
International Journal of Computer Applications (0975 – 8887)

Volume 95– No.21, June 2014

29

Design and Verification of AMBA APB Protocol

Shankar

School of Engineering and
Technology,

ITM University, Gurgaon, India

Dipti Girdhar
Department of EECE

ITM University, Gurgaon,India

Neeraj Kr. Shukla, Ph.D
Department of EECE

ITM University, Gurgaon, India

ABSTRACT

The SoC (System on Chip) uses AMBA (Advanced

Microcontroller Bus Architecture) as an on chip bus. APB

(Advanced Peripheral Bus) is one of the components of the

AMBA bus architecture. APB is low bandwidth and low

performance bus used to connect the peripherals like UART,

Keypad, Timer and other peripheral devices to the bus

architecture. This paper introduces the AMBA APB bus

architecture design. The design is created using the verilog

HDL and is tested by a verilog testbench. This design is

verified using UVM (Universal Verification Methodology).

Keywords

AMBA, APB, SoC, UVM, Design, Verification.

1. INTRODUCTION
In system on a chip (SoC) design, Advanced Microcontroller

Bus Architecture (AMBA) is used as on chip bus. Earlier it

was used in the microcontroller devices but now it is widely

used in a large range of ASIC and SoC parts including the

application processors used in modern portable mobile

devices like smartphones. AMBA is an open standard, on-chip

interconnect specification for the purpose of connecting and

managing functional blocks in a System-on-Chip (SoC). It

helps in right first time development of the multiprocessor

designs with large number of controllers and peripherals.

As seen in the Figure.1, AMBA bus architecture consists of

three components, namely Advanced High Performance Bus

(AHB), Advanced System Bus (ASB), Advanced Peripheral

Bus (APB)[3]. AMBA AHB or ASB is high performance bus

and has higher bandwidth. So the components requiring

higher bandwidth like High Bandwidth on chip RAM, High-

performance ARM processor, High Bandwidth Memory

Interface and DMA bus master are connected to the AHB or

ASB. AMBA APB is low bandwidth and low performance

bus. So, the components requiring lower bandwidth like the

peripheral devices such as UART, Keypad, Timer and PIO

(Peripheral Input Output) devices are connected to the APB.

The bridge connects the high performance AHB or ASB bus

to the APB bus[4]. So, for APB the bridge acts as the master

and all the devices connected on the APB bus acts as the

slave. The component on the high performance bus initiates

the transactions and transfer them to the peripherals connected

on the APB. So, at a time the bridge is used for

communication between the high performance bus and the

peripheral devices.

Fig 1: AMBA Bus Architecture[1]

2. APB DESIGN
The APB is the member of the AMBA 3 protocol family

which implements a low cost interface which minimizes the

power consumption and reduces the interface complexity.

Since APB has unpipelined protocol. Therefore, it interfaces

to the low bandwidth peripherals that do not demand the high

performance of the pipelined bus interface. All the signal

transitions are associated with the rising edge of the clock

which makes it simple to integrate APB peripherals into any

design flow. APB can interface with the AMBA AHB-Lite

and AMBA Advanced Extensible Interface(AXI). APB can

also be used to access the programmable control registers of

the peripheral devices.

2.1 APB Block Diagram
The Advanced peripheral bus (APB) is designed as per the

design specification.[2]. The basic block diagram of the

AMBA APB in figure.2 shows the basic interface signals.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.21, June 2014

30

Fig 2: Basic block diagram of APB[2]

The APB slave takes PCLK, PRESET, PSEL, PENABLE,

PWRITE as input control signals and PADDR, PWDATA as

32 bits inputs from the bridge and provides 32 bits PRDATA

as output.

Table 1. List of APB signals

Signal Signal Name

PCLK Clock signal

PRESETn Reset signal

PADDR 32 bit address bus

PSELx Select signal

PENABLE Enable signal

PWRITE Direction signal

PWDATA 32 bit Write Data bus

PREADY Ready signal

PRDATA 32 bits read data bus

2.2 APB Operating States

Figure.3 shows the basic state machine that represents

operation of the peripheral bus. There are three states namely,

IDLE, SETUP and ACCESS state

Fig 3: State Diagram[1]

IDLE state is the default state in which no operation is being

performed. The assertion of the PSEL signal indicates the

beginning of the SETUP phase. The bus enters into the

SETUP phase when the data transfer is required. The

PWRITE, PADDR and PWDATA are also provided during

this phase. The bus remains in the SETUP phase for one clock

cycle and on the next rising edge of the clock, the bus will

move to the ACCESS state.

The assertion of the PENABLE signal indicates the start of

the ACCESS phase. All the control signals, address, and the

data signals remains stable during the transition from the

SETUP phase to the ACCESS phase. In case of read operation

the PRDATA is present on the bus during this phase.

PENABLE signal also remain high for one clock cycle. If no

further data transfer is required, the bus will move the IDLE

state. But, if further data transfer is required then the bus will

move to the SETUP phase.

2.3 Write Cycle
During the write transfer operation, the PSEL, PWRITE,

PADDR and PWDATA signals are asserted at the T1 clock

edge which is called the SETUP cycle. At the next rising edge

of the clock T2, the PENABLE signal and PREADY signal

are asserted. This is called the ACCESS cycle. At the clock

edge T3, PENABLE signal is disabled and if further data

transfer is required, a high to low transition occurs on the

PREADY signal.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.21, June 2014

31

Fig 4: APB Write cycle[2]

2.4 APB Read Cycle

During the read operation, the PSEL, PENABLE, PWRITE,

PADDR signals are asserted at the clock edge T1 (SETUP

cycle). At the clock edge T2, (ACCESS cycle), the

PENABLE, PREADY are asserted and PRDATA is also read

during this phase.

Fig 5: APB Read Cycle[2]

3. SIMULATION RESULTS FOR THE

DESIGN
The design and the testbench written in verilog[6] has been

compiled using ICARUS verilog. The results show the write

and read operation. It is evident from the figure that when

PWRITE=1, the address and data are written at the same

clock edge. When PWRITE =0, the address is sent on a given

clock edge and the data is read on the following clock edge.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.21, June 2014

32

Fig 6: Simultation results for the design

4. VERIFICATION

Verification is the most important part of the VLSI design

flow. It aims to find out the bugs in the RTL (Register

Transfer Level) design at an early stage so that it does not

prove out destructive at the later stage in the design process.

Around 70% of the time is consumed in the verification

process. So, it is the most time consuming process. Due to the

increase in number of transistors in the integrated circuit (IC),

reducing feature size and improved design tools, the

complexity of the IC has increased. This raises the probability

of occurrence of bugs in the design. Hence, the need for the

verification of the IC became necessary [7][9].

Fig 7: Position of RTL Verification in the VLSI Design

Flow

Universal Verification Methodology (UVM) is a standard

verification methodology used to verify the RTL (Register

Transfer Level) design. It consists of base class library coded

in SystemVerilog[8]. The verification engineer can create

different verification components by extending these classes.

Moreover, UVM provides many other useful verification

features such as use of macros for implementing complex

function, factory for object creation [8].

Figure 8 shows the various UVM verification components

created to verify APB design.

4.1 Sequence item

The transactions are extended from the uvm_sequence_item.

This component randomizes the address and data. The field

automation macros are applied to the data members of this

class.

4.2 Sequences

A sequence is a series of transaction. In the sequence class,

the users can create complex stimulus. These sequences can

be randomized, extended to create another sequence and can

be combined.

4.3 Sequencer

UVM sequencer coordinates between the driver and sequence.

It passes the transaction to the driver for execution and obtains

the response from the driver. It also acts as an arbitrator for

multiple sequences running in parallel.

4.4 Driver

Driver initiates the request for the next transaction and drives

it to the lower level components. It is created by extending the

uvm_driver.

4.5 Collector and Monitor

The collector extracts the signal information from the bus and

converts it into the transactions and passes it through the

analysis port to the monitor for further comparing.

4.6 Agent

The agent instantiates the verification components driver,

monitor, collector and sequencer. It also connects these

components using TLM connections. The agent can have one

of the operating modes active or passive. In the active mode

of operation, the agent instantiates driver, sequencer collector

and monitor whereas in the passive mode of operation only

monitor and collector are instantiated and configured.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.21, June 2014

33

Fig 8: UVM Verification components[10]

4.7 Environment

The Environment class instantiates all the sub components

such as agents, driver, monitor etc. and configures them.

4.8 Test

The uvm_test is extended from the uvm_component. Different

testcases can be generated for the given verification

environment

5. SIMULATION RESULTS OF VERIFICATION

Fig 9: Simulation results from write operation obtained after verification of APB

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.21, June 2014

34

Figure 9 shows the simulation results obtained by creating

verification environment. It is seen that in the simulation

results there are some additional signals like DIN, DOUT,

ADDR_WR, ADDR_RD. These signals are of the memory

which is connected to the APB bus.

In figure 9, the data 000000aa is written to the memory

address 00000001 and in figure 10, the same data is read from

the same memory location. During write operation in figure.9,

the high signal on the PWRITE causes a WR signal of the

memory to go high and the data which is applied to

PWDATA port is sent to the memory through the DIN port of

the memory. The address is applied to the PADDR port which

is sent to the ADDR_WR port of the memory.

During the read operation as shown in figure.10, when the

PWRITE signal goes low, it causes RD signal of the memory

to go high and the address is applied to the PADDR port

which is sent to the ADDR_RD port of the memory. The data

obtained at the DOUT port of the memory is read at the

PRDATA port.

Figure 10: Simulation results for read operation obtained after verification of APB

UVM report provides the results obtained after the simulation

of UVM testbench. Figure 11 shows the UVM report

summary generated after running all the UVM phases. The

UVM_INFO in the UVM report summary in figure 11 shows

that there are thirty six information messages. The data

provided by the UVM report summary ensures that design is

error free and does not produce any warnings or fatal error

since the UVM_ERROR, UVM_WARNING and

UVM_FATAL is equal to zero.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.21, June 2014

35

Fig 11: UVM Report Summary

6. CONCLUSION
This paper gives an overview of the AMBA bus architecture

and discusses the APB bus in detail. The APB bus is designed

using the verilog HDL according to the specification and is

verified using Universal Verification Methodology. The

simulation results show that the data read from a particular

memory location is same as the data written to the given

memory location. Hence, the design is functionally correct.

The UVM report summary also ensures the functional

correctness of the design.

The electronic system level model of the same design will be

created in the future since ESL is the requirement of the future

because of increasing design complexity. The ESL model of

the APB design will be created using SystemC. Then the

design will be verified using UVM testbench. The results

obtained after the simulation will be compared with the results

obtained in this paper.

7. REFERENCES
[1] ARM, “AMBA Specification Overview”,

http://www.arm.com/. .

[2] ARM, “AMBA APB3 Specification Overview”,

http://www.arm.com/

[3] Akhilesh Kumar, Richa Sinha, “Design and Verification

analysis of APB3 Protocol with Coverage,” IJAET, Nov

2011.

[4] Santhi Priya Sarekokku, K. Rajasekhar, “Design and

Implementation of APB Bridge based on AMBA AXI

4.0,” IJERT, Vol.1, Issue 9, Nov 2012.

[5] UVM Reference Manual, http://www.accellera.com

[6] Samir Palnitkar, “Verilog HDL: A guide to Digital

Design and Synthesis (2nd Edition), Pearson, 2008.

[7] Chris Spear, “SystemVerilog for verification (2nd

Edition): A guide to learning the testbench features,

Springer, 2008.

[8] URL:http://www.testbench.com.

[9] Bergeron, “Writing testbenches using SystemVerilog,”

Springer, 2009.

[10] Vanessa R. Cooper, “Getting Started with UVM: A

Beginner’s Guide,” Verilab, 2013.

IJCATM : www.ijcaonline.org

