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ABSTRACT 

The SoC (System on Chip) uses AMBA (Advanced 

Microcontroller Bus Architecture) as an on chip bus. APB 

(Advanced Peripheral Bus) is one of the components of the 

AMBA bus architecture. APB is low bandwidth and low 

performance bus used to connect the peripherals like UART, 

Keypad, Timer and other peripheral devices to the bus 

architecture. This paper introduces the AMBA APB bus 

architecture design. The design is created  using the verilog 

HDL and is tested by a verilog testbench. This design is 

verified using UVM (Universal Verification Methodology). 
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1. INTRODUCTION 
In system on a chip (SoC) design, Advanced Microcontroller 

Bus Architecture (AMBA) is used as on chip bus. Earlier it 

was used in the microcontroller devices but now it is widely 

used in a large range of ASIC and SoC parts including the 

application processors used in modern portable mobile 

devices like smartphones. AMBA is an open standard, on-chip 

interconnect specification for the purpose of connecting and 

managing functional blocks in a System-on-Chip (SoC). It 

helps in right first time development of the multiprocessor 

designs with large number of controllers and peripherals. 
 

As seen in the Figure.1, AMBA bus architecture consists of 

three components, namely Advanced High Performance Bus 

(AHB), Advanced System Bus (ASB), Advanced Peripheral 

Bus (APB)[3]. AMBA AHB or ASB is high performance bus 

and has higher bandwidth. So the components requiring 

higher bandwidth like High Bandwidth on chip RAM, High-

performance ARM processor, High Bandwidth Memory 

Interface and DMA bus master are connected to the AHB or 

ASB. AMBA APB is low bandwidth and low performance 

bus.  So, the components requiring lower bandwidth like the 

peripheral devices such as UART, Keypad, Timer and PIO 

(Peripheral Input Output) devices are connected to the APB.  

The bridge connects the high performance AHB or ASB bus 

to the APB bus[4]. So, for APB the bridge acts as the master 

and all the devices connected on the APB bus acts as the 

slave. The component on the high performance bus initiates 

the transactions and transfer them to the peripherals connected 

on the APB. So, at a time the bridge is used for 

communication between the high performance bus and the 

peripheral devices. 

 

Fig 1: AMBA Bus Architecture[1] 

 

2. APB DESIGN 
The APB is the member of the AMBA 3 protocol family 

which implements a low cost interface which minimizes the 

power consumption and reduces the interface complexity. 

Since APB has unpipelined protocol. Therefore, it interfaces 

to the low bandwidth peripherals that do not demand the high 

performance of the pipelined bus interface. All the signal 

transitions are associated with the rising edge of the clock 

which makes it simple to integrate APB peripherals into any 

design flow. APB can interface with the AMBA AHB-Lite 

and AMBA Advanced Extensible Interface(AXI). APB can 

also be used to access the programmable control registers of 

the peripheral devices. 

2.1 APB Block Diagram 
The Advanced peripheral bus (APB) is designed as per the 

design specification.[2]. The basic block diagram of the 

AMBA APB in figure.2 shows the basic interface signals. 
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Fig 2: Basic block diagram of APB[2] 

The APB slave takes PCLK, PRESET, PSEL, PENABLE, 

PWRITE as input control signals and PADDR, PWDATA as 

32 bits inputs from the bridge and provides 32 bits PRDATA 

as output.  

Table 1. List of APB signals 

Signal Signal Name 

PCLK Clock signal 

PRESETn Reset signal 

PADDR 32 bit address bus 

PSELx Select signal 

PENABLE Enable signal 

PWRITE Direction signal 

PWDATA 32 bit Write Data bus 

PREADY Ready signal 

PRDATA 32 bits read data bus 

 

2.2   APB Operating States 

Figure.3 shows the basic state machine that represents 

operation of the peripheral bus. There are three states namely, 

IDLE, SETUP and ACCESS state 
 

 

Fig 3: State Diagram[1] 

IDLE state is the default state in which no operation is being 

performed. The assertion of the PSEL signal indicates the 

beginning of the SETUP phase. The bus enters into the 

SETUP phase when the data transfer is required. The 

PWRITE, PADDR and PWDATA are also provided during 

this phase. The bus remains in the SETUP phase for one clock 

cycle and on the next rising edge of the clock, the bus will 

move to the ACCESS state. 

The assertion of the PENABLE signal indicates the start of 

the ACCESS phase. All the control signals, address, and the 

data signals remains stable during the transition from the 

SETUP phase to the ACCESS phase. In case of read operation 

the PRDATA is present on the bus during this phase. 

PENABLE signal also remain high for one clock cycle. If no 

further data transfer is required, the bus will move the IDLE 

state. But, if further data transfer is required then the bus will 

move to the SETUP phase. 

2.3   Write Cycle 
During the write transfer operation, the PSEL, PWRITE, 

PADDR and PWDATA signals are asserted at the T1 clock 

edge which is called the SETUP cycle. At the next rising edge 

of the clock T2, the PENABLE signal and PREADY signal 

are asserted. This is called the ACCESS cycle. At the clock 

edge T3, PENABLE signal is disabled and if further data 

transfer is required, a high to low transition occurs on the 

PREADY signal. 
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Fig 4: APB Write cycle[2] 

2.4   APB Read Cycle 

During the read operation, the PSEL, PENABLE, PWRITE, 

PADDR signals are asserted at the clock edge T1 (SETUP 

cycle). At the clock edge T2, (ACCESS cycle), the 

PENABLE, PREADY are asserted and PRDATA is also read 

during this phase. 

 

Fig 5: APB Read Cycle[2] 

3. SIMULATION RESULTS FOR THE 

DESIGN 
The design and the testbench written in verilog[6] has been 

compiled using ICARUS verilog. The results show the write 

and read operation. It is evident from the figure that when 

PWRITE=1, the address and data are written at the same 

clock edge. When PWRITE =0, the address is sent on a given 

clock edge and the data is read on the following clock edge.   
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Fig 6: Simultation results for the design

4.   VERIFICATION 

Verification is the most important part of the VLSI design 

flow. It aims to find out the bugs in the RTL (Register 

Transfer Level) design at an early stage so that it does not 

prove out destructive at the later stage in the design process. 

Around 70% of the time is consumed in the verification 

process. So, it is the most time consuming process. Due to the 

increase in number of transistors in the integrated circuit (IC), 

reducing feature size and improved design tools, the 

complexity of the IC has increased. This raises the probability 

of occurrence of bugs in the design. Hence, the need for the 

verification of the IC became necessary [7][9]. 

 

 

Fig 7: Position of RTL Verification in the VLSI Design 

Flow 

Universal Verification Methodology (UVM) is a standard 

verification methodology used to verify the RTL (Register 

Transfer Level) design. It consists of base class library coded 

in SystemVerilog[8]. The verification engineer can create 

different verification components by extending these classes. 

Moreover, UVM provides many other useful verification 

features such as use of macros for implementing complex 

function, factory for object creation [8]. 

Figure 8 shows the various UVM verification components 

created to verify APB design. 

4.1 Sequence item 

The transactions are extended from the uvm_sequence_item. 

This component randomizes the address and data. The field 

automation macros are applied to the data members of this 

class. 

 

4.2 Sequences 

A sequence is a series of transaction. In the sequence class, 

the users can create complex stimulus. These sequences can 

be randomized, extended to create another sequence and can 

be combined. 

 

4.3   Sequencer   

UVM sequencer coordinates between the driver and sequence. 

It passes the transaction to the driver for execution and obtains 

the response from the driver. It also acts as an arbitrator for 

multiple sequences running in parallel. 

 

4.4   Driver 

Driver initiates the request for the next transaction and drives 

it to the lower level components. It is created by extending the 

uvm_driver. 

 

4.5   Collector and Monitor 

The collector extracts the signal information from the bus and 

converts it into the transactions and passes it through the 

analysis port to the monitor for further comparing. 

  

4.6   Agent 

The agent instantiates the verification components driver, 

monitor, collector and sequencer. It also connects these 

components using TLM connections. The agent can have one 

of the operating modes active or passive. In the active mode 

of operation, the agent instantiates driver, sequencer collector 

and monitor whereas in the passive mode of operation only 

monitor and collector are instantiated and configured. 



International Journal of Computer Applications (0975 – 8887) 

Volume 95– No.21, June 2014 

33 

Fig 8: UVM Verification components[10] 

4.7   Environment 

The Environment class instantiates all the sub components 

such as agents, driver, monitor etc. and configures them. 

 

4.8  Test  

The uvm_test is extended from the uvm_component. Different 

testcases can be generated for the given verification 

environment

 

5.   SIMULATION RESULTS OF VERIFICATION 
 

 
 

Fig 9: Simulation results from write operation obtained after verification of APB 
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Figure 9 shows the simulation results obtained by creating 

verification environment. It is seen that in the simulation 

results there are some additional signals like DIN, DOUT, 

ADDR_WR, ADDR_RD. These signals are of the memory 

which is connected to the APB bus. 

 

In figure 9, the data 000000aa is written to the memory 

address 00000001 and in figure 10, the same data is read from 

the same memory location. During write operation in figure.9, 

the high signal on the PWRITE causes a WR signal of the 

memory to go high and the data which is applied to 

PWDATA port is sent to the memory through the DIN port of 

the memory. The address is applied to the PADDR port which 

is sent to the ADDR_WR port of the memory.  

 

During the read operation as shown in figure.10, when the 

PWRITE signal goes low, it causes RD signal of the memory 

to go high and the address is applied to the PADDR port 

which is sent to the ADDR_RD port of the memory. The data 

obtained at the DOUT port of the memory is read at the 

PRDATA port. 

 

 

Figure 10: Simulation results for read operation obtained after verification of APB 

UVM report provides the results obtained after the simulation 

of UVM testbench. Figure 11 shows the UVM report 

summary generated after running all the UVM phases. The 

UVM_INFO in the UVM report summary in figure 11 shows 

that there are thirty six information messages. The data 

provided by the UVM report summary ensures that design is 

error free and does not produce any warnings or fatal error 

since the UVM_ERROR, UVM_WARNING and 

UVM_FATAL is equal to zero.  
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Fig 11: UVM Report Summary

6.   CONCLUSION 
This paper gives an overview of the AMBA bus architecture 

and discusses the APB bus in detail. The APB bus is designed 

using the verilog HDL according to the specification and is 

verified using Universal Verification Methodology. The 

simulation results show that the data read from a particular 

memory location is same as the data written to the given 

memory location. Hence, the design is functionally correct. 

The UVM report summary also ensures the functional 

correctness of the design. 

 

The electronic system level model of the same design will be 

created in the future since ESL is the requirement of the future 

because of increasing design complexity. The ESL model of 

the APB design will be created using SystemC. Then the 

design will be verified using UVM testbench. The results 

obtained after the simulation will be compared with the results 

obtained in this paper.   
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