then sees that a lower priority task needs to

execute, and another context switch is done to resume

execution of the interrupted task.

Fig 2: Execution of a task in a pre-emptive kernel

4. ON BOARD COMPUTER
The On board computer (OBC) of an aerospace vehicle

carries out control, guidance and navigation operations during

the flight. The unit has an 8 Mbytes boot flash on 8 Bit wide

data bus and a 64Mbytes user flash on minimum 64-bit wide

data bus. The IO structure of the OBC is shown in (Figure 3).

It consists of 8 ports they are OJ1, OJ2, OJ3, OJ4, OJ5, OJ6,

OJ7 and OJ8 [5]. OBC consists of a MPC 7410 processor,

SDRAM, NVSRAM, Serial communication channels (RS-

422, RS-232), Ethernet channel, MIL-STD-1553, ADC and

DAC. A Programmable Watch Dog Timer (WDT) is

implemented in Logic core with range of 0 to 5.6 seconds.

The Watch Dog unit consists of a 16-bit timer. The counter is

loaded by two 8-bit data. An interrupt is generated from this

unit at the end of the count operation. The system clock is

used as a clock input to the watchdog timer with a pre-scalar

of 10 KHz. Hence the maximum time for which the watch dog

timer can be programmed using the system clock of 10 KHz is

5.6 seconds.

Generally Power supply is connected to the OJ1 port; here

28v of power supply is given to the OBC. OJ2 and OJ3 are

connected to the input output (IO) interface socket and pin

type respectively. 1553 channel 1 BNC connector, 1553

channel 2 BNC connector, 1553 channel 1’s redundant BNC

connector, and 1553 channel 2’s redundant BNC connector

are connected to the ports OJ4, OJ5, OJ6 and OJ7

respectively. 1553 is a bus it is used to transmit and receive

the data. Sometimes the signal strength is low at that time we

lose the data. To prevent the loss of data 1553 redundant BNC

connector is used to transmit and receive the data. Ethernet

channel is connected to the OJ8 port.

The MPC7410 is a PowerPC reduced instruction set

computing (RISC) microprocessor [6]. The 7410 processor

operates at the core frequency of 400MHz with ALTIVEC

support and 2MB L2 cache operating at 200MHz. The Unit

has an onboard 128MB SDRAM with ECC provision. The

SDRAM is a high-speed CMOS, dynamic random access

memory using 5 chips containing 268,435,456 bits. Each chip

is internally configured as a quad-bank DRAM with a

synchronous interface. Each of the chip’s 67,108,864-bit

banks is organized as 16 bits in 8192 rows by 512 columns.

Read and write accesses to the SDRAM are burst oriented;

accesses start at a selected location and continue for a

programmed number of locations in a programmed sequence.

Ethernet controller selection is based on IEEE 802.3

complaint 10/100 Base TX interfaces and temperature range.,

Enhanced 10/100 Mbps PCI Ethernet Controller with

integrated PHY interface 82551IT, which converts PCI

interface to serial differential format and then given to the

Magnetics HX1188. These are the only Ethernet interface ICs

available in the industrial grade. The Unit has three RS422

Asynchronous channels supporting up to 1Mbps and one

RS232 channel both with isolated receivers.

Fig 3: OBC-IO Structure

I/O interface, 66 pin circular

connector pin type

1553 channel 1, BNC

connector

Power interface, 6 pin circular

plug connector

I/O interface, 66 pin circular

connector socket type
1553 channel 1’s redundant,

BNC connector

1553 channel 2’s redundant,

BNC connector

Ethernet channel for processor

and IO modules

OBC

OJ4

OJ3
OJ7

OJ6

OJ8

OJ2

OJ1 OJ5
1553 channel 2, BNC

 connector

(5)

High Priority Task

Low Priority Task

ISR makes the high priority

task ready

ISR

(2)

(3)

(6)

(4)

(1)

(7)

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.22, June 2014

24

4.1 Installation steps on host system
1. Put a fresh copy of the Linux kernel in the /usr/src

 cd /usr/src

 tar –xvf linux-3.10.10.tar.bz2

 cd linux-3.10.10

2. Patch the kernel with the PREEMPT-RT patch

 bzcat ../patch-3.10.10-rt7.patch.bz2 | patch –p1

3. Now configure the Linux kernel

 make menuconfig or make xconfig or make config

Then separate kernel configuration window is opened. In that

we have to do some changes before installing the PREEMPT-

RT. Go to processor type and features in that go to preemption

model. In that select fully preemptible kernel (RT).

4. Compile the Linux kernel and modules

 make

 make modules

 make modules_install

 make install

4.2 Installation steps on OBC

Install Ubuntu 11.04 kernel version 3.10.10 in the host system

Check whether the following services are installed:

 DHCP (Dynamic Host Configuration Protocol)

 NFS (Network File System)

 TFTP (Trivial File Transfer Protocol)

 XINETD (Extended Internet/Network Deamon)

If the above services are not installed and configured, copy

the rpm package from the location shown below for

installation.

Insert Ubuntu 11.04 (CD) CD ROM

bash$ mount /mnt/cdrom

bash$ cd /mnt/cdrom/RPMS

bash$ cp tftp-server-0.39-1.i386.rpm /usr/tmp

bash$ cp dhcp-3.0.1-11.i386.rpm /usr/tmp

This will copy all the required rpm files into a temporary

directory.

Installing the RPM

bash$ cd /usr/tmp

bash$ rpm -ivh tftp-server-0.39-1.i386.rpm

bash$ rpm -ivh dhcp-3.0.1-11.i386.rpm

bash$ rpm -ivh ckermit-8.0.209-9.i386.rpm

Starting services

bash$ service xinetd restart

bash$ service nfs restart

bash$ service dhcpd restart

4.2.1 ELDK Installation
The Embedded Linux Development Kit (ELDK) includes the

GNU cross development tools, such as the compilers, binutils,

gdb, etc., and a number of pre-built target tools and libraries

necessary to provide required functionality for the target

system. To edit the script file need to press the Insert key or

“i” to start updating and press Esc+:wq for save and exit from

the editor.

a. Step 1: Insert the CD-ROM containing PPC – ELDK

Installation Software.

b. Step 2: Mount the CDROM using the following

command bash$ mount /dev/cdrom /mnt/cdrom

c. Step 3: Create a new directory where the ELDK should

be installed, say bash$ mkdir /eldk

d. Step 4: Run the installation utility included on the

distribution to install into that specified directory bash$

/mnt/cdrom/install -d /eldk PPC_74xx. If the ELDK

installation is successful; it will shows an success

message Done.

e. Step 5: After the installation utility completes, edit the

following files.

vi /etc/profile include the following two lines at the end

of the script CROSS_COMPILE=PPC_74xx-

PATH=$PATH:/eldk/usr/bin:/eldk/bin

vi /root/.bash_profile include the following two lines at

the end

export CROSS_COMPILE=PPC_74xx-

PATH=$PATH:/eldk/usr/bin:/eldk/bin

Note: The above command assumes that ELDK is installed in

the location /eldk

f. Step 6: Create the device nodes for an MPC74xx based

system, use the following commands

bash$ cd /eldk/PPC_74xx/dev

bash$ /mnt/cdrom /ELDK_MAKEDEV

4.3 Installing U-Boot on PPC7410
First of all, it is required to connect to the correct serial port to

the target board, (typically ST40 Linux's /dev/ttyAS0) from a

terminal emulator (running on a host system) with the

following communications parameters: baud=115200, data=8,

parity=none, Flow Control=none. In another window on the

host system, then use sh4-Linux-gdb to download and run U-

Boot on the target system, over the JTAG debug link. For

example, for executing on a MPC74XX board (MPC7410),

then the following would be appropriate.

host% sh4-Linux-gdb

Output: GNU gdb STMicroelectronics/Linux Base

6.5-33

GDB is free software, covered by the GNU General Public

License, and you are welcome to change it and/or distribute

copies of it under certain conditions.

This GDB was configured as "--host=i686-pc-Linux-gnu --

target=sh4-Linux".

5. TESTING OF THE KERNEL
Latency is the delay between event occur and the response

time. The term latency, when used in the context of the RT

Kernel, is the time interval between the occurrence of an event

and the time when that event is "handled" (typically "handled"

means running some thread as a result of the event).

"Cyclictest" tool is used to measure the latency [7]. Cyclictest

measures the amount of time that passes between when a

timer expires and when the thread which set the timer actually

runs. It does this by taking a time snapshot just prior to

waiting for a specific time interval (t1), then taking another

time snapshot after the timer finishes (t2), then comparing the

theoretical wakeup time with the actual wakeup time (t2 -(t1 +

sleep_time)). This value is the latency for that timer wakeup.

The execution of Cyclictest can be divided into three phases

[8]. During the initialization phase, the program creates a

configurable number of threads (according to the specified

parameters), which are then admitted as real-time tasks. The

processor affinity mask is also set, which enables migration to

be restricted. After that, each thread starts a periodic (i.e.,

cyclic) execution phase, during which Cyclictest executes the

main measurement loop. Iteration (i.e., one test cycle) starts

when the thread’s associated one-shot timer expires. Once the

thread resumes, a sample of scheduling latency is recorded as

the difference between the current time and the instant when

the timer should have fired. The timer is then rearmed to start

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.22, June 2014

25

a new iteration and the thread suspends. After a configurable

duration, the thread is demoted to best effort status and exits,

and the recorded scheduling latency samples are written to

disk. Here is output from a typical Cyclictest run:

To compile the Cyclictest the command is

 sudo apt-get install build-essential libnuma-dev

 make

Run tests

sudo ./cyclictest -a -t -n -p99

On a non-real-time system,

T: 0(4398) P: 99 I:1000 C: 96279 Min:2 Avg:12 Max: 23587

T: 1(4399) P: 99 I:1500 C: 64186 Min 2 Avg:8 Max: 33

T: 2(4400) P: 99 I:2000 C: 48139 Min:2 Avg:9 Max: 215

T: 3(4401) P:99 I:2500 C:38511 Min:2 Avg:11 Max: 22824

The rightmost column contains the most important result, i.e.

the worst-case latency of 23.587 milliseconds. On a real-time-

enabled system, the result may look like

T: 0 (1779) P:99 I:1000 C: 9480 Min:3 Avg: 11 Max: 35

T: 1 (1780) P:99 I:1500 C: 6320 Min:3 Avg: 11 Max: 39

T: 2 (1781) P:99 I:2000 C: 4740 Min:3 Avg: 11 Max: 25

T: 3 (1782) P:99 I:2500 C: 3792 Min:3 Avg: 12 Max: 26

 And, thus, indicate an apparent short-term worst-case latency

of 35 microseconds. The execution of Cyclictest can be

divided into three phases. During the initialization phase, the

program creates a configurable number of threads (according

to the specified parameters), which are then admitted as real-

time tasks. The processor affinity mask is also set, which

enables migration to be restricted. After that, each thread

starts a periodic (i.e., cyclic) execution phase, during which

Cyclictest executes the main measurement loop. Iteration (i.e.,

one test cycle) starts when the thread’s associated one-shot

timer expires. Once the thread resumes, a sample of

scheduling latency is recorded as the difference between the

current time and the instant when the timer should have fired.

The timer is then rearmed to start a new iteration and the

thread suspends. After a configurable duration, the thread is

demoted to best effort status and exits, and the recorded

scheduling latency samples are written to disk

6. CONCLUSION
The Onboard computer of an aerospace vehicle is a real time

embedded computer bounded by hard real time constraints.

The delays in the software execution have a direct impact on

the system performance. For an accurate execution of the

control and guidance software on the OBC, the application

has to be built on top of a real time embedded operating

system. Even though the Linux kernel has become an

excellent choice for embedded software development, it lacks

real time functionality. It was designed to optimize the system

throughput but not for achieving real time responsiveness.

The Linux kernel can be used for real time application

development, by incorporating the Preempt RT-Patch. The

process of patching Preempt-RT with the Linux kernel has

been demonstrated. The real time application development

process for preempt-RT patched kernel is given. The test

result of a sample real time application has been illustrated.

REFERENCES
[1] FSM labs “Real-time programming in RTLinux”,

December, 2002.

[2] Qingli and Caroline Yao, “Real-time concepts for

Embedded Systems”, pages 11-17, 2003.

[3] RT-PREEMPT HOWTO-RTwiki,

https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HO

WTO.

[4] Wolfgang Mauerer “Professional Linux kernel

architecture”, pages 847-878, 2008.

[5] Compact versatile OBC, VOL.1, version 2, pages 55-66.

[6] MPC 7410 RISC Microprocessor hardware

specifications, Free scale semiconductor, pages 2-7,

2007.

[7] Real-time Linux wiki. Cyclictest-RTwiki,

https://rt.wiki.kernel.org/index.php/cyclictest.

[8] Felipe Cerqueira, B. Brandenburg, “A comparison of

scheduling latency in Linux Preempt-RT, and LITUMS”,

pages 1-9, 2010.

[9] P. McKenney, A real-time preemption overview, 2005,

http://lwn.net/Articles/146861/.

[10] J. Y. Leung and M.L Merrill, “A note on preemptive

scheduling of periodic, real time tasks”, Inform.

Processing Lett., vol.11 no. 3, pp. 115-118, Nov.

1980Sannella

IJCATM : www.ijcaonline.org

https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
https://rt.wiki.kernel.org/index.php/cyclictest
http://lwn.net/Articles/146861/

