
International Journal of Computer Applications (0975 – 8887)

Volume 95– No.20, June 2014

25

Byte Pair Transformation using Zero-Frequency Bytes

with Varying Number of Passes

Jyotika Doshi

GLS Inst.of Computer Technology
Opp. Law Garden, Ellisbridge

Ahmedabad-380006, India

 Savita Gandhi
Dept. of Computer Science;Guj. Uni.

Navrangpura
Ahmedabad-380009, India

ABSTRACT

Byte pair encoding (BPE) algorithm was suggested by P.

Gage is to achieve data compression. It encodes all instances

of most frequent byte-pair using zero-frequency byte in the

source data. This process is repeated for maximum m possible

number of passes until no further compression is possible,

either because there are no more frequently occurring byte

pairs or there are no more unused zero-frequency bytes to

represent pairs. It writes out substitution information before

the encoded data in each pass. This algorithm is very time

consuming as it requires to determine most frequent byte-pair

in each pass before starting substitution. We have proposed k-

pass byte-pair transformation algorithm where k may be very

very small as compared to maximum possible passes m. Our

aim is to minimize the compression time and achieve

equvivalent compression rate. Proposed algorithm transforms

half of the possible most-frequent byte pairs in each pass

except the last. In the last pass, it transforms all remaining

possible byte-pairs. This reduced number of passes save the

time taken in computing frequency of byte-pairs in maximum

m passes. Experimental results have shown that proposed

algorithm had taken 3.213, 9.794, 13.324, 16.323, 22.388

seconds with 1, 2, 3, 4 and 6 passes respectively as compared

to 295.642 seconds of m-passes. Compression rate achieved

due to transformation is 14.72%, 20.12%, 21.89%, 22.67%

and 22.96% with 1, 2, 3, 4 and 6 passes respectively as

compared to 25.55% using maximum m-passes. As the

number of passes increases, compression is better with

increased execution time. Our aim of achieving speed is

achieved with little loss in compression rate.

General Terms

Data Compression, Algorithms

Keywords

Data Compression, better compression rate, byte-pair data

transformation, substitution using zero-frequency byte

symbols

1. INTRODUCTION
Data transformation transforms data from one form to another

in order to reduce data size or to encrypt the data. This paper

describes a vaariation of data transformation applied on byte

pairs; a pair of adjacent bytes. Frequent byte pairs are encoded

using zero-frequency bytes (bytes not used the data source).

Byte Pair Encoding (BPE) algorithm proposed by P. Gage [1]

compresses data by finding the most frequent pair of adjacent

bytes in the data and replacing all instances of this pair with a

byte that was not in the original data. The algorithm repeats

this process until no further compression is possible, either

because there are no more frequently occurring pairs or there

are no more unused bytes to represent pairs [9]. Let us

consider m as the number of passes or number of times the

process is repeated. A variation of BPE is block-wise

transformation that is applied on small data blocks in stead of

entire file. Here, it is referred to as m-pass BPT-Z (Byte-Pair

Transformation using Zero-frequency bytes).

In this paper, the proposed variation of BPE is k-pass BPT-Z

where it encodes more than one most-frequent byte-pairs

with zero-frequency bytes in a data block in each pass. Here,

block-wise byte pair transformation is performed in specified

small number of passes k << maximum m. This reduced

number of passes is suppoised to reduce exceution time.

In the first k-1 passes, half of the remaining unused bytes are

used to replace most frequent byte pairs in each pass. In the

last pass, all remaining unused bytes are used for replacing

frequent integers. For k=3, half of the total unused bytes are

used in 1st pass, half of the remaining (1/4th of the total

unused) are used in the 2nd pass and then remaining (1/4th of

the total) are used in 3rd pass.

The intention of proposed k-pass BPT-Z is to reduce the time

of execution in addition to achieve compression.

2. LITERATURE REVIEW
In most of the source data, adjacent bytes are observed to be

repeated many times [7]. Therefore, it is a better source for

achieving data compression where 2-bytes are replaced with

single byte. Byte-Pair Encoding (BPE) [1,5], digram encoding

[3,4] and Iterative Semi-Static Digram Coding (ISSDC) [2]

are such algorithms. These algorithms are intended for text

files. However, they can be applied to any type of source.

Digram encoding and its variation ISSDC are dictionary based

algorithms. Dictionary is created from the source data before

transformation and it is used by decoder also.

Digram coding first builds dictionary and then does encoding

in the second pass. All the individual 1-byte characters used in

the source are added to the first part of the dictionary and the

most frequently used digrams are added to the second part of

the dictionary. If the source contains n individual characters,

and the dictionary size is d, then the number of digrams that

can be added to the dictionary is d − n. The n and d values and

the dictionary are written in the destination file along with

encoded data for decoder. Digrams are encoded using index

position in the dictionary.

Altan Mesut and Aydin Carus [2] in their Iterative Semi-Static

Digram Coding (ISSDC) use repeated digram coding. It

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.20, June 2014

26

requires the entire source to be in memory due to its two-pass

multi-iterations.

Digram encoding and ISSDC are beneficial only when small-

size alphabet is used in the source. If all 256 symbols are used

in the source, the dictionary size needs to be longer than 256

words and each digram in the dictionary will be encoded

using more than 8 bits.

Authors of this paper had proposed QBT-I [6] and BPT-I [7]

dictionary based transformation techniques. They are intended

to introduce redundancy in the data for second stage

conventional data compression techniques. Algorithm forms

logical groups of most frequent quad-byte or byte-pair data in

dictionary and encodes data using variable-length group

number and index position of data within group. Thus a quad-

byte or byte-pair is encoded with less than 16-bits.

Byte pair encoding (BPE) is a text compression algorithm

proposed by P. Gage [1]. Authors of paper [8] have used BPE

to accelarete pattern matching.

BPE compresses data by finding the most frequent pair of

adjacent bytes in the data and replacing all instances of this

pair with a byte that was not in the original data. The

algorithm repeats this process until no further compression is

possible, either because there are no more frequently

occurring pairs or there are no more unused bytes to represent

pairs [9]. Let us consider m as the number of passes or

number of times the process is repeated. In each pass, the

algorithm writes out the pair substitution information before

the packed data. This data is used for encoding in the next

pass.

Byte-pair encoding (BPE) is beneficial only when the source

is having small alphabet size, because it needs unused zero-

frequency byte symbols for encoding most frequent byte-

pairs.

Another drawback of this BPE algorithm is that it is using

multiple passes, replacing only single most frequent byte pair

with single unused byte at a time in each pass in the entire

file. To avoid frequent file i/o, entire data is stored in memory.

BPE has two potential problems: 1. Some files may be too

large to fit in memory; 2. Large binary files may not contain

unused byte to encode byte pair and therefore compression

may not be achieved.

These problems are solved by applying BPE to blocks of data

instead of entire file at a time. This block-wise BPE variation

[1,5] in the algorithm requires buffering small blocks of data

and compressing each block separately. Here additional cost

incurs due to storing substitution information and the output

block size information for each data block.

The advantages of using block-wise BPE are:

 Increased chances of finding unused (zero-frequency)

bytes in a small block as compared to finding unused

bytes in entire file

 It provides local adaptation to varying data and improves

overall compression.

 It can be implemented using parallel programming.

The source code for block-wise BPE is available at

mattmahoney.net/dc/bpe2v2.cpp [5]. It is m-pass encoding

where m is the maximum possible number of passes. At each

pass, it replaces the single most frequent byte-pair using one

unused byte in a bock. Here, we have denoted it as m-pass

BPT-Z (maximum pass Byte Pair Transformation using Zero-

frequency bytes).

3. RESEARCH SCOPE
Digram encoding, ISSDC and BPT-I are all dictionary based

techniques using index in encoding byte pair. Digram

encoding and ISSDC are better only when applied to small

size alpahbet source. QBT-I and BPT-I are intended for

introducing data redundancy for second stage data

compression.

The problem with BPE and m-pass BPT-Z is the large

execution time of encoding due to maximum possible passes.

A reserach scope is seen in reducing this large execution time

taken by BPE and m-pass BPT-Z.

An assumption is that the reduced number of passes will

reduce the transformation time.

4. INTRODUCTION TO BPT-Z
In all BPE, m-pass BPT-Z and k-pass BPT-Z, each pass is of

two stages:

1. Determine unused bytes and frequency of byte-pair data

2. Perform transformations on most frequent byte-pairs by

substitution with unused zero-frequency bytes

The main difference in BPE and m-pass BPT-Z is the data

size used in encoding. BPE transforms only one most frequent

byte-pair at a time and it is applied on entire file; whereas m-

pass BPT-Z also transforms only one most frequent byte-pair

at a time but is applied on small chunks of data blocks of a

file.

Like m-pass BPT-Z, k-pass BPT-Z also performs block-wise

encoding. The difference is that k-pass BPT-Z transorms more

than one most-frequent byte-pairs at a time in stead of only

one byte pair at a time. Additionally user can experiment with

varying number of passes.

4.1 m-Pass BPT-Z
Let us first understand m-pass BPT-Z with example. With m-

pass byte-pair transformation, only one most frequent byte-

pair is transformed in each pass. Thus header containing

substitution information is of 3 bytes; 2 bytes for byte-pair to

be replaced and 1 byte for byte used to replace byte-pair. If

most-frequent byte pair occurs less than 4 times, there is no

saving. Thus the process stops when most frequent byte pair

occurs less than 4 times or there is no more zero-frequency

byte.

Consider “abcdababdcdabcdcdabcdab” as the source data to

be encoded.

Pass-1

 Input: abcdababdcdabcdcdabcdab, length=23

 Most frequent Byte-pair: ab with frequency 6

 Encoding: substitute ab by unused symbol e

 Output (header, transformed data):

abeecdeedcdecdcdecde, length:20

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.20, June 2014

27

header Transformed data Total length

abe ecdeedcdecdcdecde 20

Thus abcdababdcdabcdcdabcdab is transformed to

ecdeedcdecdcdecde with header information abe.

Pass-2 (input is output of pass 1)

 Input: abeecdeedcdecdcdecde, length=20

 Most frequent Byte-pair: cd with frequency 5

 Encoding: substitute cd by unused symbol f

 Output (header, transformed data): cdfabeefeedfeffefe,

length:18

Header Transformed string Total length

cdf Abeefeedfeffefe 18

Thus abeecdeedcdecdcdecde is transformed to abeefeedfeffefe

with header information cdf.

Pass-3 (input is output of pass 2)

 Input: cdfabeefeedfeffefe, length:18

 Most frequent Byte-pair: fe with frequency 4

 Encoding: substitute fe by unused symbol g

 Output (header, transformed data): fegcdfabeegedgfgg,

length:17

Header Transformed string Total length

feg Cdfabeegedgfgg 17

Thus cdfabeefeedfeffefe transformed to cdfabeegedgfgg,

header information feg.

Pass-4 (input is output of pass 3)

 Input: fegcdfabeegedgfgg, length:17

 Most frequent Byte-pair: eg with frequency 2

The algorithm stops here, as there is no byte pair with

frequency > 3.

If most frequent byte pair is repeated 3 times, saving is only

of 3 bytes in transformation. This saving nullifies due to 3-

byte in header. Thus, there is no benefit.

Note that it requires finding most frequent byte pair in each

pass. It involves scanning data buffer, finding most frequent

byte pair. This adds to the cost of execution time.

4.2 k-Pass BPT-Z
With k-pass BPT-Z, it transforms one or more byte pair in

each pass. The header contains the information: n=number of

byte pairs used in substitution and n times substitution

information. Thus header information requires (1+n*3) bytes.

Here also, if frequency of byte pair is <4, it is not reducing the

data size due to overhead of this header information. So, the

process stops either due to no more byte pairs to transform or

no more zero-frequency bytes for substitution or number of

passes are over.

k-pass BPT-Z with k=1

Here, all possible byte pairs are transformed at once in single

pass only. Consider Consider “abcdababdcdabcdcdabcdab” as

the source data to be encoded.

Pass-1

 Input: abcdababdcdabcdcdabcdab, length=23

 Most frequent Byte-pairs: ab with frequency 6, cd with

frequency 5 and da with frequency 4.

 Encoding: substitute ab by e, cd by f and da by g; where

e, f and g are unused symbols.

 Output (header, transformed data):

3abecdfdagefeedfeffefe, length:22

Header Transformed data Total length

3abecdfdag Efeedfeffefe 22

Thus abcdababdcdabcdcdabcdab is transformed to

efeedfeffefe with header information 3abecdfdag.

Note that byte pair da is repeated 4 times but is a part of cda

where cd is repeated 5 times. Thus in the result, byte pair da is

not encoded at all, but its information is stored in header. This

is the overhead cost.

k-pass BPT-Z with k=2

Half of the possible byte-pairs are encoded in the first pass.

Pass-1: encode half of the possible byte pairs.

 Input: abcdababdcdabcdcdabcdab, length=23

 Most frequent Byte-pairs: ab with frequency 6, cd with

frequency 5 and da with frequency 4.

 Encoding: substitute half of the 3, say 2 most frequent

byte pairs ab and cd by e and f.

 Output (header, transformed data): 2abecdfefeedfeffefe,

length:19

Header Transformed data Total length

2abecdf Efeedfeffefe 19

Pass-2: encode all possible byte pairs.

 Input: 2abecdfefeedfeffefe, length=19

 Most frequent Byte-pairs: fe with frequency 5

 Encoding: substitute fe by g.

 Output (header, transformed data): 2abecdfefeedfeffefe,

length:19

Header Transformed data Total length

1feg 2abecdggedgfgg 18

5. k-PASS BPT-Z ALGORITHM
Here, the file is processed reading a data block with specified

number of bytes, say BlockSize.

5.1 k-pass Encoder
With k-pass BPT-Z, for each block, substitution takes place

by using half of the remaining unused bytes in every k-1

passes. In the last pass, all possible substitutions takes place.

At each pass, the encoded buffer contains the header

information (number of substitution pairs, values in

substitution pairs (byte-pair, unused byte)) and then encoded

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.20, June 2014

28

data. After k passes, for each block, it writes encoded buffer

size and the encoded buffer itself.

 Repeat till end of file

o Read a block of size block_size in array, say buf

o MaxToReplace=0

o Repeat for k-1 times or until MaxToReplace=0

 Determine number of unused (zero-frequency)

bytes, say m

 Store unused bytes in an array, say unused

 Determine frequency of byte pairs. Here binary

search tree (BST) data structure is used.

 Sort the byte pairs in the order of their

frequency

 Find number of byte pairs, say n, to be

considered for replacement. It is considered for

replacement if its occurrence is more than 4

times.

 Let maxToReplace = min(m, n)/2; maximum

number of byte pairs chosen to be replaced by

unused bytes

 Write the value of maxToReplace and those

many substitution pairs (byte pair, unused byte)

for maxToReplace most frequent byte pairs to

output buffer

 Repeat till end of buf

 Read two bytes number from buf

 If it is from list of byte pairs to be replaced,

write corresponding unused byte in output

buffer and move ahead for next byte pair in

buf; else copy first byte of byte pair in

output buffer and move ahead by 1 byte in

buf

o Repeat above process for last pass with

maxToReplace=min(m,n)

o Write the length of output buffer to output file

o Write the output buffer to output file

5.2 k-PASS Decoder
 Repeat till end of decoded file

o Read block_len = size of encoded block from

decoded file

o Read buffer of block_len bytes from file to buf

o Read m (number of byte pairs chosen for

replacement) from buf

o Read m substitution pairs (byte pair, unused byte) in

array from buf

o Repeat till end of buf

 Read 1 byte, say ch, from buf

 If ch is same as any of the unused byte in array

of substitution pairs, write corresponding byte

pair in output file; else write ch in output file

6. EXPERIMENTAL RESULTS AND

ANALYSIS
Programs for BPT-Z are written in C language and compiled

using Visual C++ 2008 compiler.

Programs are executed on a personal computer with Intel(R)

Core(TM)2 Duo T6600 2.20 GHz processor and 4GB RAM.

(BPT-Z is performed with 1 and k (2 or more) passes in

addition to maximum m-pass (implementation similar to code

available at mattmahoney.net [5].

Experimental results are recorded using average of five runs

on each test files. Most of the test files are selected from

Calgary corpus, Canterbury corpus, ACT web site. Test files

are selected to include all different file types and various file

sizes as shown in Table 1.

Table 1 gives the experimental results on 18 test files with

total size of nearly 40 MB, overall transformation rate (% of

saving in transformed file size), total execution time of

transformation and reverse transformation of all test files.

Transformation rate and BPS given in Table 1 shows that m-

pass BPT-Z gives better compression as compared to k-pass

BPT-Z. Compression rate achieved due to transformation is

14.72%, 20.12%, 21.89%, 22.67% and 22.96% with 1, 2, 3, 4

and 6 passes respectively as compared to 25.55% using

maximum m-passes. As seen in figure 1, in k-pass BPT-Z, as

value of k increases, compression improves.

Fig 1: Compression Rate

As shown in Table 1, BPT-Z transformation process have

taken 3.213, 9.794, 13.324, 16.323, 22.388 and 295.642

seconds to transform data using 1, 2, 3, 4, 6 and m-passes

respectively. As seen in figure 2, time taken by m-pass

transformation is significantly large as compared to k-pass

BPT-Z. As per figure 2, transformation time increases linearly

with varying value of number of passes.

Reverse transformation is comparatively very fast as

expected. Time taken to get original data back is only 6.294

seconds with m-pass BPT-Z and 1.569, 3.213, 2.61, 3.623,

3.742 seconds with k-pass BPT-Z for number of passes 1, 2,

3, 4, 6 respectively. Again, execution time increases with

increased number of passes but it is too small to get back data

of size 40 MB. Figure 3 represents this decompression time.

It is observed that transformation and inverse transformation

time is very high with m-pass BPT-Z as compared to k-pass

BPT-Z. However, with m-pass BPT-Z, transformation rate is

nearly 3.5% higher as compared to 6-pass BPT-Z showing

better data compression. Thus, one needs to have trade-off

between improvement in compression and execution time.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.20, June 2014

29

Fig 2: Transformation Time

Fig 3: Reverse Transformation Time

Table 1. Experimental Results and Analysis of BPT-Z with varying number of passes

No.
Source

File Name

Source size

(Bytes)
Transformed File Size (Bytes) after m-pass and k-pass BPT-Z

 m pass 1 pass 2 pass 3 pass 4 pass 6 pass

1 act2may2.xls 1348036 579249 907329 750499 676313 625412 623398

2 calbook2.txt 610856 333395 404795 367722 361070 359220 358650

3 cal-obj2 246814 151999 177315 168221 165241 164392 164050

4 cal-pic 513216 67297 279818 171054 121302 99031 86056

5 cycle.doc 1483264 564010 1001966 784175 685409 639858 611538

6 every.wav 6994092 6995149 6995121 6995992 6996846 6997700 6999408

7 family1.jpg 198372 198267 198376 198317 198337 198359 198408

8 frymire.tif 3706306 1025735 2247839 1679718 1469078 1389311 1348727

9 kennedy.xls 1029744 220447 608919 388373 337542 302425 294626

10 lena3.tif 786568 779995 783809 780443 780509 780584 780771

11 linux.pdf 8091180 5924171 6893760 6428656 6272289 6215611 6195157

12 linuxfil.ppt 246272 177750 209089 192714 186006 182977 180931

13 monarch.tif 1179784 1086942 1134918 1103577 1101105 1100468 1100193

14 pine.bin 1566200 1084151 1258230 1158763 1145406 1141295 1139168

15 profile.pdf 2498785 2493138 2496010 2494867 2494487 2494566 2495103

16 sadvchar.pps 1797632 1728078 1755441 1739964 1736218 1735210 1735154

17 shriji.jpg 4493896 4483977 4489213 4488723 4488754 4489223 4490235

18 world95.txt 3005020 1733330 2096542 1896547 1867720 1859872 1857181

Total Size (Bytes) 39796037 29627080 33938490 31788325 31083632 30775514 30658754

Overall Transformation Rate (%)

25.553 14.719 20.122 21.893 22.667 22.960

Overall BPS (Bits Per Symbol)

5.956 6.822 6.390 6.249 6.187 6.163

Total Transformation Time (Sec) 295.642 3.213 9.794 13.324 16.323 22.388

Total Inverse Transformation Time

(Sec)

6.294

1.569 3.213 3.610 3.623 3.742

International Journal of Computer Applications (0975 – 8887)

Volume 95– No.20, June 2014

30

7. OTHER FACTORS
Other than number of passes in BPT-Z, factors like block-size

and data structures used also affect the performance.

Larger block-size will reduce the possibility of finding zero-

frequency bytes in block, especially in binary files. So, the

compression may be poor. In our experiment, we have used

8KB size data block.

The data structure used in our experiment is Binary Search

Tree. The node of the tree contains byte-pair and its

frequency. BST is used to speedup search and sort.

Use of direct access with array data structure may improve the

speed.

8. CONCLUSION
As the number of passes in BPT-Z increases, transformed file

size is reduced but transformation time is increased. With 6-

pass BPT-Z, compression achieved is nearly 2.5% less as

compared to m-pass BPT-Z, but transformation time taken by

m-pass BPT-Z is extremely high as compared to k-pass BPT-

Z. As a trade-off, BPT-Z with 4 or 6 passes can be taken as

optimal considering both compression and execution time.

As expected, k-pass BPT-Z is considerably faster to execute

as compared to conventional m-pass BPT-Z.

9. REFERENCES
[1] Philip Gage, "A New Algorithm For Data Compression",

The C Users Journal, vol. 12(2)2, pp. 23–38, February

1994

[2] Altan Mesut, Aydin Carus, “ISSDC: Digram Coding

Based Lossless Data Compression Algorithm”,

Computing and Informatics, Vol. 29, pp.741–754, 2010

[3] Sayood Khalid, "Introduction to Data Compression",2nd

edition, Morgan Kaufmann, 2000

[4] Ian H. Witten, Alistair Moffat, Timothy C. Bell,

“Managing Gigabytes-Compressing and Indexing

Documents and Images”, 2nd edition, Morgan Kaufmann

Publishers, 1999

[5] mattmahoney.net/dc/bpe2v2.cpp

[6] Jyotika Doshi, Savita Gandhi, “Quad-Byte

Transformation as a Pre-processing to Arithmetic

Coding”, International Journal of Engineering Research

& Technology (IJERT), Vol.2 Issue 12, December 2013,

e-ISSN: 2278-0181

[7] Jyotika Doshi, Savita Gandhi, “Article: Achieving Better

Compression Applying Index-based Byte-Pair

Transformation before Arithmetic Coding”, International

Journal of Computer Applications 90(13):42-47, March

2014.

[8] Y. Shibata, T. Kida, S. Fukamachi, T. Takeda, A.

Shinohara, S. Shinohara and S. Arikawa, "Byte-pair

encoding: An text compression scheme that accelerates

pattern matching", Technical Report, Department of

Informatics, Kyushu University, Japan, 1999.

[9] Aydin Carus, Altan Mesut, “Comparison of the

Performance of Compression Methods Depending on

Natural Languages”, International Scientific Conference

23-24 Nov 2007, GABROVO

IJCATM : www.ijcaonline.org

