
International Journal of Computer Applications (0975 – 8887)

Volume 95– No.21, June 2014

7

Analyzing the Comprehensibility of Aspect-Oriented

Modelling and Design of Software System

Deepika Shukla

Asst. Professor (Computer Sc. And Eng. Dept)
Institute of Technology, Nirma University, Ahmedabad(India)

ABSTRACT
Implementing any big software system is a complex task. One

of the major reasons for this is that, there one would like to

modularize but for which the implementation would be spread

out. Such concerns are more commonly known as Aspects.

For example security aspect has to be taken care irrespective

of the fact, whatever business logic is being implemented.

These concerns cannot be modelled appropriately using

traditional Object-oriented approach as these Aspects,

manifest themselves as behaviours that are tangled and

scattered across a system. Due to this fact, it affects the

comprehension capabilities of modelling artefacts of the

system also these issues lead to problems achieving

traceability of aspects throughout the development lifecycle.

Aspect-oriented Analysis and Design (AOAD) has been

accepted as an alternative approach to tackle such concerns in

an effective manner. This paper presents a comparative study

of effectiveness of Aspect-oriented Analysis and Design

versus Object-oriented Analysis and Design approach and

analyses the results of both of these approaches on the

comprehensibility of software systems’ knowledge.

General Terms

Object Oriented, Modelling and design, Aspect, Analysis and

Design

Keywords

Aspect Oriented, Aspect-Oriented UML, Object-Oriented

Analysis and Design, Aspect Oriented Software Development.

Unified Modelling Language

1. INTRODUCTION
Object Oriented Analysis and Design (OOAD) has been the

first choice of system analysts and software engineers for

modelling a software system for nearly last four decades. Also

it is well accepted fact that for performing OOAD, the UML

diagrams are considered as the industry standard. However, y

the complexity of the current software systems is increasing

exponentially. The complexity is not only in terms of key

functionality of the systems but also certain other concerns

which span the entire system architecture. Such concerns are

also called cross-cutting concerns or Aspects. Examples might

be locking in a distributed application, exception handling, or

logging method calls. Object oriented paradigm ideally fails to

address this additional complexity or aspects adequately,

leading to tangling of code and scattering of concerns across

the architecture. Due to the inappropriateness of Object

oriented Analysis and Design approach, in handling the

cross-cutting concerns (Aspects). Aspect oriented analysis and

design approach has been proposed as a technique for

modularizing cross-cutting concerns [4], and is finding

increasing interest and popularity as an established modelling

language among academicians, researchers and practitioners.

Software systems today are becoming more and more

complex due to the inherent need like they should be web

based, processing data in real-time, distributed where the

underlying architecture remains heterogeneous. Also it is

observed that the traditional approaches of software

development focuses on decomposing the system into units of

main business logic. They prove to be insufficient to handle

secondary or supporting functions and concerns like logging,

security, reliability, scalability etc. Such concerns cross-cut

more than one module and core business functionality of the

system. A new construct should be defined that takes care of

cross-cutting aspects of a system. Not surprisingly, this new

program construct is called an aspect, and the approach which

modularizes the system in terms of these aspects in addition to

core business logic is popularly called as Aspect oriented

software development. Aspect-oriented software modelling

and development can be considered as an extension to Object

oriented analysis and modelling [1]. It is considered as the

key to self-adaptive systems. This paper presents a

comparative study of effectiveness of Aspect-oriented

Analysis and Design versus Object-oriented Analysis and

Design approach and analyses the result of both of these

approaches on the comprehensibility of software system’s

knowledge.

The rest of this paper is organized as follows. Section 2 covers

an introduction about the baseline paradigm of software

development and understanding of terms related to it. Section

3 comprises of detailed survey of related literature whereas in

Section 4 comparison of both the techniques is shown. The

diagrams shown in the questionnaire is in industry standard

UML. Section 5 results are presented. Section 6 finally sought

conclusion and future scope of the field and probable research

areas.

2. ASPECT ORIENTED SOFTWARE

DEVELOPMENT
Aspect-oriented software development basically can be

divided into two broad categories of studies.

 Aspect-Oriented Analysis and Design (AOAD)

 Aspect-Oriented Programming (AOP)

Where, AOAD can further be divided into Aspect-Oriented

Requirements Engineering (AORE), Aspect-oriented

Architecture (AOA) and Aspect-oriented Modeling (AODM).

Whereas AOP focuses mainly on two areas; (i) Development

of new programming languages and platforms, which are

capable to program crosscutting concerns and (ii) Study of

existing aspect-oriented languages. Fig 1, shows the

categorization of Aspect-Oriented Software development.
Majorly three types of constructs constitute any Aspect

oriented modelling method. First, constructs are required for

modelling base elements, second, there has to be constructs

for modelling crosscutting elements, and third, the method

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.21, June 2014

8

must include certain constructs for modelling crosscutting

relationships. UML has been accepted as the de facto standard

for object-oriented modelling and is well received as dominant

language for specifying base elements of an aspect-oriented

model in software community. Whereas for modelling

cross-cutting concerns the standard UML lacks the building

blocks and so many extensions to the existing form of UML

have been proposed in the literature.

Figure 1: Categorization of Aspect-Oriented Software

Development

2.1 Introduction to various terms related to

Aspect-oriented paradigm.
 Join Points: These are points in the execution of the

system where behaviour supplied by the aspect is

combined. In code form they could be manifested as

method calls. Join points are used to define the dynamic

structure of a crosscutting concern.

 Pointcuts: They are set of join points and are used to

specify at which join points crosscutting behaviour to be

executed.

 Advice: These define code to be executed whenever a

join pint of a particular set of join point is reached.

 Introductions: are used to crosscut the static type

structure of the classes. i.e.; with introductions

additional attributes and behaviours may be added to the

class as if they were declared in the classes themselves.

New generalization and realization relationships can

also be inserted into the class structure thus changing the

super-classes and super-interfaces of the classes.

 Aspects: “Modular units of cross cutting

implementation” [4] and serve as a container for

pointcuts, pieces of advice, introductions etc.

3. RELATED LITERATURE SURVEY
Aspect-Oriented software development is relatively new

approach of software development but within very short span

of time is gaining popularity among developers, researchers

and practitioners. Most of the literature that exist on the topic

can be found related following sub-areas.

There exist several survey papers which talks about

Identification and separation of concerns at early stage.

Basically they explain and advocate the need of identifying

aspects in the Requirements Engineering phase of software

development. For example in [5] [6] [7] [8] and [17]

emphasize on Aspect oriented Requirements Engineering in

general and for component based software systems. That is at

requirements level. Other group of research papers talk about

Aspect based modelling and design and in the effort they have

developed a new approach. A wide literature is there which

makes an effort towards comparing the standard object

oriented paradigm with Aspect-oriented paradigm [3]. Lot of

work is also available in which they justify the lacuna present

in the current UML building block and prove that current form

of UML is not appropriate for performing Aspect-Oriented

Modelling and thus they suggest an extension to the existing

UML notations for modeling the aspect in analysis and design

phase[14]. Many authors have worked upon applying and

adapting Aspect-oriented paradigm for a particular application

domain. In [10] the concept of Aspect-Oriented is applied to

Web application. Also in [11],[12], the use of Aspect-Oriented

programming is done for Embedded system. Also in good

number of papers current approaches in the use of UML

diagrams to support aspect-oriented analysis and design are

discussed and evaluated in terms of their ability to support the

specification, change, maintenance, testing and reuse of

aspects during requirements elicitation and throughout the

software engineering life cycle. An approach based on UML

activity diagrams is proposed, discussed and evaluated in [13],

whereas the work presented in [14] has extended UML class

diagram. The authors have used very generic pointcut and

advice language which in turn has facilitated to model with

aspects. As a result of particular approach, better separation

of concerns as well as more redundancy reduction in UML

class diagrams has been obtained thus making them more

readable and understandable and in turn maintainable.

 In [15] Sequence Diagram describes the Aspectual Sequence

Model based on the Unified Modeling Language (UML) to

identify the crosscutting concerns in the framework of Model

Driven Architecture (MDA). An approach on modeling

traversing features in concurrent software system was

presented, which is based on aspect-oriented techniques and

statecharts of unified modeling language is described in [16].

A use case driven approach is explained in [17] to explain the

interaction analysis in Aspect-Oriented models. While

reviewing this vast amount of literature, one can easily

deduces that, most research on AOP modeling with UML is

based on software forward engineering. Due to the fact

modelling of aspects is done in early stage of software

development process.
 Research also is being performed in the area of Aspect

oriented software development where authors have tried to

understand the aspect from reverse engineering. For example

in The area also has a related topic of research on Aspect

Mining but little literature could be found on the same. In [18]

& [19], it has been tried to understand, identify and

remodularize the extracted aspects from the existing O-O

system source codes for software reverse engineering. Also a

complete area of research is being done for developing

aspectoriented language and many researches are present in

which the authors are working on AspectJ language which is

more or less accepted as industry standard for implementation

of Aspects. One thing in most of research papers, it is found

and emphasized that Aspect-Oriented development approach

is better than the traditional approaches of software

development. Not always the case is same according to few

authors and researchers. Few authors are very sceptic about

benefits of Aspect-Orientation. For example in [21] authors

are of the view that there are many misconceptions outlines

some important aspect-oriented modeling issues, such as the

modular nature of aspects, their resemblance with classes, and

their high coupling with the base program. The author’s .have

mentioned that in most of the Aspect-oriented work where

AOSD

 AOP AOAD

 AODM AOA AORE

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.21, June 2014

9

AspectJ is used for the implementation, Aspects are

considered as constructs analogous to classes which according

to them, Aspects contradict the basic principles of object

oriented paradigm. Whereas [22] presents a UML-based

approach to justifying that an aspect-oriented program

conforms to its expected crosscutting behavior or not. In this

work aspect-oriented UML design models have been explored

to derive tests for exercising interactions between aspects and

classes.

4. EXPERIMENT AND OBSERVATIONS
Here, a brief planning and design of the experiments

conducted to analyse the comprehensibility of AOAD

(Aspect-Oriented analysis and Design) versus (OOAD)

Object-Oriented Analysis and Design is provided. Based on

the data that is collected from a series of controlled

experiments.

4.1 Methodology

A questionnaire was prepared and was given to subjects. In

addition to that, the subjects were shown/explained class

diagrams of a system (Figure Editor) (i) based on OOAD

using UML and (ii) based on AOSD using UML. The data

was collected and then analyzed. Table-1 presents the

questionnaire.

Table 1: Questionnaire used for taking the responses from the subjects

1. Your degree of awareness with Aspect Oriented software development.

a) High b) moderate c) Low d) Not aware

2. After understanding both the models, which modelling paradigm would you prefer, for explaining system to others

a) OO Model b) AO Model

3. Approximate time taken to understand the Object-oriented model for the system.

__________________min/hr._______

4. Approximate time taken to understand the Aspect-Oriented model of the system...

__________________min/hr._______

5. Aspect-oriented modelling using UML increases the understanding of system requirements and functions.

a) Strongly agree b) agree c) disagree d) strongly disagree

6. The degree of class reusability would be more when AOSD is used

a) Strongly agree b) agree c) disagree d) strongly disagree

7. AOAD reduces the interdependence of classes /aspects/requirements

a) Strongly agree b) agree c) disagree d) strongly disagree

8. Current UML building blocks are sufficient to express cross-cutting concerns.

a) Strongly agree b) agree c) disagree d) strongly disagree

9. It would be more convenient to do AOAD if current UML building blocks are extended.

a) Strongly agree b) agree c) disagree d) strongly disagree

10. It would be more convenient to do AOAD if entirely new modelling language is developed for the same.

a) Strongly agree b) agree c) disagree d) strongly disagree

5. RESULT ANALYSIS

The subjects were explained the Analysis and Design level class

diagrams for a software system. Firstly, they were given

exposure to class diagram based on OOAD using UML and

secondly they were exposed to class diagram based on AOSD

(Aspect-Oriented Software Development) using UML

constructs. Table-2 shows the consolidated data obtained from

the experiment. The results were compiled and raw figures were

converted to percentage. Figure 2 is graphical view of the results

obtained. The graph is created for Q1 and Q5 to Q10 where the

responses were not quantitative. It can be observed from the

above results that, as far as understanding of system

requirements, class reusability and interdependence among

classes/aspects/requirements, is concerned Aspect-oriented

Analysis and Design score over Object-oriented Analysis and

Design. But when the parameter is capability of UML to express

cross-cutting concerns, from Q8 to Q9 items, the results clearly

show that, there is a clear-cut requirement of complete

framework which will ease the Aspect-oriented Modelling. The

results of Q10 gave a surprising insight. A good number of the

subjects were possessing apprehension towards change of

modelling language. A separate research can be carried out for

knowing the reason for such a scenario. However it is out of

scope of this study.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.21, June 2014

10

Table 2: Results of the Questionnaire in %age

Item High Moderate Low Not

Aware

Q1 50 30 10 10

Item First Second
Q2 40 60

Item Mean

Time

taken

Q3 3 min
Q4 6 min

Item Strongly

Agree

Agree Disagree Strongly

Disagree

Q5 10 60 30 0

Q6 10 60 20 10

Q7 30 50 10 10

Q8 20 20 50 10

Q9 50 20 30 0

Q10 30 30 30 10

Figure 2: Graphical view of the results obtained from the

experiment

6. CONCLUSION AND FUTURE

RESEARCH AREAS

From the literature available on the subject and the small

experiment that was performed it was found that the software

development process can benefit from the Aspect-oriented

Analysis and Design. Identifying the Aspects in the early stage

of Software system development can give good returns. It was

also found while conversing with the subjects and looking to the

work profile of the subjects that, when system is to be explained

to the end-user then OOAD artefacts would be more useful

whereas for explaining the system to the development team

AOAD(Aspect-oriented analysis and Design approach would be

more useful and degree of comprehensibility increases. One of

the major problems in AOAD is that it is still not mature enough

and has gained popularity among practitioners especially

academicians. Also it was felt during the experiment stage that,

subjects were possessing low degree of awareness with the topic

of the study presented in this paper, which also affected the

result of the work. From the extensive literature survey, it can

also be concluded that, most of the Aspect-oriented modeling is

done using either standard UML or some kind of extension to

standard UML. Also most of the work is related to one or the

other UML diagram. That is either class diagram, Activity

diagram etc. From this fact it can easily be said that, a complete

framework of modeling notation is lacking for performing AOM

(Aspect Oriented Modeling), which can be considered as

research direction. As in this paper, only ten subjects were

involved. Due to which the work and the results can be

considered constrained and specific rather than generalized. In

future the experiment set can be increased so that more

generalized conclusion can be offered.

7. REFERENCES
[1] Gregor Kiczales, James Hugunin, Erik Hilsdale, Mik

Kersten, Jeff Palm, Crista,Lopes, Bill Griswold, and Wes

Isberg “ASPECT ORIENTED PROGRAMMING”,

Kiczales

[2] Silvia Abraha˜ o, Carmine Gravino, Emilio Insfran,”

Assessing the Effectiveness of Sequence Diagrams in the

Comprehension of Functional Requirements: Results from

a Family of Five Experiments”, IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING, VOL. 39, NO. 3,

MARCH 2013

[3] I.Jacobson,Pan-Wei-Nq ,”Aspect-Oriented software

Development with Use Cases (Addison-Wesley Object

Technology Series)”,2004.

[4] Aws Magaablah,Zarina Shukur and Noorazean Mohd

Ali,” Systematic Review on Aspect-Oriented UML

Modeling:A complete Aspectual UML Modeling

Framework”,Journal of Applied Sciences, 2012.

[5] John Grundy,”Aspect-oriented Requirements Engineering

for Component-based Software Systems”, Proceedings of

RE’99, 7-11 June,

[6] Editorial Article,” Aspect-Oriented and Component-Based

Software Engineering”, IEE Proc-softw..,Vol 148, No 3,

June 2001,pp 87-88.

[7] Awais Rashid,Peter Sawyer,Ana Moreira,Joao Araujo,

“Early Aspects: a Model for Aspect-Oriented

Requirements Engineering", Proceedings of the IEEE

Joint International Conference on Requirements

Engineering (RE’02), 2002,pp

[8] A.Rashid,A,Moriera and J.Araujo,”Modularisation and

composition of aspectual requirements”, Proceedings of

the International conference on Aspect-Oriented software

development,pp 11-20,2003

[9] www.wikipedia.org

[10] Matthias Niederhausen*, Zoltain Fiala, Norbert Kopcsek,

Klaus Meissner,”Web Software Evolution by Aspect-

oriented Adaptation Engineering”, 1-4244-1450-4/07/007

IEEE

0

10

20

30

40

50

60

70

Q
1

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1

0

R
e

sp
o

n
se

s
in

 %
ag

e

Questions

Chart Title

Strongly Agree

Agree

Disagree

Strongly
Disagree

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.21, June 2014

11

[11] Marco A. Wehrmeister, Carlos Eduardo Pereira, and Franz

J. Rammig,” Aspect-Oriented Model-Driven Engineering

for Embedded Systems Applied to Automation Systems”,

IEEE TRANSACTIONS ON INDUSTRIAL

INFORMATICS, VOL. 9, NO. 4, NOVEMBER 2013,pp

2373-2386.

[12] Leo Espinoza , Heldy Espinoza , Wenying Feng,”

Modeling a Facilities Management and Information

System by UML”, 2013 10th International Conference on

Information Technology: New Generations,pp 66-70

[13] Nada Albunni ,and Miltos Petridis using UML

for Modelling Cross-Cutting Concerns in Aspect Oriented

Software Engineering”.

[14] Gefei Zhang,”Towards Aspect-Oriented Class Diagrams”,

Proceedings of the 12th Asia-Pacific Software

Engineering Conference (APSEC’05) 0-7695-246”,5-

6/05,2005

[15] J.Zhang, Yuejuan Chen Guangyuan Liu, Hui Li, “Using

Sequence Diagram to support Aspect-Oriented

Programming in MDA” 2009 International Conference on

Intelligent Human,pp 359-362.

[16] SU Yang QIN Jun,”Approach on Modeling Crosscutting

Features in Concurrent System”.

[17] Interaction Analysis in Aspect-Oriented Models Katharina

Mehner Mattia Monga, Gabriele Taentzer, 14th IEEE

International Requirements Engineering Conference

(RE'06),0-7695-2555-5/06 2006.

[18] ZHANG Ping, SU Yang,”Understanding The Aspects

From Various Perspectives in Aspects-Oriented Software

Reverse Engineering”, 2010 International Conference on

Computer Application and System Modeling (ICCASM

2010).

[19] SU Yang, ZHOU Xuan-wu, ZHANG Min-

qingP,“Approach on Aspect-Oriented Software Reverse

Engineering at Requirements Level”, 2008 International

Conference on Computer Science and Software

Engineering,pp 321-324.

[20] Bruce C. Hungerford, Member,Computer Society, Alan R.

Hevner, Member and Rosann W. Collins, Member,”

Reviewing Software Diagrams: A Cognitive Study”, IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING,

VOL. 30, NO. 2, FEBRUARY 2004, pp 82-96 .

[21] Iqbal, Saqib and Allen, Gary, “Aspect-Oriented

Modelling: Issues and Misconceptions” University of

Huddersfield Repository, http://eprints.hud.ac.uk/9007/

[22] Dianxiang Xu, Weifeng Xu, W. Eric Wong Testing

Aspect-Oriented Programs with UML Design Models”.

IJCATM : www.ijcaonline.org

http://eprints.hud.ac.uk/9007/

